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Nanopore technology has emerged as an attractive scientific tool with various potential applications in genomics, 
proteomics, diagnostics, and beyond.  As featured by the symposium “The fundamental and applications of single-
molecule nanopore sensing for biophysical studies” of the 61st Annual Meeting of the Biophysical Society of Japan held 
in November 2023, in this commentary, we briefly introduce the history of nanopore technology, the basic principle of 
nanopore, and the potential applications.  

The origins of nanopore technology date back to the 1980s, with 
early conceptualization to nano-sized pore in membrane protein for 
the detection of biological molecules, such as DNA, RNA, and 
proteins [1]. The basic concept of nanopore sequencing emerged 
from the idea passing a single-stranded DNA through a nano-sized 
pore in a membrane driven by electrophoresis. In an early 
experiment, Kasianowicz et al. identified that the bacterial pore-
forming protein, staphylococcal α-hemolysin (αHL) with -1.2 nm 
aperture, serves the ideal sensor to detect the single-stranded DNA 
and RNA by observing their translocation through a nanopore, 
resulting in the reduction of ionic current (Figure 1a) [2]. The 
discovery of αHL led to significant advancement since it showed the 
sensitivity to distinguish different polynucleotides and the direction 
of translocation (3' to 5' or 5' to 3') [3,4]. Another crucial 
development for nanopore sequencing was the establishment of 
processive enzyme control for DNA translocation. In this process, 
DNA polymerase tightly binding to the DNA regulate the 
nucleotides through a nanopore, one nucleobase at a time (Figure 
1b) [5]. Additionally, engineered protein nanopores enhanced 
sensitivity for nucleotide identification by introducing recognition 
sites (Figure 1c) [6]. Also, Oxford Nanopore Technologies (ONT) 
played an important role in manufacturing nanopore sequencing 
device. ONT developed a compact and portable sequencer “the 
MinION” with improved chemistry and data analysis, leading to 
sequencing accuracy at practical level and long reading length. This 
long reading sequencing has provided various applications such as 

Figure 1  Brief history of nanopore technologies 
a. DNA and RNA detection using αHL b. 
Regulation of DNA translocation using DNA 
polymerase c. Examples of engineered protein 
pore (αHL) All figures adapted with permission 
from ref. 2, 5, 6. 

© 2024 THE BIOPHYSICAL SOCIETY OF JAPAN doi: 10.2142/biophysico.bppb-v21.0003

e210003_1

Vol. 21, e210003 (2024)

https://orcid.org/0000-0002-1749-0865
http://www.jstage.jst.go.jp/browse/biophysico/


epigenetic/transcriptomics/genomic research, clinical usage, and on-site pathogen detection [7]. 
The nanopore technology is based on measurement of changes in electrical resistance produced by molecular 

translocation similarly to sensing principle of Coulter counter. Typically, nanopore sensing employs the electrical model 
in Figure 2a. When the electrolyte solution is filled within a fluidic cell, the current density into nanopores is described 
by Eq. (1). Readers can find the summary of symbols in all equations in Table 1. 

 
𝐽𝐽 = 𝑧𝑧𝑖𝑖2∙𝐹𝐹2 

𝑅𝑅𝑅𝑅
 [𝐷𝐷+ + 𝐷𝐷−]𝑐𝑐𝑐𝑐 =  𝜎𝜎𝑠𝑠𝑐𝑐                                                                                                                            (1) 

 
In the case where the diameter of the nanopores are significantly smaller than the pore height, the nanopore resistance 

dominates to the total electrical resistance. When the potential drops between the electrodes and the electrolyte solvent 
are small, the potential drop in nanopores becomes approximately equal to the applied voltage. Nonpolarizable electrodes, 
such as Ag/AgCl electrodes, can be used to reduce the potential drop between the electrodes and the electrolyte solvent. 
Furthermore, the potential drop in the electrolyte solvent is reduced when salt concentration is high. Since typical 
nanopore sensing use Ag/AgCl electrodes and the electrolyte solvent with high salt concentration (typically 0.1-4M KCl, 
NaCl or LiCl), the resistance at electrodes and electrolyte solvent are minimal. Thus, the ion current expressed as Eq. (2). 

 
𝐼𝐼 = 𝐴𝐴 

ℎ
 𝜎𝜎𝑠𝑠∆𝑉𝑉 = 𝜋𝜋𝑑𝑑2 

4ℎ
 𝜎𝜎𝑠𝑠∆𝑉𝑉                                                                                                                                              (2) 

 
Since strong electric field are formed at vicinity of nanopores, the access resistance should be considered, which is 

described as Raccess = 1/d [8]. Therefore, the current obtained from the total resistance can be described by Eq. (3). 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑠𝑠∆𝑉𝑉 �
4ℎ 
𝜋𝜋𝑑𝑑2

+ 1
𝑑𝑑
�
−1

                                                                                                                                                (3) 
 

This equation tells that nanopore geometry (diameter and height) modulates the total resistance, resulting in the ion 
current value. If molecules with known size passed through nanopores, one can estimate the pore geometry from baseline 
ion current and blockade current using Eq. (3) and (4).  

 

∆𝐼𝐼 = 𝜎𝜎𝑠𝑠∆𝑉𝑉 �
4ℎ 

𝜋𝜋𝑑𝑑𝑚𝑚2 + 1
𝑑𝑑𝑚𝑚
�
−1

                                                                                                                                               (4) 
 

In addition, the enhancement of the molecular capture rate into nanopores is also crucial factor for the high-throughput 
measurement. Therefore, the molecular capture process has been extensively studied [9-11]. The molecular capture 
process can be explained as a Poisson process (𝑃𝑃(𝑡𝑡) = 𝑒𝑒−𝑅𝑅𝑐𝑐𝑡𝑡 ). The molecular capture probability is significantly 
influenced by the voltage distribution outside nanopores, and the voltage at certain distance (r) from nanopores is 
described as Eq. (5) [11]. 

 
𝑉𝑉(𝑟𝑟) = 𝑑𝑑2

8ℎ𝑟𝑟
∆𝑉𝑉                                                                                                                                                                  (5) 

 
In the voltage distribution described by Eq. (5), in regions where r > r*, molecules can freely diffuse within the solvent. 

In contrast, in regions where r < r*, the drift motion of molecules becomes dominant over diffusion, causing molecules 
to gradually be drawn into the nanopore (Figure 2b). The probability of molecular capture can be derived from the 
Smoluchowski equation, and using this effective distance (r*), it can be expressed as Eq. (6) [12]. 

 
𝐶𝐶𝑅𝑅 = 2𝜋𝜋𝑃𝑃𝑟𝑟∗                                                                                                                                                                      (6) 
 

Since voltage at r* is defined as 𝑉𝑉(𝑟𝑟∗) = 𝑃𝑃/𝜇𝜇, capture radius and the molecular capture frequency can be expressed as 
Eq. (7) and (8). 

 
𝑟𝑟∗ = 𝑑𝑑2𝜇𝜇

8ℎ𝑃𝑃
∆𝑉𝑉                                                                                                                                                                     (7) 

 
𝐶𝐶𝑅𝑅 = 2𝜋𝜋𝑑𝑑

2𝜇𝜇
8ℎ

∆𝑉𝑉                                                                                                                                                                    (8) 
 

Since the effective distance r* includes the diffusion constant and electrophoretic mobility of molecules, it depends on 
the length of molecules and the total charge of molecules. Furthermore, r* is expected to increase linearly with the applied 
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voltage, but the capture probability increases exponentially [10]. This suggests that some molecules approaching 
nanopores may not be able to pass through a nanopore, since the coiled structure of DNA need to unwind before passing 
through a nanopore. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The understanding of molecular translocation through nanopores is necessary for analyzing data correctly. Previous 
study found that molecular translocation through a nanopore is not consistent and is influenced by nanopore size due to 
the interaction between molecules and the nanopore interface [13]. The nonlinear relationship is attributed to interactions 
between the nanopore interface and molecules, as well as the contraction of coiled DNA near the nanopore [13-15]. Also, 
molecular translocation is influenced by buffer condition such as salt concentration, salt type, pH, viscosity and so on 
[16-19]. Thus, the propriate pore geometry and buffer conditions for target experiments is important to enhance the 
detection modalities [20]. 

Since nanopore sensing works the simple principle and promise the high sensitivity, this sensing approach can be 
integrated into varieties of applications. The followings are examples of some notable applications. Nanopores can be 
used to analyze not only sequence of DNA and RNA, but also size, shape and conformation of DNA, RNA, and proteins 
as well as nanoparticles [21-23]. This means it can be used for understanding molecular folding, interactions, and 
structural changes. For examples, recent works showed that solid-state nanopore can detect the detailed conformational 
state of protein during translocation through a nanopore under high electric fields, allowing the investigation of metastable 
intermediates and the unfolding/folding state of proteins [24,25]. In addition, this strategy can be employed in drug 
discovery and development since it can detect the conformation change due to the interactions between small molecules 
and biological molecules. Some recent works showed that protein trapping on nanopores can be used to monitor transition 
of drug binding kinetics by looking at current value changes [26,27]. Finally, nanopore technology can be integrated into 
the interface with biological systems, thereby offering cybernetic control systems and enabling a synergy between the 
fields of genomics and cybernetics. For instance, toward development of chemical artificial intelligence, protein or de 

Table 1  Symbol names 

Figure 2  Basic principle of nanopore technologies a. The electrical model of nanopore sensing. b. 
Schematic illustration of DNA capture into the nanopore under the electrical field. 
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novo designed pores were employed to exchange the small molecules outside and inside of live and artificial cells 
composed by giant unilamellar vesicles (GUVs) [28-31]. 

In conclusion, we provided a brief introduction of the history, basic principle, and some applications of nanopore 
technology. Since this technology can analyze single molecules at high sensitivity and adapt to various sensing approaches, 
it is a promising tool for both fundamental research as well as an extensive range of applications in the field of biophysics. 
With continuing to explore and develop nanopore technology, we hope that this technology will unlock new research 
approaches and applications in the realm of biophysics. 
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