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Draft genome sequences of related Paeniglutamicibacter sp. 
isolates from two disparate cave systems
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ABSTRACT We present the genome assemblies of two similar Paeniglutamicibacter 
strains, ORCA_105 and MACA_103, isolated from Mammoth and Oregon Cave systems, 
respectively. These closely related, but distinct genomes will provide a resource for those 
studying genomic adaptation to caves.
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M any bacterial lineages thrive in extreme terrestrial cave systems (1, 2) and have 
yet to be identified. Here, we present draft genomes of two Paeniglutamicibacter 

isolates from Oregon and Kentucky caves with identical 16S rRNA genes.
Isolate ORCA_105 was collected on 3 October 2018 from the floor of Oregon Caves 

National Monument (ORCA) 68 m from the cave entrance (Oregon, USA; UTM NAD83 
10T 466241, 4661543) using a sterile swab and inoculated onto a ½ R2A agar plate 
with nystatin (150,000 U/L). Isolate MACA_103 was collected on 9 April 2019 from 
Mammoth Cave National Park (MACA) ceiling (Kentucky, USA; UTM NAD83 16S 581551, 
4109203) 400 m from the cave entrance and inoculated onto ⅕ R2A agar with 5 g/L 
of pulverized cave rocks and nystatin (150,000 U/L). Isolates with unique morphologies 
were subcultured using streak isolation and incubation at 8°C until the isolate appeared 
pure, at which time DNA extraction was performed from the lawn using a 1.0 µL loop.

DNA extractions were performed using the Biospec BeadBeater (Bartlesville, OK) for 
1.5 min at medium speed and DNeasy UltraClean Microbial Kit (Qiagen Germantown, 
MD). Genomic libraries were generated with NEBNext Ultra DNA II Library Kit (New 
England Biolabs, Cat. #E7645L) and sequenced on an Illumina NextSeq 500 with the 
Mid Output Kit v2.5 (Illumina, Cat. #20024905) generating 2 × 151 bp reads. Sequence 
analysis was performed with the EDGE bioinformatics UI platform (v2.4.0) (3). Reads were 
first trimmed/filtered using faQC (v2.08) (4) with three bases clipped from each end and 
removing reads below 20 average quality and/or 50 bp length, then assembled using 
IDBA (v1.1.1) (5) with options “--pre_correction --mink 31—maxk 121—step 20 min_con
tig 200.” Contigs with less than 100× coverage, identified by BWA (v0.7.12) (6), were 
removed. CheckM (v1.2.2) (7) was used to estimate completeness and contamination,
whereas Prokka (v1.14.5) (8) was used to predict CDSs, tRNAs, and rRNAs. Assembly 
details are provided in Table 1.

The end-trimmed alignment of ORCA_105 and MACA_103 16S rRNA gene sequen
ces shows that they are identical. By BLAST search (9–11), full-length ORCA_105 and 
MACA_103 16S gene sequences show very high similarity to the 16S rRNA gene of 
Paeniglutamicibacter sulfureus (NR_026237.1) at 99.47% and 99.85%, respectively, and 
P. antarcticus (NR_115079.1) at 99.47% and 99.70%, respectively. Using CEANIA (https://
github.com/eamiddlebrook/CEANIA), these two strains have an average nucleotide 
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identity of 0.903 across their core genes. A phylogenomic tree with related bacteria 
shows a close association between ORCA_105 and MACA_103 and P. sulfureus As4PL and 
P. quisquiliarum ABSL32-1, respectively (Fig. 1).

TABLE 1 Genome assembly statistics, BLAST results, and accession numbers

Characteristic ORCA_105 MACA_103

No. of reads 32,351,542 32,156,656
Assembly size (MBP) 4.42 4.80
No. of contigs 118 147
N50 values (BP) 89,925 88,696
Max contig len 237,673 202,090
Avg. coverage 1062 979
GC content (%) 0.64968 0.65791
Best hit taxon P. sulfureus and P. antarcticus P. sulfureus
Best hit accn. NR_026237.1 and NR_115079.1 NR_026237.1
Est. complete (%) 99.77 99.54
Est. contamination (%) 1.87 2.29
No. coding sequencesa 3,934 4,257
No. rRNAa 7 4
No. tRNAa 62 62
GenBank assembly accn.b GCF_045798545.1 GCF_045798555.1
NCBI BioSample accn. SAMN44524352 SAMN44524351
NCBI SRA accn. SRX27112100 SRX27112101
aAnnotations provided by Prokka (v1.14.5) (8).
bAnnotations of GenBank entries were provided by PGAP (12).

FIG 1 Phylogenomic tree of ORCA_105 and MACA_103 along with 18 closely related isolates. The tree was inferred with the OrthoPhyl pipeline (v1.0) (12). Briefly, 

OrthoFinder (v2.5.4) (13, 14) was used to infer 1,122 strict single-copy orthologs that were converted to codon alignments with PAL2NAL (15). IQ-TREE (v2.2.0.3) 

(16–18) was used to infer the final tree from the concatenated alignments. The tree was visualized with iTOL (19). Only bootstrap supports (calculated from 100 

replicates) that are less than 100 are shown on the tree. NCBI accessions are shown at leaves. G: Glutamicibacter, P: Paeniglutamicibacter, and Z: Zhihengliuella.
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These assemblies from cave-adapted Paeniglutamicibacter strains will be valuable 
additions to the growing number of genomic sequences from cave environments for 
identifying genomic signatures of cave adaptation.
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