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Abstract
Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and 
its extracellular vesicles has been demonstrated for a broad spectrum of indications, 
including kidney diseases. However, BM-MSC donor characteristics and their 
potential are not usually considered. Therefore, the present work aims to evaluate the 
nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral 
ureteral obstruction (UUO) model. 
Methods: BM-MSC was characterized by their differentiation potential and 
immunophenotypic markers. The sEV were isolated by ultracentrifugation and 
characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo 
was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats 
were submitted to UUO procedure and concomitantly treated with sEV secreted by 
BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was 
evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-
angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). 
Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with 
pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate 
collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared 
to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV 
demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 
2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. 
Conclusion: The BM-MSC sEV from trained animals presented an increased 
nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR 
and contributing to angiogenesis in UUO model.
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Background
Chronic kidney disease (CKD) results in a gradual loss of 
kidney function, leading to end-stage kidney disease, in 
which the only treatments available are dialysis or kidney 
transplantation [1]. Structural loss of renal function can 
result from glomerulosclerosis, tubular interstitial fibrosis, 
or both [2,3]. Glomerular injury and tubulointerstitial injury 
are associated with the recruitment of inflammatory cells and 
profibrotic cytokines. Although sclerotic and fibrotic lesions 
lead to kidney damage, the reduction in glomerular filtration 
rate correlates with tubular interstitial fibrosis [2–5]. Renal 
fibrosis is characterized by the activation and proliferation of 
renal interstitial fibroblasts and the deposition of extracellular 
matrix components [5]. Mesenchymal stromal cell (MSC) 
therapy is the most advanced cellular therapy to date. The 
efficacy of MSC-based cell therapy has been demonstrated for 
a broad spectrum of indications in vivo and in vitro, including 
kidney diseases [6–8].

According to the International Society for Cell & Gene 
Therapy (ISCT®), MSC must have three characteristics for 
their characterization. First, they must express CD90, CD73, 
and CD105 surface markers and the absence of CD45, CD34, 
CD11b, CD19, and HLA-DR markers. Second, they must be 
able to adhere to a plastic surface under culture conditions, 
and third, they must be able to differentiate into chondroblasts, 
osteoblasts, and adipocytes in vitro [9–11].

Mesenchymal stromal cells can be conditioned through 
specific minerals and vitamins to increase protective capacity. 
This strategy allows the cell to have improved insertion properties 
and survive in hostile microenvironments [12,13]. In addition, 
studies have shown that MSC may be conditioned by hypoxia. 
These effects on MSC efficiency and proliferation are still 
controversial and may depend on seeding density, oxygen 
concentration, culture conditions, and the sources of MSC [14,15].

Nevertheless, the donor characteristics are not considered. 
Most studies extract BM-MSC from adult and healthy animals, 
but no study evaluated the effects of physical exercise on BM-
MSC, especially in extracellular vesicles (EVs). In addition, the 
benefits of physical activity in CKD are well known [16,17]. 
It has been reported that physical activity is an essential 
intervention for patients on hemodialysis to improve their 
physical performance [18].

Many studies attempt to characterize the paracrine 
communication mediated by BM-MSC, and extracellular vesicles 
play a central role [19,20]. One of the most significant advances of 
recent research showed vesicle’s ability to transport and transfer 
ribonucleic acid (RNA) and microRNA (miRNA) to recipient 
cells, thus modulating their protein expression pattern [19, 21–23].

The term extracellular vesicles (EVs) includes exosomes 
(30-100 nm), microvesicles (100-1000 nm), and apoptotic 
bodies (50-5000 nm), which are differentiated based upon 
their biogenesis, size, release pathways, function, and content 
[24–27]. Researchers use the term “small extracellular vesicles”, 

since the isolation of a pure population of exosome through 
the method used in the present study is difficult. Therefore, we 
will use the term“small extracellular vesicles” (sEV) to refer to 
EVs less than 30-150 nm in diameter, according to the updated 
guidelines of the International Society for Extracellular Vesicles 
of 2018 (MISEV2018) [27].

EVs can transport proteins, lipids, RNA, mainly miRNA, 
and mediate intercellular communication [28,29]. EVs express 
evolutionarily conserved proteins, including tetraspanins (CD9, 
CD63, CD81), Alix, TSG101, and HSP70 [27], as well as specific 
proteins that appear to reflect their original cell [30,31]. 

BM-MSC can also release extracellular vesicles after 
stimulation, being able to exert their therapeutic effects in a 
paracrine/endocrine manner [19,32,33]. Several studies have 
shown that EVs derived from MSC, mainly from bone marrow, 
can promote tissue repair/recovery and reduce inflammation in 
different kidney injury models [34–40]. So, it is reasonable to 
suggest that physical exercise can improve the protected effect 
of EVs secreted by bone marrow mesenchymal stromal cells.

UUO is an experimental model widely used to simulate kidney 
disease with tubulointerstitial fibrosis, chronic inflammation 
caused by continuous ureteral obstruction, leading to progressive 
renal function loss [41–44], considered then an aggressive 
experimental model of chronic kidney disease. Therefore, this 
work aims to evaluate the treatment with sEV secreted by BM-
MSC from trained rats in their protective capacity in chronic 
kidney disease induced by unilateral ureteral obstruction (UUO).

Methods
Animals and experimental design
Male Wistar rats weighing between 190 and 210 grams at 30 days 
of age were used. The animals obtained were housed in controlled 
temperature (25ºC/77 ºF) room and had free access to water 
and rat chow (Nuvilab, Brazil). The study was approved by the 
Ethical Committee of Experimental Animals of Universidade 
Federal de São Paulo (CEEA – protocol. nº 8628/0000050814). 
The protocol approved was in agreement with the Brazilian 
guidelines for scientific animal care and use. 

After acclimation for seven days, the rats were randomly 
assigned into two groups (n=3 each). The control group not 
submitted to physical activity was called the untrained group 
(UT), and the exercise training group was called trained 
group (T). 

The functional capacity was measured in the trained group 
using the maximal exercise test, as described in the literature 
[45,46]. The rats were submitted to an adaptation period on the 
treadmill, at a rolling speed of 5 meters for 10 minutes (m/min), 
with 5 m/min increments every 3 minutes. 

The criterion for exhaustion in the animals was an inability 
to cope with the speed of the treadmill. Thus, we opted for the 
maximal running test and exercise training for an intensity 
of 65% to 70% of the maximum speed reached in the test to 
characterize high-intensity exercise. 
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Finally, each training session was divided into five minutes of 
warming up and 40 minutes of exercise. There were 5 sessions 
per week for 4 months.

The untrained and trained rats were euthanized 121 day 
safter the beginning of the experimental protocol through 
an intraperitoneal injection of a toxic dose of 10 mg/kg of 
xylazine (Agribrands do Brasil, Brazil) and 90 mg/kg of ketamine 
(Agribrands do Brasil, Brazil).

Culture and characterization of bone marrow 
mesenchymal stromal cells (BM-MSC)
The bone marrow (BM) was obtained fromthe untrained group 
(UT) and ofthe trained group (T). Briefly, rats were sacrificed, 
and femurs and tibias were aseptically removed. The BM was 
flushed from the shaft of the bone with DMEM medium (Sigma, 
USA) containing 5% fetal bovine serum (FBS) (Invitrogen, 
Scotland) plus penicillin/streptomycin (100 U/mL to 0.1 mg/mL; 
Invitrogen). BM-MSC were recovered by centrifugation (1500g 
for 30 minutes) in a density gradient with Ficoll Hystopaque 
(Sigma, USA), followed by their tendency to adhere tightly to 
plastic culture dishes, as previously described [8]. BM-MSC were 
plated in DMEM plus 20% FBS and penicillin-streptomycin (100 
U/mL to 0.1 mg/mL), allowed to adhere for 24 hours (h) and 
maintained in regular cultures conditions of once-a-week culture 
medium change and twice a week trypsinization until were used 
between 4-6th passages for the characterization protocol.

The differentiation potential of BM-MSC into osteocytes and 
adipocytes was performed through of Mesencult osteogenic and 
adipogenic differentiation kit (Stemcell, Canada), according to 
manufacture instructions. After the incubation period, the cells 
were fixed with 10% formalin for 20 min at room temperature, 
and mineralization (presence of calcium-rich hydroxyapatite) 
of the extracellular matrix was assessed by staining for 20 
min with 5% wt/vol Von Kossa Silver, adjusted to pH 4.1 with 
ammonium hydroxide (all reagents were from Sigma) [8, 47,48]. 
Adipogenic differentiation was visualized in phase-contrast 
microscopy by the presence of highly refractive intracellular 
lipid vacuoles. Oil Red O (Sigma, USA) staining was used to 
assay the accumulation of lipid droplets in these vacuoles [8,49].
The results were shown through photomicrographs using Nikon 
fluorescence microscopy (Nikon, Japan).

The BM-MSC markers, anti-CD90-FITC, and anti-CD45-PE 
(all from BD Pharmagen, USA) were analyzed by flow cytometric 
analysis, and one negative control tube with cell suspension 
was also used as control. The cells were incubated with purified 
antibody, washed twice with phosphate-buffered saline (PBS) 
buffer, and incubated with anti-rabbit antibody conjugated to 
Alexa Fluor 488 (from Becton Dickinson Company, USA) for 20 
minutes. After incubation, were rewashed with PBS buffer and 
resuspended in 500 µl PBS for the FACS analysis. The results 
from all tubes were analyzed, and the results are expressed as 
percentages.

Small extracellular vesicles secreted by BM-MSC 
and their characterization 
This method is in according with “Comparison of Minimal 
Information for Studies of Extracellular Vesicles 2018” 
(MISEV2018) [27].The small extracellular vesicles (sEv) were 
isolated from BM-MCS according to the following protocol.

The conditioned media (CM) was obtained from untrained 
group (UT) and trained group (T). BM-MSC was maintained 
under culture conditions and serum-free culture medium for 
24 h. Then, the CM was collected and immediately subjected 
to centrifugation at 800 g for 5 min and 2000 g for 10 min, 
and the supernatant was filtered through a 0.22µm pore 
filter. Subsequently, the filtered medium was subjected to two 
ultracentrifugations at 100.000 g 4ºC for 1h, the last one in PBS. 
After discarding the supernatant, the pellet was collected and 
used or maintained at -80 oC.

The small extracellular vesicles (sEV) secreted by BM-MSC 
from the untrained group (UT) is called sEV-UT, while small 
extracellular vesicles (sEV) secreted by BM-MSC from the trained 
group (T) is called sEV-T. The parameter for small extracellular 
vesicles dose determination was protein concentration, assessed 
by Lorry-method and showed previously [50]. Thus, the protein 
dosage infers indirectly in the amount of sEV.

The CD63, amarker of small extracellular vesicles [27],was 
analyzed by western blotting. The samples of sEV-UT and sEV-T 
groups were separated by 10% SDS-PAGE and transferred to 
nitrocellulose membranes using a Trans-Blot® Turbo (Bio-
Rad, USA). Nonspecific binding sites were blocked with 5% 
albumin (v/v) in a TBS buffer. The immunoblots were incubated 
overnight at 4 °C with rabbit CD63 antibody (1:300, Santa 
Cruz Biotechnology, USA). After washing three times with 
TBS-T, the membranes were incubated for 2h at 4 °C in anti-
rabbit HRP-conjugated secondary antibodies (1:100.000; Cell 
Signaling, USA). Immunoreactive protein bands were visualized 
using Clarity™ Western ECL Substrate detecting kit (Bio-Rad). 
Images were obtained and analyzed by Chemiluminescence 
with Amersham Imager 680 (GE, USA).

The samples of sEV-UT and sEV-T groups were resuspended 
in PBS and inserted through a syringe coupled to the Malvern 
NanoSight NS300 (NanoSight, UK) for analysis. The capture 
settings were camera Level: 13 (NTA 3.0 Levels), number of 
frames: 374, temperature: 23.2 - 23.3 oC, and the analysis settings 
were 5 threshold level. The device measured the concentration of 
the particles/mL through three videos of 10 seconds each one. The 
particles movement provides size and distribution according to its 
Brownian movement. The results are expressed as particles/mL.

The miR-26a-5p, miR-126a-5p and miR-296-3p were 
analyzed using the TaqMan™ Advanced miRNA Assaykit 
(Applied Biosystems, CA). The miRNA expression levels were 
analyzed by qPCR: 200 ng of RNA was reverse-transcribed 
(TaqMan™ MicroRNA Reverse Transcription Kit), and the 
complementary DNA was used to detect and quantify specific 
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miRNAs within small extracellular vesicles by qRT-PCR using 
TaqMan™ Advanced miRNA Assay kit (Applied Biosystems, 
CA), according to manufacture instructions. The results are 
expressed as arbitrary units (AU).

Unilateral ureteral obstruction (UUO)
Eighteen male Wistar rats weighing between 190 and 210 grams 
at 30 days of age were anesthetized for the UUO-procedure. 
A low midline abdominal incision was made, the ureter was 
mobilized and isolated with minimal dissection and connected 
with two 6.0 silk threads (Bioline, USA) at the ureterovesical 
junction. Six animals submitted to this procedure were called 
unilateral ureteral obstruction (UUO) group. Six rats submitted 
to UUO were concomitantly treated with the small extracellular 
vesicles (sEV) secreted by BM-MSC and called untrained group 
(UUO-sEV-UT). Additionally, six rats submitted to UUO were 
concomitantly treated with sEV secreted by BM-MSC from the 
trained group (T), and this group was called UUO-sEV-T. Two 
rats underwent an identical surgical procedure, without ureteral 
ligation and with an injection of only PBS solution, and were 
called the Sham group (data not shown).

The small extracellular vesicle treatment was concomitant 
with the UUO-procedure. The renal artery was carefully 
dissected, and rats received 1×106 small extracellular vesicles 
resuspended in PBS that were injected into renal artery.On day 
7 post-surgery (UUO-procedure), the animals were euthanized 
by intraperitoneal injection of a toxic dose of 10 mg/kg of 
xylazine (Agribrands do Brasil, Brazil) and 90 mg/kg of ketamine 
(Agribrands do Brasil, Brazil).

Immunohistochemistry
Kidneys were dissected along the non-hilar axis, fixed in 10% 
phosphate-buffered formalin (Erviegas, Brazil). Afterward, 
kidney sections were fixed with 4% buffered paraformaldehyde 
and embedded in paraffin (Erviegas, Brazil). Next, 4 μm thick 
sections were prepared in Cryostat, and kidney slices were 
deparaffinized and rehydrated. Endogenous peroxidase activity 
was blocked with 5% hydrogen peroxide/absolute methanol for 
10 min. To expose the antigens, kidney sections were boiled 
in a target retrieval solution [1 mmol/L tris(hydroxymethyl)
aminomethane] pH 9.0, with 0.5 mM ethylene glycol tetra 
acetic acid for 10 min. Nonspecific binding was prevented by 
incubating with phosphate-buffered saline (PBS) containing 1% 
FBS albumin, 0.05% saponin, and 0.2% gelatin. Kidney sections 
were incubated with primary antibodies against transforming 
growth factor beta1 (TGF-β1: fibrosis mediator), hypoxia-
inducible factor 1 alpha (HIF-1α), and CD34-angiogenesis marker 
(1:200, rabbit anti-rat; ABCAM, USA). Protein expression was 
determined using a streptavidin peroxidase kit (Dako, USA). 
Sections were stained with diaminobenzidine for antibody 
detection and then counterstained with hematoxylin. Spots were 

absent in negative control sections. Digital photomicrographs 
were taken with a Leica DM 1000 upright microscope connected 
to a workstation computer through a Leica DFC 310 FX, LAS 3.8 
Microscope Camera (Leica, Switzerland). Ten photomicrographs 
were taken along the kidney cortex, and the light brown staining 
was quantified (LAS software, version 3.8) and averaged for each 
rat. The values obtained are expressed as percentage/stained area.

Fibrillar collagen accumulation (fibrosis) by collagen-specific 
Picrosirius Red staining as evaluated as previously reported 
[51,52]. Collagen volume fraction in the kidney was quantitated 
as previously reported and calculated as the percentage of 
connective tissue (red) areas compared to the sum of connective 
tissue area and non-connective tissue in all fields of the kidney 
section (20 sections/kidney). The values obtained are expressed 
as percentage/stained area.

Cell culture and hypoxia
Rat proximal tubular cells (RPTEC) were grown in RPMI-
1640 medium (Sigma, USA) supplemented with 10% FBS 
(Gibco, USA), 24 mM of sodium bicarbonate, 10 mM of N’-2-
hydroxyethylpiperazine- N’-2-ethanesulfonic acid, and 10.000 
U/L of penicillin/streptomycin. 

Semi confluence cell cultures (norm group) were maintained 
in normoxic conditions of at 37°C, 5% carbon dioxide, 21% 
oxygen,and 74% nitrogenand humidified atmosphere during 
48h, while cells subjected to hypoxia (hyp) were maintained 
in a Hypoxia Incubator Chamber (Stem Cell Technologies, 
Canada) in the presence of a gas mixture of 1% oxygen, 5% 
carbon dioxide, and 94% nitrogen, for 48h. Cells under hypoxic 
conditions were subsequently divided into two more groups, 
respectively: RPTEC under hypoxic conditions and treated 
with 50µg/mL of small extracellular vesicles (sEV) secreted 
by BM-MSC from the untrained group (Hyp+sEV-UTgroup) 
and RPTEC under hypoxic conditions and treated with small 
extracellular vesicles (sEV) secreted by BM-MSC from the 
trained group (T): Hyp+sEV-T group.

Hypoxia conditions were verified by immunofluorescence, 
using a method described by Convento et al. [53] for HIF-1α. 
The antioxidant enzyme nuclear factor erythroid 2-related 
factor 2 (Nrf2) also was verified by immunofluorescence [53]. 
The microscope images obtained were calculated using the Leica 
DFC 310 FX image analysis software (Leica, Switzerland) and 
are expressed as percentages/stained area.

Statistical analysis
The descriptive statistical analysis of the data was performed 
using the Action Stat software (version 3.3.2) for Windows. The 
results were expressed as mean ± SE. Data were analyzed by 
one-way analysis of variance (ANOVA) followed by the Tukey 
test or Student t-test, and p < 0.05 was considered statistically 
significant. 
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Results

Evaluation of maximal exercise test
The untrained group (UT group) showed a maximal exercise 
test (MET) of 19.2 ± 0.7 m/min, while the animals in the 
trained group (T group) showed a MET of 35. 4 ± 0.6 m/min, an 
improvement of 54% when comparedto the UT group (Table 1).

Characterization of BM-MSC 

BM-MSC was obtained from trained and untrained rats. These 
cells in culture, after 21 days of induction, confirmed the potential 
differentiation into adipocytes and osteocytes (Figure 1A). Also, 
flow cytometry analysis showed a positive marker for the CD90 
and a negative marker for CD45 (Figure 1B), as expected.

Characterization of small extracellular vesicles

The small extracellular vesicles size was analyzed via  
nanoparticle tracking analyses (NTA).The sEV-T and sEV-UT 
groups showed, respectively, a mode of 97 nm and 116 nm, which 
correspond to the size range for small extracellular vesicles. 
Interestingly, there was no significant difference in the size of 
small extracellular vesicles secreted by BM-MSC from trained 
(T group) or untrained (UT group) rats. Additionally, there was 
no difference in the concentration of the nanoparticles between 
sEV-T (1.7111 particles/mL) and sEV-UT (1.8211 particles/mL) 
groups (Figure 2A). The CD63 small extracellular vesicles 
marker was analyzed by western blotting and expressed in 
both groups (Figure 2B).

Figure 1. Characterization of bone marrow mesenchymal stromal cell (BM-MSC). (A) Photomicrograph of cell differentiation of BM-MSC cells into adipocytes 
and osteocytes. (B) Flow cytometry for CD90 and CD45 of BM-MSC cells.

Table 1. Maximum exercise test.

MET Trained group (T) Untrained group (UT) P-value

35.40 ± 0.60 19.20 ± 0.74 p < 0.1
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In vivo: rats submitted to unilateral ureteral 
obstruction (UUO) and the effects of BM-MSC  
small extracellular vesicle treatment
As shown in Figure 3A and 3B, in the renal cortex of the left 
kidney, after 7 days of UUO, there was TGF-β1 accumulation (3.76 
± 0.38%). The administration of small extracellular vesicle (sEV) 
prevents its expression in both treated groups (UUO+sEV-T: 
1.34±0.38%, and UUO+sEV-UT: 0.82 ± 0.19%) (p<0.05) when 
compared with the UUO. 

Using Picrosirius Red staining technique, we observed that 
the percentage of collagen-stained area in the UUO+sEV-T 
group (4.2 ± 0.4%) showed a significant decrease (p< 0.05) in 
comparison to the UUO (7.8± 0.6%) and UUO+sEV-UT groups 
(7.4± 0.5%), in Figure 3C and 3D.

The analysis of the hypoxia marker HIF-1α showed significant 
increase in the percentage of stained area (p< 0.05) in UUO+sEV-T 
group (14.16 ± 10.68 %) in comparison to the UUO (0.16 ± 0.46 
%) and UUO+sEV-UT groups (0.04 ± 0.5%), as presented in 
Figures 3E and 3F.

Also, the endothelial cell marker CD34 presented a significant 
increase in percentage of stained area (p< 0.05) in the kidney 
of UUO+sEV-T group (2.09 ± 0.18 %) when compared to the 

UUO (1.36 ± 0.16%) and UUO+sEV-UT groups (1617 ± 0.17 %), 
as shown in Figures 3G and 3H.

In vitro: the response of proximal tubule epithelial 
cell (RPTEC) to hypoxia and the effects of small 
extracellular vesicle treatment 
It is difficult to reproduce in vitro the conditions observed 
in UUO model, however, an important component of this 
model is hypoxia, observed mainly in the proximal tubular 
cell. Thus, in order to better evaluate the effects of sEV on the 
proximal tubule cell, we used the cell culture model submitted 
to normoxic and hypoxic conditions and treated with sEV.  
Figure 4 is shown the Nrf2 (A,B) and HIF-1α (C,D) protein 
synthesis (immunofluorescence assay) with their respective 
graphical quantification. The results showed an increase in 
HIF-1α, and Nrf2, in all experimental groups under hypoxic 
conditions when compared to the group maintained in normoxia. 
Nevertheless, between experimental groups under hypoxic 
conditions, there was a significant difference in HIF-1α and Nrf2.

Although we did not observe a difference between the groups 
submitted to hypoxia and treated with sVE, this result may suggest 
that the concomitant increase in HIF-1α and Nrf2 in the proximal 

Figure 2. Characterization of small extracellular vesicles (sEV). (A) Nanoparticle tracking analysis (NTA) distribution and concentration (particles/mL) of sEV 
secreted by bone marrow mesenchymal stromal cell (BM-MSC) from the untrained rats (sEV-UT) and trained rats (sEV-T). (B) Photomicrograph of the western 
blot analysis for CD63 of sEV secreted by BM-MSC from the untrained rats (sEV-UT) and trained rats (sEV-T).
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Figure 3. Immunohistochemistry images and quantitative analyses, respectively, for (A,B) TGF-β1, (C,D) Picrosirius red, (E,F) HIF-1α, and (G,H) CD34. The 
significance level for a null hypothesis was set at 5% (p < 0.05). *All groups compared to the UUO group, #UUO+sEV-T compared to the UUO+sEV-UT.

tubule cell may mediate a response to hypoxia and associated 
oxidative stress through antioxidant enzymes stimulation [54].

In vitro: evaluation of miRNAs in BM-MSC  
cell-derived small extracellular vesicles secreted  
by BM-MSC from trained rats (sEV-T) and untrained 
rats (sEV-UT)
When the microRNA was evaluated in sEV, the qPCR analysis 
showed miR-26a, miR-126a, and miR-296-expression (Figure 5)  
in all experimental groups.

In relation to miR-26a (Figure 5A), there was no significant 
difference associated with the small extracellular vesicles and 
BM-MSC from trained rats (sEV-T) and untrained rats (sEV-UT).

Nonetheless, there was a decrease in miR-126a (Figure 5B) 
expression in the BM-MSC cells and in the small extracellular 
vesicles secreted by BM-MSC from trained rats (sEV-T) when 

compared to the BM-MSC cells and in the small extracellular 
vesicles secreted by BM-MSC from untrained rats (sEV-UT). 

Interestingly, when we compared miR-296 expression in sEV, 
this angiomir was significantly increased in BM-MSC cells 
obtained from trained rats and in its small extracellular (sEV-T) 
in comparison to cells and sEV from untrained rats (sEV-UT), 
suggesting that physical activity can increase the expression of 
this angiomiR (Figure 5C).

Discussion
UUO is an experimental model widely used to simulate kidney 
disease with tubulointerstitial fibrosis, chronic inflammation 
caused by continuous ureteral obstruction, leading to progressive 
renal function loss [41–44], considered then an aggressive 
experimental model of chronic kidney disease. 
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Several studies underscored the antifibrotic and renoprotective 
properties of BM-MSC-derived sEV in UUO model and showed 
a potent reduction of TGF-β1 signaling [55–57]. TGF-β1 can 
induce fibrotic genes and apoptosis in tubular and glomerular 
cells, acquiring a myofibroblastic phenotype essential for the 
formation of fibrosis [53,58,59]. In our study, the treatment with 
sEV secreted by murine BM-MSC, independent of physical 
activity, showed a decrease in the levels of TGF-β1 in the rats 
submitted to UUO, suggesting that sEV-treatment can contribute 
to the reduction of renal fibrosis via TGF-β1. 

UUO causes the development of profibrotic features, also 
reflected by increased collagen deposition. In this study, the 
use of small extracellular vesicles secreted by BM-MSC from 
trained rats decreased collagen deposition in kidney tissue of 
rats subjected to UUO.

The CD34 is the most described marker in circulating 
angiogenic cells that are known for their progenitor cell 

properties. In our study, we observed an increase in CD34 
expression in kidney tissue, only in UUO-rats that received 
small extracellular vesicles secreted by BM-MSC from trained 
rats. Sahoo et al. [60] demonstrated that human CD34+ stromal 
cells are capable of secreting sEV with angiogenic activity in 
isolated endothelial cells and in vessel growth murine models. 
Also, Landers-Ramos et al. [61] demonstrated a differential 
paracrine effect in circulating CD34+ angiogenic cells associated 
with frequent physical activity, corroborating our findings.

Additionally, Masum et al. [62] demonstrated that mice with 
UUO presented decreased CD34+ cells in tubulointerstitial area. 
They conclude that the injury and/or loss of capillaries in the 
tubular areas contribute to the progression of tubule interstitial 
injury, fibrosis, and tubular damage, especially in kidneys 
with UUO [62]. Taking it into account, our results suggest the 
potential of the sEV secreted by BM-MSC from trained rats 
when compared with untrained animals.

Figure 4. Immunofluorescence images (FITC refers to green fluorescence whereas blue indicates nuclei), and quantitative analyses, respectively, for (A,B) Nrf2 
and (C,D) HIF-1α. The significance level for a null hypothesis was set at 5% (p < 0.05). *All groups compared to the Norm group.
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HIF-1α is also known to play an important role in the 
transcription of angiogenic genes [63–66]. Several evidences 
have already shown that HIF-1α is a central regulator of renal 
fibrosis in different pathological conditions [67–70]. However, it 
remains a controversy whether HIF-1α promotes or antagonizes 
renal fibrosis. In fact, there is an important regulatory role for 
HIF-1α in renal fibrogenesis, and if it has pro or antifibrotic 
effects will depend on which, where, and when it is activated [70]. 

Kapitsinou et al. [68] showed that HIF-1α accumulation through 
pharmacological prolyl hydroxylase inhibitors immediately 
before ischemia can inhibit fibrosis. However, this effect was 
not observed when the inhibition was made post-ischemia. 
Also, there was a decrease in fibrosis and an improvement 
in the tubulointerstitial lesion when HIF-1α was activated 
pharmacologically in a remaining kidney model [70–72].

Kobayashi et al. [73] showed that the genetic activation of 
HIF-1α suppresses fibrogenesis in a UUO model. In our study, 
we observed an increase in HIF-1α expression in kidney tissue, 
only in UUO-rats treated with small extracellular vesicles 
secreted by BM-MSC from trained rats.

The sEV secreted by bone marrow mesenchymal stromal 
cells carry microRNAs and deliver them into kidney. These 
miRNAs induce target mRNA degradation or inhibit target 

mRNA translation. This process can mediate antifibrotic, 
anti-inflammatory, and anti-apoptotic actions in UUO and in 
ischemic injury [19]. To prove this hypothesis, we evaluated three 
nephroprotective miRNAs in sEV secreted by bone marrow 
mesenchymal stromal cells.

Cantaluppi et al. [74] showed that sEV released from CD34-
positive endothelial progenitor cells (EPCs) contributes to 
angiogenesis and protects the kidney from ischemia-reperfusion 
injury by miR-296-dependent reprogramming of resident renal 
cells. Our work showed a significant increase in the expression 
of miR-296 only in the sEV secreted by BM-MSC from trained 
rats. Thus, it is reasonable to suggest that the transfer of BM-
MSC sEV from trained animals can have an improved protective 
effect in comparison to untrained animals, improve the also be 
an alternative to stimulus the kidney’s angiogenesis. 

Studies suggest that miR-26a expression was much lower in 
humans with renal vascular disease comparing healthy ones 
[75]. The decrease in miR-26a expression in kidney tubular cells 
elevates the possibility of cell apoptosis, but this process was 
reversed by co-culture with adipose tissue-derived mesenchymal 
stem cells [76]. Liang et al. [77] showed that ischemia-reperfusion 
injury increased macrophages and neutrophils infiltration into 
renal tissues to cause tubular injury. Interestingly, the expression 

Figure 5. Quantitative polymerase chain reaction (qPCR) showing (A) miR-26a, (B) miR-126a, and (C) miR-296. The significance level for a null hypothesis was 
set at 5% (p < 0.05). *BM-MSC of trained rats compared to the BM-MSC of untrained rats.
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level of miR-26a was also lower in ischemia-reperfusion injury 
tissues than in normal tissues. Our results showed miR-26a-
expression in sEV secreted by BM-MSC from trained and 
untrained rats was decreased. This finding suggest that miR-26a 
is not involved in sEV effects in our model. 

The miR-126a is a pro-angiogenic miRNA known to be 
involved in the modulation of angiogenesis and vascular integrity 
[78,79]. It has already been shown that physical activity can 
increase the expression of this miRNA in cardiac [80] and 
vascular tissues or swimming and treadmill trained rats, 
respectively [81]. Another study by the same group concluded 
that sEV derived from mouse progenitor endothelial cells 
submitted to moderate physical activity has beneficial effects 
that correlate with sEV transported by miR-126a [79]. However, 
our results did not show an increase in miR-26a-expression in 
sEV secreted by BM-MSC from trained when compared with 
untrained rats. 

Our results support the hypothesis that sEV secreted by bone 
marrow mesenchymal stromal cells from trained rats stimulates 
an increase in the pro-angiogenic miR-296. In the kidney tissue of 
UUO-rats that received this sEV, there was an increase in CD34, 
which is the most described marker in circulating angiogenic 
cells [60]. The HIF-1α, which is also known to play an important 
role in transcriptions of angiogenic genes [63–65], was increased 
in the kidney tissue of UUO-rats that received this sEV. The 
small extracellular vesicles obtained by bone marrow of trained 
animals can possibly contribute to angiogenesis, which in turn 
promotes revascularization in the kidney.

Together, our results suggest that sEV obtained from BM-MSC 
of trained rats have improved protective effects when compared to 
vesicles obtained from cells of untrained animals, suggesting that 
characteristics of the donor can possibly determinate the success 
of the BM-MSC transplant or its sEV treatment. Nevertheless, 
new studies are needed to clarify the mechanisms involved in 
sEV obtained from trained animals, but also other studies are 
needed to evaluate necessary the effect of diabetes, hypertension, 
and diet in the nephroprotective effect of stromal cell sEV.

Conclusion
In conclusion, the treatment with the small extracellular vesicles 
secreted by bone marrow mesenchymal stromal cells from 
trained rats carries pro-angiogenic miR-296 and delivers them 
into rats subjected to unilateral ureteral obstruction, possibly 
corroborating angiogenesis, via CD34 and HIF-1α.
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