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ABSTRACT
Myeloid cells, including antigen-presenting cells (APCs) andmyeloid-derived suppressor cells (MDSCs)
play opposing roles to orchestrate innate and adaptive immune responses during physiological and
pathological conditions. We investigated the role of DNA methylation in regulating the transcription
of inhibitory/suppressive molecules in myeloid suppressive cells (identified as CD33+HLA-DR–) in
comparison to APCs. We selected a number of immune checkpoints (ICs), IC ligands, and immuno-
suppressive molecules that have been implicated in MDSC function, including PD-L1, TIM-3, VISTA,
galectin-9, TGF-β, ARG1 and MMP9. We examined their mRNA expression levels, and investigated
whether DNA methylation regulates their transcription in sorted myeloid cell subpopulations. We
found that mRNA levels of PD-L1, TIM-3, TGF-β, ARG1 and MMP9 in CD33+HLA-DR– cells were higher
than APCs. However, VISTA and galectin-9 mRNA levels were relatively similar in both myeloid
subpopulations. CpG islands in the promoter regions of TGF-β1, TIM-3 and ARG1 were highly
unmethylated in CD33+HLA-DR–cells, compared with APCs, suggesting that DNA methylation is one
of the key mechanisms, which regulate their expression. However, we did not find differences in the
methylation status of PD-L1 and MMP9 between CD33+HLA-DR– and APCs, suggesting that their
transcription could be regulated via other genetic and epigenetic mechanisms. The promoter methy-
lation status of VISTA was relatively similar in both myeloid subpopulations. This study provides novel
insights into the epigenetic mechanisms, which control the expression of inhibitory/suppressive
molecules in circulating CD33+HLA-DR– cells in a steady-state condition, possibly tomaintain immune
tolerance and haemostasis.
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Introduction

Myeloid cells play important roles in regulating innate
and adaptive immune responses during physiological
and pathological conditions, including infections,
inflammation, autoimmunity and cancer [1]. Under
the influence of certain cytokines and growth factors,
monocytes can differentiate into macrophages or
monocyte-derived dendritic cells (Mo-DCs). These
cells act as antigen-presenting cells (APCs) as they
express the major histocompatibility complex class II
(MHC II) molecule, HLA-DR, and secrete molecules
to activate adaptive immunity [2]. In certain patholo-
gical conditions, these myeloid cells act as a double-
edged sword and play deleterious or beneficial roles.
They can exert suppressive/pro-tumorigenic or
inflammatory/anti-tumour functions [3,4].

Securely regulated myelopoiesis is disrupted
during a vast array of pathological conditions ran-
ging from infectious diseases, trauma, transplanta-
tion, autoimmunity and cancer, leading to the
expansion of a heterogeneous population of mye-
loid cells. This population comprises of myeloid
cells halted at various stages of maturation/differ-
entiation with an immunosuppressive function,
referred to as myeloid-derived suppressor cells
(MDSCs) [1,3]. MDSCs account for approximately
0.5% of peripheral blood mononuclear cells
(PBMCs) in healthy individuals [5], suggesting
their potential role in maintaining immune toler-
ance. However, studies have reported that the
number of circulating MDSCs increases by 10-
folds in pathological conditions such as cancer [5].
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Although the role of MDSCs has been exten-
sively studied in cancer, there is accumulating
evidence suggesting the involvement of MDSCs
in regulating the immune response following
organ transplantation, and during various infec-
tious, inflammatory and autoimmune diseases
[1,6]. For instance, MDSCs maintain immune tol-
erance in organ transplantation [7], while in can-
cer, traumatic conditions and infectious diseases,
their role is deleterious as they exert suppressive
and anti-proliferative effects on the adaptive
immune response [1,6,8]. On the other hand,
MDSCs play a protective role in autoimmunity
by suppressing autoreactive T cell responses, and
enhancing T regulatory cell (Treg) survival and
function to dampen inflammation [4].

MDSCs facilitate immunosuppression via the
production of immunosuppressive mediators, such
as transforming growth factor-β (TGF-β), secretion
of proteases, for example matrix metalloproteinases
(MMPs), and the expression of suppressive enzymes,
such as arginase-1 (ARG1), indoleamine 2,3-dioxy-
genase (IDO) and inducible nitric oxide synthase
(iNOS) [1,5]. This in turn causes APC dysfunction,
reduces T effector cell (Teff) activation, and
enhances Treg recruitment, survival and function
[1,9–11]. Additionally, activated MDSCs induce
T cell cycle arrest by expressing ARG1 that catabo-
lizes L-arginine, an essential amino acid required for
T cell proliferation, and they also release high levels
of nitric oxide [6,12]. By a similar phenomenon,
activated MDSCs express high levels of IDO, which
catabolize tryptophan, another essential amino acid,
and causes starvation leading to T cell cycle arrest
and anergy [13].

MDSCs can inhibit Teff functions through the
expression of inhibitory molecules, for example pro-
grammed death-ligand 1 (PD-L1), which interacts
with its receptor programmed death-1 (PD-1) on
Teffs, causing inhibitory signals that subsequently
halt Teff activation and proliferation [12]. There is
also a potential association between upregulated levels
of PD-L1 on monocytes and the inhibition of T cell
immune responses during viral infections [14].
Furthermore, the expression of immune checkpoints
(ICs), such as T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3) [15,16] and
V-domain Ig-containing Suppressor of T-cell
Activation (VISTA) [17], have been detected in

myeloid suppressive cell subsets. The expression of
galectin-9, ligand of TIM-3, has also been detected in
MDSCs, and the involvement of TIM-3/galectin-9
pathway in the suppression of anti-tumour immune
response, cancer progression and resistance to immu-
notherapy has been reported [18,19]. Moreover,
MDSC expansion and the suppression of Th1
immune responses in an autoimmune disease
model, can be driven by TIM-3/galectin-9 pathway
[20]. VISTA expression on APCs and/or MDSCs has
been associated with the suppression of T cell
responses in tumour models and resistance to immu-
notherapy [17,21–23]. Based on animal models of
autoimmunity, MDSCs regulate T cell activation via
cell-cell contact or by the expression of molecules
such as ARG1, PD-L1 and TGF-β [24]. MDSCs are
recruited to the inflamed sites, where they accumulate
and become activated to exert suppressive functions
and inhibit the activation of autoreactive T cells [25].
However, the suppressive function of MDSCs could
be compromised due to the predominance of inflam-
matory cytokines in the inflamed sites, which subse-
quently alter the phenotype and function of
MDSCs [4].

Epigenetics encompass gene regulation without
altering the DNA sequence via DNA methylation,
histone post-translational modifications and non-
coding microRNAs (miRNAs) [26]. These mechan-
isms maintain transcriptional homoeostasis via
favouring gene transcription or gene silencing
under normal physiological conditions [27].
Epigenetic modifications have not only been impli-
cated in immune tolerance, cancer pathogenesis/
progression and autoimmunity, but also in MDSC
function [28–30]. Studies have shown that epigenetic
modification in MDSCs can alter their functional
characteristics [28]. We have recently shown that
epigenetic modifications play important roles in the
transcriptional regulation of MDSCs in the tumour
microenvironment of colorectal cancer patients [31].
Importantly, we found that blockade of histone dea-
cetylase (HDAC) led to downregulation of genes
related to immunosuppression in polymorphonuc-
lear MDSCs [31].

In this study, we investigated the involvement of
DNA methylation in regulating the expression of
inhibitory/suppressive molecules in two myeloid cell
subpopulations under normal physiological condi-
tion. We sorted CD33+HLA-DR– myeloid cell
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populations, which potentially comprise of MDSCs,
and CD33+HLA-DR+myeloid APCs, from peripheral
blood mononuclear cells (PBMC) of 10 healthy indi-
viduals. We selected a number of molecules that play
key roles in the function of myeloid suppressive cells,
including PD-L1, TIM-3, galectin-9, VISTA, ARG1,
MMP9 and TGF-β, to examine their mRNA expres-
sion levels in the sorted myeloid cell subsets, and to
investigate whether DNA methylation regulates their
transcription. We found increased mRNA expression
of ten-eleven translocation (TET) enzymes and
reduced levels of DNA methyltransferase
(DNMT3a) in CD33+HLA-DR– cells, compared
with CD33+HLA-DR+ myeloid APCs, suggesting
a potential role for DNA unmethylation in regulating
gene transcription. In addition, we investigated the
promoter methylation status for PD-L1, TIM-3,
ARG1, MMP9, TGF-β, VISTA and galectin-9 using
CpG methylation analysis.

Results

Levels of circulating CD33+HLA-DR+ and
CD33+HLA-DR – myeloid cells

It has been reported thatMDSCs circulate at low levels
in healthy individuals [5]. First, we investigated the
levels of circulating CD33+ myeloid cells in 10 healthy
donors (median age 33, 8Male&2Female).We found
that the level of circulating CD33+HLA-DR+ cells was
significantly higher than CD33+HLA-DR – cells
(92.4 ± 1.0 vs 6.1 ± 0.92, P = 0.001, Figure 1(a)).
CD33+HLA-DR– myeloid cell population can repre-
sent heterogeneous populations of cells including
immature myeloid cells (IMCs; identified as
CD33+HLA-DR–CD15–CD14–), granulocytic mye-
loid cells (GMCs; identified as CD33+HLA-DR–

CD15+CD14–) and monocytic myeloid cells (MMCs;
identified as CD33+HLA-DR–CD15–CD14+) [32,33].
We investigated the percentage of each of these cell
subsets in CD33+HLA-DR– cells. We found that the
relative percentage of circulatingMMCswas the high-
est (46.3 ± 7.9), followed by GMCs (29.8 ± 6.6) and
finally IMCs (20.9 ± 2.3) (Figure 1(b)).

Next, we examined the expression levels of key
ICs and IC ligands in the two myeloid subpopula-
tions. We found that TIM-3 and PD-1 expression
levels on CD33+HLA-DR+ cells were significantly
higher than that of CD33+HLA-DR– cells

(68.8 ± 2.9 vs 9.8 ± 2.9, P = 0.002, and 5.0 ± 1.2 vs
0.8 ± 0.2, P = 0.002, Figure 1(c)). In addition, there
was a trend towards an increased level of galectin-9
expression on CD33+HLA-DR– cells, compared to
CD33+HLA-DR+ cells (6.1 ± 2.1 vs 9.0 ± 1.7,
P = 0.09, Figure 1(c)). The expression level of PD-
L1 on CD33+HLA-DR– cells was significantly
higher than that of CD33+HLA-DR+ cells
(0.08 ± 0.02 vs 4.1 ± 0.78, P = 0.001, Figure 1(c)).
Next, we sorted CD33+HLA-DR+ cells and
CD33+HLA-DR– myeloid cells from the peripheral
blood of 10 healthy donors to examine the mRNA
expression of these ICs and IC ligands, in addition
to other suppressive molecules, to investigate
whether DNA methylation plays a role in their
transcriptional regulation. The gating strategy
employed for sorting is shown in Figure 1(d).

Genes encoding immune checkpoints, immune
checkpoint ligands and suppressive molecules
are upregulated in CD33+HLA-DR – myeloid cells

We examined the mRNA expression level of
PD-L1, MMP9, galectin-9, TGF-β, TIM-3,
ARG1 and VISTA mRNA in the two sorted
myeloid cell subsets using RT-PCR. These
molecules were selected due to their important
roles in MDSC function. We found that PD-L1
(P = 0.007), MMP9 (P = 0.003), TGF-β
(P = 0.003), TIM-3 (P = 0.04) and ARG1
(P = 0.009) mRNA expression levels were
highly upregulated in CD33+HLA-DR– cells,
compared with CD33+HLA-DR+ cells (Figure 2
(a)). Galectin-9 and VISTA mRNA expression
levels were comparable in both myeloid subpo-
pulations (Figure 2(a)).

DNMT3a is downregulated and TET enzymes are
upregulated in CD33+HLA-DR – myeloid cells

DNA methylation, mediated by DNA methyl-
transferases (DNMTs) such as DNMT3a and
DNMT3b, induces transcriptional silencing and
plays a major role in immune tolerance [30]
and pathological conditions [34,35]. On the con-
trary, TET enzymes, including TET1, TET2, and
TET3 [36], act as 5-methylcytosine oxidases to
reverse DNA methylation and lead to transcrip-
tional activation, for instance genes associated
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with cell growth and differentiation or immuno-
suppression [37–39]. It has been reported that
promoter unmethylation/methylation could be
maintained through the modulation of TETs
and DNMTs [40]. This prompted us to investi-
gate the gene expression of DNMT3a, DNMT3b
and TET1, TET2 and TET3 enzymes in
CD33+HLA-DR– and CD33+HLA-DR+ cells.
Interestingly, we found that DNMT3a gene
expression was significantly downregulated in
CD33+HLA-DR– cells, compared to CD33+HLA-
DR+ cells (P = 0.001, Figure 2(b)). However,

DNMT3b gene expression was not detected in
both myeloid subpopulations. TET1 gene was
the most upregulated gene in CD33+HLA-DR–

cells, followed by TET3 (P = 0.005 and
P = 0.04, Figure 2(b)). Moreover, the mRNA
level of TET2 was also high in CD33+HLA-DR–

cells, compared to CD33+HLA-DR+ cells, but did
not reach statistical significance (P = 0.06, Figure
2(b)). These data suggest that TET-mediated
active demethylation could play a role in driving
the upregulation of genes in CD33+HLA-DR–

cells, compared to CD33+HLA-DR+ cells.
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Figure 1. Levels of circulating CD33+HLA-DR+ and CD33+HLA-DR– myeloid cells and gating strategy for sorting.
PBMC of 10 healthy donors were stained for CD33, HLA-DR, TIM-3, PD-1, galectin-9 and PD-L1. Scatter plot shows the levels of
circulating CD33+HLA-DR+ and CD33+HLA-DR– cells (a). Representative flow cytometric and scatter plots show the levels of
CD33+HLA-DR–CD15–CD14– immature myeloid cells (IMCs), CD33+HLA-DR–CD15–CD14+ monocytic myeloid cells (MMCs) and
CD33+HLA-DR–CD15+CD14– granulocytic myeloid cells (GMCs) (b). Representative flow cytometric plots and scatter plots show
the levels of circulating CD33+HLA-DR+ and CD33+HLA-DR– cells expressing TIM-3, PD-1, galectin-9 and PD-L1 (c). Representative
flow cytometric plots from three donors show the gating strategy used to sort CD33+HLA-DR+ and CD33+HLA-DR– cells (D). Results
obtained from 10 donors per myeloid cell subset, and expressed as mean ± SEM.

1278 R. SALEH ET AL.



Galectin-9, TGF-β1, TIM-3 and ARG1
upregulation in CD33+HLA-DR – myeloid cells is
associated with CpG promoter unmethylation

We then investigated the methylation status of PD-
L1, MMP9, galectin-9, TGF-β1, TIM-3, ARG1 and
VISTA promoters, in the two myeloid subpopula-
tions. In order to investigate the promoter methyla-
tion profiles of ICs/ligands, we selected CpG islands
in the promotor regions of PD-L1, TIM-3, and galec-
tin-9 as we have previously described[39].
Additionally, we selected 5 CpG islands in the pro-
moter regions of VISTA, 4 in ARG1, 12 in MMP9
and 16 in TGF-β1. We found that PD-L1 promoter
was fully unmethylated and MMP9 promoter was
moderately unmethylated in both myeloid cell sub-
populations (Figure 3(a, b & h)). In contrast, galec-
tin-9 promoter was highly unmethylated in
CD33+HLA-DR– cells, compared to CD33+HLA-
DR+ cells (P = 0.04, Figure 3(c) & (h)). TGF-β1
promoter showed a trend towards an increased per-
centage of unmethylation in CD33+HLA-DR – cells,
but the data were not statistically significant
(P = 0.08, Figure 3(d) & (h)). Moreover, TIM-3 and
ARG1 promoters were significantly unmethylated in
CD33+HLA-DR– cells (P= 0.006 andP= 0.04, Figure
3(e)–(f & h)). In contrast, VISTA promoter was
equally unmethylated in both myeloid cell subpopu-
lations (Figure 3(g) & (h)). These data suggest that
DNA methylation is one of the key mechanisms

regulating the transcription of TGF-β1, ARG1,
TIM-3 and galectin-9 in CD33+HLA-DR– cells,
while PD-L1 and MMP9 transcriptional regulation
could be mediated by other epigenetic mechanisms.
Interestingly, both myeloid subpopulations
expressed VISTA at comparable levels and showed
similar degrees of unmethylation within the promo-
ter region.

As shown in Figure 4(a) and (b), the unmethy-
lation percentage of VISTA promoter was the
highest in both myeloid subpopulations, followed
by PD-L1, MMP9, ARG1, TIM-3, galectin-9 and
TGF-β1. Additionally, we calculated the corrected
unmethylation percentage by subtracting the
unmethylation percentage of a particular promoter
gene in CD33+HLA-DR+ cells from that of the
corresponding CD33+HLA-DR– cells. TIM-3
showed the highest corrected percentage, followed
by ARG1, galectin-9, PD-L1 and TGF-β1, while
VISTA and MMP9 showed the least (Figure 4(c)).

Next, we investigated associations between
mRNA expression and promoter DNA methyla-
tion status of a particular gene in the two myeloid
subpopulations. We found a weak association
between TIM-3, ARG1, galectin-9, PD-L1, MMP9
and TGF-β1 in both CD33+HLA-DR+ and
CD33+HLA-DR– myeloid cells (data not shown).
However, there was a moderate positive associa-
tion between VISTA mRNA expression and
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promoter unmethylation in both myeloid subpo-
pulations (P = 0.06 and P = 0.07, Figure 4(d)). In
addition, we examined the association in gene
promoter methylation status between CD33+HLA-
DR+ and CD33+HLA-DR– myeloid cells. We
found a weak association in the promoter
unmethylation status of TIM-3, ARG1, galectin-9,
MMP9 and TGF-β1 between CD33+HLA-DR+ and
CD33+HLA-DR– myeloid cells (data not shown).
Of note, PD-L1 promoter unmethylation in
CD33+HLA-DR– cells was inversely correlated
with that of CD33+HLA-DR+ cells (P = 0.19,
Figure 4(e)), suggesting that transcriptional regu-
lation of PD-L1 in both myeloid subpopulations is
mediated via different mechanisms or that DNA

methylation plays a distinct role in each subpopu-
lation. On the other hand, VISTA promoter
unmethylation in CD33+HLA-DR– cells was posi-
tively correlated with that of CD33+HLA-DR+ cells
(P = 0.11, Figure 4(f)). This latter finding suggests
that transcriptional regulation of VISTA in both
myeloid subpopulations is mediated by DNA
methylation in a similar manner.

Discussion

Cellular identity and functionality are determined by
epigenetic modulations, including DNAmethylation
and post-translational histone modifications, which
occur within the cellular environment. Aberrant
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Figure 3. DNA methylation status of different genes in circulating CD33+HLA-DR– cells and antigen-presenting cells.
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modifications to the ‘normal’ epigenetic landscape of
immune cells result in the disturbance of immune
homoeostasis and lead to some significant clinical
consequences [30].MDSCs are one of the key immu-
noregulatory cells, which comprise of precursor and
progenitor myeloid cells that ultimately differentiate
into macrophages, granulocytes and dendritic cells
upon their recruitment from the peripheral blood to
organs/tissues. In physiological conditions, these
immature precursor cells differentiate into mature
dendritic cells, macrophages and granulocytes in
peripheral lymphoid organs. However, a small pro-
portion of these immature myeloid cells circulate at

low levels in the peripheral blood of healthy indivi-
duals exhibiting a suppressive function. Consistent
with this, we showed that the level of circulating
CD33+HLA-DR– cells is significantly lower than
CD33+HLA-DR+ cells in healthy donors.
Moreover, it is noteworthy that due to the low levels
of CD33+HLA-DR– cells in circulation, performing
nucleic acid extractions from these cells was challen-
ging and required additional amplification steps.

The suppressive capacity of CD33+HLA-DR– cells
was indicated by the elevated level of ARG1 mRNA
expression in these cells, compared to CD33+HLA-
DR+ cells. Furthermore, we found that CD33+HLA-
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DR– cells express more PD-L1 and galectin-9 at the
transcript (Figure 2(a)) and protein (Figure 1(b))
levels, suggesting their potentials to act as suppres-
sive cells. The mRNA level of TIM-3 was higher in
CD33+HLA-DR+ (Figure 2(b)), while the expression
was lower in protein level (Figure 1(c)), compared
with CD33+HLA-DR– cells. This discrepancy could
be due to some other post-transcriptional modifica-
tions. It has been reported that many factors includ-
ing RNA secondary structure, codon bias and amino
acid usage, protein half-lives, ribosomal density and
ribosome occupancy and regulatory RNAs could
affect the translation of proteins [41]. Moreover,
the correlation between mRNA and protein is
reported to be ‘notoriously poor’ in biological sam-
ples [41].

We investigated the transcriptional regulation
and DNA methylation of key genes involved in
the suppressive function of myeloid cells including
TGF-β1, ARG1 and MMP9, along with some ICs/
ligands such as TIM-3, VISTA, galectin-9 and PD-
L1. We found that mRNA expression levels of
TGF-β1, TIM-3 and ARG1 were higher in
CD33+HLA-DR– cells (potentially representing
MDSCs) than APCs. CpG methylation analyses
showed that the promoters of TGF-β1, TIM-3
and ARG1 genes were highly unmethylated in
CD33+HLA-DR– cells, reflecting their increased
expression at the transcript level. These data sug-
gest that DNA methylation is one of the key epi-
genetic mechanisms, which controls the
transcription of TGF-β1, TIM-3 and ARG1 genes
in circulating CD33+HLA-DR– cells. On the other
hand, PD-L1 and MMP9 showed a similar degree
of unmethylation in both CD33+HLA-DR– and
CD33+HLA-DR+ cells, which did not reflect RT-
PCR data. This finding suggests that PD-L1 and
MMP9 transcriptional regulation is mediated via
different epigenetic mechanisms, perhaps histone
post-translational modifications or microRNAs.

We then investigated the potential involvement
of DNMTs and TETs in DNA methylation and
regulating the transcription of MDSC-related
genes and IC/ligands in CD33+HLA-DR– and
CD33+HLA-DR+ cells. There are different iso-
forms of DNMTs, and amongst these are
DNMT1, DNMT3a and DNMT3b [42,43].
DNMT1 is known to maintain DNA methylation
pattern during replication, while DNMT3a/3b are

responsible for the de novo methylation of DNA
[42,43]. DNMT1 expression is essential for differ-
entiated cells, and the expression pattern of
DNMT isoforms in progenitor cells and differen-
tiated cells is different [44]. Using RNA-Seq, we
found that the expression of DNMT1 was higher
in CD33+HLA-DR– cells, compared with
CD33+HLA-DR+ cells (5.5 ± 0.3 vs. 4.8 ± 0.1,
unpublished data). Moreover, we found the
mRNA expression level of the DNMT3a was
lower in CD33+HLA-DR–, compared with
CD33+HLA-DR+ cells, while DNMT3b was not
detected in both subsets (Figure 2). These results
are consistent with other reports showing the
opposite expression patterns of DNMT1 and
DNMT3a/b [45–48]. Moreover, it has been
shown that the silencing of both DNMT3a and
DNMT3b upregulates DNMT1 as
a compensatory mechanism [46]. In our data, we
propose that the upregulation of DNMT1 can
compensate the loss of DNMT3a, in addition to
its role as a maintenance enzyme. In comparison
to the low level of DNMT3a, we found that mRNA
expression levels of TET1 and TET3 were signifi-
cantly high in CD33+HLA-DR–. These data sug-
gest that the upregulation of TGF-β1, TIM-3 and
ARG1 in CD33+HLA-DR – could be due to the
active demethylation of their promotors mediated
by TET enzymes.

Although we showed that transcription of TGF-
β1, ARG1 and TIM-3 in CD33+HLA-DR– cells is
regulated by DNA methylation, this does not rule
out the possible involvement of other epigenetic
mechanisms. We found that galectin-9 mRNA
level is relatively similar in CD33+HLA-DR– and
CD33+HLA-DR+ cells. Conversely, this was not
reflected in the CpG methylation analysis, which
showed that galectin-9 promoter is highly
unmethylated in CD33+HLA-DR– cells, compared
to CD33+HLA-DR+ cells. This discrepancy may
suggest that other mechanisms, such as histone
modifications, are involved in the transcriptional
regulation of galectin-9.

It is speculated that VISTA expression by APCs
in a steady-state condition could act as a self-
regulatory mechanism to inhibit T cell prolifera-
tion and activation, autoimmunity or an ongoing
immune responses [23]. This might explain our
results, which indicated that VISTA promoter is
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highly unmethylated in both CD33+HLA-DR+ and
CD33+HLA-DR– cells, given that both subsets
were isolated from the peripheral blood of healthy
donors. This was also reflected in the RT-PCR data
showing that VISTA mRNA expression level was
comparable in both myeloid subpopulations.
However, we hypothesize that the expression of
VISTA in myeloid suppressive cells from cancer
patients is higher than healthy donors based on
pre-clinical and clinical data [21,22].

TGF-β released by myeloid suppressive cells can
enhance the function and survival of Tregs, and
suppress Teff proliferation [49]. Moreover, TGF-β
also increases the suppressive function of MDSCs
by upregulating the expression of immunosup-
pressive molecules such as iNOS, IL-10 and
ARG1 [49]. In physiological conditions, mice lack-
ing TGF-β1 develop inflammatory lesions in sev-
eral organs as they age, suggesting the importance
of TGF-β1 in regulating immune tolerance [50].
Mice lacking PD-L1 are susceptible to autoim-
mune diseases, suggesting the importance of PD-
L1 in maintaining immune tolerance [51]. In vitro
work showed that PD-L1 is expressed by APCs, in
a steady-state condition, and serve as a self-
regulatory mechanism to maintain haemostasis
and suppress T cell activation [52].

The suppressive role of MDSCs and function of
the molecules they express are well-studied in
many pathological conditions (summarized in
Figure 5(a) & (b)). ARG1+ MDSCs can downregu-
late CD3-ζ chain to alter T cell antigen recogni-
tion, and trigger T cell apoptosis via the
production of NO and reactive oxygen species
(ROS) [6,53,54]. TGF-β is an important mediator
for MDSC generation [55,56], Treg differentiation
and survival and epithelial-mesenchymal transi-
tion (EMT) [57,58]. TGF-β also influences protec-
tive immunity and inhibits the activation of Th1
response during bacterial infections [59] and
chronic viral infections [59]. In autoimmunity
and cancer settings, the activation of PD-1/PD-L1
and TIM-3/galectin-9 pathways results in the sup-
pression of T cell immune responses associated
with MDSC expansion [14,20,33,60]. In viral infec-
tion and cancer settings, VISTA+ MDSCs have
been associated with T cell dysfunction and pro-
tumorigenic effects [6,21,22]. Additionally,
VISTA+ APCs were shown to be important for

the regulation of inflammatory responses, includ-
ing the expression of inflammatory cytokines [59].
MMP9 produced by MDSCs can also contribute to
T cell dysfunction [61], tissue destruction and
inflammation [62], as well as tumour invasion
and metastasis [63]. Associations between MDSC
expansion and the pathogenesis of various diseases
are well-documented [4]. In cancer, several studies
have shown correlations between MDSCs and
poor disease prognosis. MDSCs exert their immu-
nosuppressive effects through various molecules
and pathways. The current FDA-approved or
under development therapeutic agents target
MDSCs through indirect approaches by targeting
their suppressive mediators/molecules [33].
However, studies have shown that genes related
to MDSC activity may be targeted by epigenetic
modifiers, including histone deacetylases, to coun-
ter tumour growth and metastasis in various mur-
ine models [28]. In tumour models, 2′-deoxy
-5-azacytidine (DNMT inhibitor) could downre-
gulate percentage of MDSC and ARG1 expression
within the TME, leading to favourable disease out-
come [64]. We have recently reported that in CRC
explant culture model, HDAC inhibitor treatment
can downregulate ARG1 expression along with
other myeloid chemotaxis markers including
CCr2 and ITGAL [31]. In addition, pre-clinical
and clinical studies have shown that combining
epigenetic modifiers and immune checkpoint inhi-
bitors is an effective anti-tumour therapy for var-
ious types of tumours [65].

Our findings suggest that the transcription of
TGF-β1, TIM-3, galectin-9 and ARG1 genes in
circulating CD33+HLA-DR– cells can be regu-
lated by DNA methylation, while PD-L1 and
MMP9 gene transcription could be mediated
via different epigenetic mechanisms. Our goal
was to report the epigenetic control of these
genes under steady state conditions in order to
identify their regulatory mechanisms, which
could be targeted in other physiological condi-
tions in which these genes are elevated and con-
tribute to disease progression. Our data provide
novel insights into the epigenetic mechanisms,
which control the expression of suppressive
molecules in circulating CD33+HLA-DR– cells
in a steady-state condition and provide potential
rationale for using DNA hypermethylating
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agents (e.g. TET inhibitors) for counteracting
the upregulation of these suppressive molecules
in various disease conditions for therapeutic
benefits. However, we did not perform interven-
tion studies using epigenetic modifiers to inves-
tigate the effects on gene/protein expression.
Further studies could be performed to examine
whether DNA methylation regulates the tran-
scription of the same investigated genes in

circulating myeloid cells of patients with cancer,
infectious or autoimmune diseases.

Materials and methods

PBMC isolation

PBMCs were isolated from peripheral blood samples
from 10 healthy individuals by density gradient
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centrifugation using Histopaque-1077 (Sigma-
Aldrich,Missouri, USA). PBMCswere frozen in cryo-
vials at a density of 10 × 106 cells in 1 ml of freezing
medium [(10% dimethylsulphoxide (DMSO; Sigma-
Aldrich), 50% foetal calf serum (FCS; Hyclone, GE
Healthcare Life Sciences, Utah, USA) and 40% RPMI-
1640 medium (Life Technologies, New York, USA)],
and stored in liquid nitrogen to be used in batches in
subsequent experiments. This study was executed
under ethical approval from Qatar Biomedical
Research Institute, Doha, Qatar (protocol no.
2017-006).

Multi-parametric flow cytometry and cell sorting

PBMCs were washed with PBS and re-suspended in
100 µl flow cytometry staining buffer (PBS with 1%
FCS and 0.1% sodiumazide). Fc receptors (FcR)were
first blocked using FcR Blocking Reagent (Miltenyi
Biotech, Bergisch Gladbach, Germany). 7-AAD via-
bility dye or Fixable Viability Dye eFluor™ 780
(eBioscience, San Diego, USA) was used to gate live
cells. Cells were then stained with cell surface anti-
bodies against CD33-FITC (clone HIM3-4; BD
Biosciences, Oxford, UK), HLA-DR-PE (clone G46-
6; BD Biosciences), TIM-3-BV711 (clone 7D3; BD
Horizon), PD-1-PE-CF594 (clone EH12.1; BD
Pharmingen), galectin-9-PerCP (clone 9M1-3;
Biolegend) and PD-L1-APC (clone MIH1; BD
Pharmingen), and incubated at 4°C for 30 min.
Cells were then washed twice with flow cytometry
staining buffer and data were acquired using BD
LSRFortessa X-20 SORP flow cytometer (BD
Biosciences).

For sorting, cells stained with 7-AAD, CD33 and
HLA-DR were re-suspended in Pre-Sort buffer (BD
Biosciences). Cell sorting was performed on BD
FACSAria III SORP cell sorter with BD FACSDiva
software (BD Biosciences). Applicable measures
were taken to ensure minimal sorter-induced cell
stress (SICS). Data analyses were performed on
FlowJo V10 software (FlowJo, Ashland, USA).

DNA and RNA extraction

Total DNA and RNA were extracted from sorted,
pure CD33+HLA-DR– and CD33+HLA-DR+ mye-
loid cell populations, isolated from ten healthy

donors, using Norgen RNA/DNA/protein purifi-
cation Plus Micro Kit (Norgen Bioteck
Corporation, Ontario, Canada) according to the
manufacture’s protocol. RNA was then amplified
using 5X MessageAmp™ II aRNA Amplification
Kit (Invitrogen). RNA concentrations were deter-
mined by Qubit RNA HS and Broad Range Assay
Kits, respectively (Invitrogen).

Quantitative real-time PCR

Extracted RNA was reverse transcribed into cDNA
using QuantiTect Reverse Transcription Kit
(Qiagen). Real-time (RT)-PCR was performed
using QuantStudio 6/7 Flex Real-time PCR system
(Applied Biosystems, California, USA) for PD-L1,
TIM-3, galectin-9, VISTA, TGF-β, MMP9, ARG1
and β-actin genes using PowerUp SYBR Green
Master Mix (Applied Biosystems). All samples
were assayed in duplicate. Quantification of relative
gene expression was determined, using 2−ΔΔCT and
normalized to β-actin. Sequences for the primers
are shown in Supplementary Table 1a. The RT
primers were all obtained from PrimerBank data-
base (https://pga.mgh.harvard.edu/primerbank/).

CpG methylation analysis by bisulphite
sequencing

Extracted DNA from sorted myeloid cells was sub-
jected to bisulphite treatment via EZ DNA
Methylation Gold Kit (Zymo Research, California,
USA), followed by PCR amplification using
TaKaRa Taq polymerase (TaKaRa Bio Inc., Shiga
Prefecture, Japan) for PD-L1, TIM-3, galectin-9,
VISTA, ARG1, MMP9 and TGF-β1. The PCR pro-
ducts were cloned into pGEM-T-vector (Promega
Corporation, Wisconsin, USA) using DNA
Ligation Mighty Mix (TaKaRa Bio). Methylation
primers were designed by MethPrimer database
(https://www.urogene.org/methprimer/index1.
html). Sequences are listed in Supplementary Table
1b. Seven colonies were picked from each sample
and plasmid extraction was performed using
GENEJET Plasmid miniprep Kit (Thermo Fisher
Scientific). M13 reverse primer was used for
Sanger sequencing (Supplementary Table 1c).

EPIGENETICS 1285

https://pga.mgh.harvard.edu/primerbank/
https://www.urogene.org/methprimer/index1.html
https://www.urogene.org/methprimer/index1.html


Sanger sequencing

Purified plasmid DNA samples were subjected to
sequencing using 3130X Genetic Analyser (Applied
Biosystems) as described previously [39].
Sequencing data were analysed using a software for
Bisulphite Sequencing DNA Methylation Analysis
(BISMA, Jacobs University, Vegesack, Germany)
and Quantification tool for Methylation Analysis
(QUMA, RIKEN, Wako, Japan).

Statistical analyses

Statistical analyses were performed using
GraphPad Prism 8 software (GraphPad Software,
California, USA). Paired t-tests were performed on
samples that passed the Shapiro-Wilk normality
test, and Wilcoxon matched-pairs signed rank
tests were performed for samples that did not
show normal distribution. A P value of > 0.05
was considered statistically non-significant. The
P values are represented as follows; ***P < 0.001,
**P < 0.01, *P < 0.05. Data are presented as mean
± standard error of the mean (SEM).
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