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ABC = ATP binding cassette; BCP = basic calcium phosphate; CPPD = calcium pyrophosphate dihydrate; ePPi = extracellular inorganic
pyrophosphate; iPPi = intracellular PPi; NTPPPH = nucleoside triphosphate pyrophosphohydrolase.
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Introduction
A landmark investigation into the genetic basis of murine
progressive ankylosis has clarified the physiologic role of
extracellular inorganic pyrophosphate (ePPi) in suppress-
ing pathologic deposition of basic calcium phosphate
(BCP) (an inclusive term for hydroxyapatite, octacalcium
phosphate, and tricalcium phosphate) in articular tissue [1].
A cell membrane protein, ANK, affects ePPi concentrations
and the balance of mineralization in articular tissues.

Excess ePPi promotes pathologic
mineralization with CPPD crystals
Excess accumulation of ePPi has long been recognized as
an important factor in the mineralization of cartilage with
calcium pyrophosphate dihydrate (CPPD) crystals. Ele-
vated levels of ePPi are routinely noted in synovial fluids of
patients with CPPD deposition disease [2,3]. Chondro-
cytes are the likely source of the ePPi that participates in
the formation of these crystals [4,5]. The elaboration of
ePPi by chondrocytes is a bioregulable process,
enhanced by transforming growth factor β, ascorbate,

retinoic acid, bone morphogenetic protein, transglutami-
nase, and thyroid hormones and diminished by parathy-
roid-hormone-related peptide isoforms, insulin-like growth
factor-1, tumor necrosis factor α, and interleukin 1.
Porcine chondrocytes from aged donors make more ePPi
than do chondrocytes from young donors [6]. Signaling
mechanisms involved in the regulation of ePPi formation
are poorly understood, but adenylyl cyclase activation
decreases and protein kinase C activation increases the
accumulation of ePPi in media surrounding cartilage or
chondrocyte cultures [7]. In addition to causing CPPD
crystal formation, excess ePPi accumulation may also
affect BCP mineralization.

CPPD crystal deposits and elevated ePPi levels are particu-
larly prominent in adult hypophosphatasia, congenital defi-
ciency of tissue-nonspecific alkaline phosphatase. In
hypophosphatasia, the predominant phenotypic disease
expressions are rickets and osteomalacia. Murine models of
hypophosphatasia indicate that the nucleation and initial
growth of BCP crystals within matrix vesicles of mineralizing
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bone are normal. However, with loss of vesicle integrity,
further BCP crystal growth is suspended [8]. Possibly
these BCP deposits are coated by ePPi, preventing
further mineral accretion. These results suggest that the
adsorption of PPi to BCP occurs in vivo as predicted by
the in vitro studies of Fleisch and coworkers [9].

If excess ePPi inhibits the nucleation and growth of BCP,
does deficiency of ePPi promote its formation?

Deficient ePPi promotes pathologic
mineralization with BCP crystals
Tiptoe walking (ttw) mice have an underlying nonsense
mutation in PC-1, a membrane-bound ectoenzyme that
can generate ePPi from extracellular nucleoside triphos-
phates [10]. This enzyme has been extensively studied by
Terkeltaub and coworkers,  who found that it has an
important role in maintaining levels of extracellular and
perhaps intracellular PPi [11,12]. Phenotypically, ttw mice
develop excess calcification of the ligaments of the  axial
skeleton, resulting in myelopathy and an abnormal gait.
However, despite the putative role of PC-1 in ePPi gener-
ation, reduced ePPi formation and accumulation have not
yet been directly demonstrated in this animal model. (Inter-
estingly, mutated PC-1 and decreased ePPi levels have
been identified in a patient presenting with severe periar-
ticular and vascular calcification [13].) The recently pub-
lished ank gene story establishes the direct tie between
low ePPi levels and excess BCP mineralization of articular
structures in another animal model.

Murine progressive ankylosis is the result of an autosomal
recessive mutation in ank, producing spontaneous ankylosis
of peripheral and axial joints with bony, BCP-containing
tissue [14]. Disease progression in mutant ank/ank mice
can be halted by treatment with phosphocitrate, a com-
pound that adsorbs to BCP crystals, as does PPi [15]. Ho,
Johnson, and Kingsley have identified the mutation respon-
sible for murine progressive ankylosis and linked it directly
to abnormally suppressed cellular elaboration of ePPi [1].
These investigators from the Department of Developmental
Biology and Howard Hughes Medical Institute at Stanford
University School of Medicine performed genetic and physi-
cal mapping of the ank locus in the proximal mouse chromo-
some 15. Bacterial artificial clones derived from wild-type
mice were tested to determine whether they could rescue
ank mutant phenotypes in transgenic mice. Remarkably, the
mice transgenic for wild-type ank developed neither the joint
stiffness nor the joint BCP deposits characteristic of
ank/ank mutants, indicating that the mutated gene product
played a direct role in the excess mineralization.

The ank mutation was found to be a nonsense G-to-T sub-
stitution. The predicted ank product, termed ANK, is a 54-
kD protein with numerous hydrophobic stretches,
glycosylation sites, and phosphorylation sites. Immuno-

fluorescence studies show that it is localized mainly in the
cell membrane. Northern blot analysis and in situ
hybridization studies revealed ank mRNA in multiple adult
tissues and in developing articular cartilage. Fibroblasts
from ank/ank mutants contained excess intracellular PPi
(iPPi) and made little ePPi in comparison with fibroblasts
from wild-type mice. Overproduction of ANK in mutant
ank/ank mouse fibroblasts reversed the alterations in ePPi
and iPPi levels, indicating a crucial role for ANK protein in
controlling PPi localization. The effect of ANK protein was
blocked by probenecid. This weak organic anion inhibits
transmembrane anion transport and has been implicated
in decreasing ePPi elaboration by articular chondrocytes
[16]. Its effect suggests that ANK may function as or regu-
late an anion channel.

Unresolved questions
Many questions remain unanswered concerning the role of
ANK in regulating ePPi metabolism.

Is ANK a channel through which PPi can traverse the
plasma membrane or does it regulate flow through an adja-
cent channel? Either a role as a channel or a regulatory
function is consistent with the published data. How does
ANK relate to ectoenzymes that generate ePPi? Substantial
data suggest that nucleoside triphosphate pyrophosphohy-
drolases (NTPPPHs) such as PC-1 and cartilage intermedi-
ate layer protein play an important role in elaboration of
chondrocyte ePPi. Levels of NTPPPH activity in joint fluids
correlate directly with ePPi levels [17]. And reduction of
substrate (ATP) or ectoenzyme activity (by trypsinization)
markedly reduces ePPi formation [18,19]. Conversely, sup-
plying exogenous substrate and overexpression of the PC-1
form of NTPPPH enhance ePPi formation [11,20]. Providing
exogenous ATP to cartilage leads to not only increased
ePPi concentrations but also actual formation of CPPD
crystals [21]. Perhaps ANK serves as a conduit (or regu-
lates such a channel) for ATP, which is then converted
extracellularly to ePPi by ecto-NTPPPH. The probenecid
data may reflect its ability to influence ATP binding cassette
(ABC) transporters, potential facilitators of ATP egress,
rather than its effect on anion channels [22]. How can ANK
explain the concurrence of BCP and CPPD crystals, so
often seen together in joint fluids? In some studies, the two
occur concomitantly more often than either occurs alone
[17]. It would seem that BCP should be a result of deficient
ANK expression and CPPD, of excess ANK expression. The
presence of the two together is unexplained. However, it is
noteworthy that articular cartilage vesicles capable of gener-
ating both species of calcium-containing crystals have been
identified in cartilage, are enriched in NTPPPH activity, and
are inhibited by phosphocitrate [23–25]. Does ANK reside
in these membrane-derived structures?

Perhaps the most important result of these studies is
heightened realization of the daunting task facing investi-
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gators hoping to prevent the cartilage degeneration so
often occurring in patients with diseases marked by the
deposition of calcium-containing crystals. CPPD and/or
BCP crystals are observed in 60% of joint effusions in
patients with osteoarthritis [26]. Both have profound in
vitro effects on synovial lining cells, including mitogenesis,
synthesis and secretion of metalloproteinases, diminution
of secretion of inhibitors of proteases, and release of
cytokines and prostaglandins [27]. Theoretically, preven-
tion of crystal formation would have a salutary effect on
the degenerative process. Yet we now know that too
much ePPi is undesirable (CPPD forms) and too little is
equally unwanted (BCP forms). Prevention of the degener-
ative results of crystal deposition may depend upon main-
taining ePPi concentrations within a narrow physiologic
range. This contrasts with another disease of crystal depo-
sition, gout, in which overcorrecting the hyperuricemia has
no adverse consequences. A great deal more needs to be
learned about the homeostasis of ePPi before fine-tuning
of articular concentrations can be achieved.
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