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ABSTRACT: The power of structural information for informing biological
mechanisms is clear for stable folded macromolecules, but similar structure−
function insight is more difficult to obtain for highly dynamic systems such
as intrinsically disordered proteins (IDPs) which must be described as
structural ensembles. Here, we present IDPConformerGenerator, a flexible,
modular open-source software platform for generating large and diverse
ensembles of disordered protein states that builds conformers that obey
geometric, steric, and other physical restraints on the input sequence.
IDPConformerGenerator samples backbone phi (φ), psi (ψ), and omega
(ω) torsion angles of relevant sequence fragments from loops and secondary
structure elements extracted from folded protein structures in the RCSB
Protein Data Bank and builds side chains from robust Monte Carlo algorithms using expanded rotamer libraries.
IDPConformerGenerator has many user-defined options enabling variable fractional sampling of secondary structures, supports
Bayesian models for assessing the agreement of IDP ensembles for consistency with experimental data, and introduces a machine
learning approach to transform between internal and Cartesian coordinates with reduced error. IDPConformerGenerator will
facilitate the characterization of disordered proteins to ultimately provide structural insights into these states that have key biological
functions.

■ INTRODUCTION
Disordered states of proteins, including unfolded states,
intrinsically disordered regions (IDRs) of otherwise folded
domains, and full intrinsically disordered proteins (IDPs), are
increasingly recognized for the roles that they play in folding
kinetics,1 aggregation propensity,2,3 critical biological func-
tions,4 and pathological disease states.5 Structural insights are
needed to better understand these disordered protein states,
and a variety of solution experiments have been developed to
enable structural and dynamic descriptions of disordered
proteins using nuclear magnetic resonance (NMR), small-
angle X-ray scattering (SAXS), single-molecule fluorescence
(SMF), and other data types.6−11 However, solution
experimental data for disordered states are averaged over a
very large number of heterogeneous interconverting con-
formations, leading to greater challenges in structural
interpretation than for folded proteins. Thus, specific
computational approaches are required to bridge the gap
between experiment and structural ensembles for disordered
protein states.

The overall general approach begins with a large set of
potential fractionally populated conformations and then selects
a subset of these and/or assigns weights to conformational
subpopulations that best agree with the available, but highly
averaged, experimental restraints. These two components have
typically been considered to be separate problems, and a
number of methods exist for each. TraDES,12,13 Flexible-
meccano,14 FastFloppyTail,15 and other methods16 are
available to generate conformer pools, based primarily on the
statistical distributions found in folded protein structures from
the RCSB Protein Data Bank (PDB).17,18 TraDES builds
trajectories of three Cα positions at a time based on the
probabilities in a set of nonredundant structures from the PDB
and then fills in the rest of the chain. Flexible-meccano builds
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chains by selecting φ/ψ torsion angles based on amino acid-
specific conformational potentials derived from the PDB.
FastFloppyTail also utilizes a three-residue fragment-based
approach, with a bias toward the loop regions of the PDB. An
approach from the group of Bernado1́6 similarly uses data from
the PDB extracted as tripeptide segments. Another approach
builds on Flexible-meccano but uses tripeptide conformers
derived from molecular dynamics (MD) simulations.19

Because the structural ensembles provided by these methods
are agnostic to experiment, a separate step is needed to select a
subset of the conformations or, more generally, reweight the
conformers in the pool to define ensembles that best represent
information about the disordered state from the solution
experiments. These include, among others, ENSEMBLE,20

ASTEROIDS,20,21 X-EISD,22,23 BME,24 and BW25/VBWSS,26

with a number utilizing Bayesian statistics22−24,27 and/or
maximum entropy24,28 to address inherent uncertainties in
experiments and back-calculations from a disordered structural
ensemble. MD simulations are an alternative to the statistical
sampling of torsion angle pools, providing conformers that are
biased by the physicochemical interactions included in the
force fields29−32 and represent Boltzmann weighted states.
Furthermore, some MD approaches to generating IDP
ensembles integrate experimental observables directly during
the sampling phase. For example, some have used maximum
entropy33,34 and Bayesian statistics with averaged NMR
biases2,35 to guide the molecular dynamics sampling of IDPs
toward conformations in better agreement with experimental
data. Another uses fragments from MD simulations with a
reweighted hierarchical chain growth algorithm36 incorporat-
ing experimental data to generate disordered ensembles.
Together these approaches have all been valuable for both

creating and ultimately characterizing a variety of disordered
proteins; however, a number of challenges remain. In
particular, for disordered proteins with a preferential sampling
of fractional secondary structure and tertiary contacts,
especially for longer sequences, the starting pool sample
becomes the more limiting factor for the successful
identification of subsets for reweighted ensembles that can fit
experimental data. While a number of these tools can generate
conformers biased by known secondary structure distributions,
most of these tools are not flexible as to how users can
generate disordered conformer ensembles as well as evaluate
them with respect to experimental data.
Here, we report the open-source software platform

IDPConformerGenerator to generate disordered protein
conformations, utilizing a wide range of new and novel
methods and models within a single software suite.
IDPConformerGenerator begins with backbone builds based
on torsion angle distributions of phi (φ), psi (ψ), and omega
(ω) found in the PDB and then enables the building of side-
chain ensembles using Monte Carlo side-chain entropy (MC-
SCE) that completes the all-atom description by including
hydrogens. IDPConformerGenerator has significant flexibility
in user-defined options for the size of peptide fragments used
to build the backbone, amino acid substitutions, secondary
structure biases, steric clash criteria, and energy biasing using
force fields. Additional stand-alone and integrated algorithms
within IDPConformerGenerator extend the fundamental
internal coordinate conformer ensemble builds with state-of-
the-art transformations to Cartesian coordinates using
Int2Cart,37 which yields more correct valence geometries and
reduces steric clashes. Finally, the generated ensembles can be

evaluated with stand-alone and integrated software modules
such as the X-EISD Bayesian model for assessing agreement
with many different experimental data types including NMR,
SAXS, and single-molecule fluorescence resonance energy
transfer (smFRET).22,23 What makes IDPConformerGenerator
distinct from other tools is its flexibility as a user-friendly tool
kit to explore different computational strategies and protocols
for rationally defining conformational ensembles of (intrinsi-
cally) disordered protein sequences.
We demonstrate that IDPConformerGenerator can effi-

ciently calculate ensembles of proteins of up to at least 440
residues in length with a variety of secondary structure
distributions and tertiary contact patterns. Many of these have
reasonable root-mean-squared deviations (RMSDs) from
experimental solution data, particularly some generated with
bias for fractional secondary structure based on NMR chemical
shifts. These results support the utility of IDPConformerGen-
erator for the creation of initial conformer pools that are more
physically representative and more readily optimized by using
experimental restraints with X-EISD22,23 or ENSEMBLE.20

■ METHODS
Design of IDPConformerGenerator. We set out to

design a tool to efficiently generate conformers that realistically
sample the likely conformational space of intrinsically
disordered sequences from the statistical sampling of backbone
torsion angles (φ, ψ, and ω) of short protein segments in the
PDB that are identical or similar in sequence to the protein
under investigation. This led to our choice to exploit the PDB
for the sampling of torsion angle space to generate more
physically meaningful conformers, a choice also utilized by
TraDES,12,13 Flexible-meccano,14 FastFloppyTail,15 and
others. Given these physically sound backbone conformations,
we also provide side-chain building algorithms such as MC-
SCE that can generate ensembles of different rotamer states
that are Boltzmann weighted and further all-atom representa-
tions by including hydrogens. The resulting sets of
conformations are intended to be utilized as inputs to
downstream approaches to define ensembles that best agree
with experimental data, such as those that select subsets (e.g.,
ENSEMBLE20 and ASTEROIDS20,21), reweight conformers
(e.g., BME24), or both (X-EISD22,23).

Building Conformational Ensembles. IDPConformerGen-
erator starts by creating a protein sequence database annotated
with φ, ψ, and ω torsion angles and secondary structure per
residue. We use nonredundant lists of structures such as those
generated by the Dunbrack PISCES database.38 Hence,
IDPConformerGenerator builds structures by extracting φ, ψ,
and ω backbone torsion angles from the database, fragment-
by-fragment (with fragments being peptides of variable
length), using torsion angles matching the input sequence for
each fragment or matching a user-defined residue tolerance (or
substitution) dictionary. While other tools utilize rigid
fragment sizes, IDPConformerGenerator allows users to
configure the size and probability of the peptide fragments
used to build the IDP chain stepwise, modulating the sampling
strategy to explore. IDPConformerGenerator uses DSSP
nomenclature39,40 to annotate residues by secondary structure
elements. Because of this, users can define the secondary
structure classes that IDPConformerGenerator will sample,
either across the sequence or in a residue-specific manner,
based on knowledge such as from NMR chemical shifts for
fractional populations of secondary structures as a function of
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residue.41−43 We provide several methods to sample bond
geometries when converting from internal to Cartesian
coordinates. The most important one is the Int2Cart
methodology37 that predicts bond lengths and angles for a
set of torsion angles and residue identities. Instead of using
hard spheres to model atom volumes, IDPConformerGener-
ator computes the whole Lennard-Jones (L-J) potential to
tolerate small clashes that can be compensated for by favorable
interactions, with user-defined thresholds to direct the
acceptance of a fragment or backtracking to rebuild. To
generate full side chains, IDPConformerGenerator has
integrated the MC-SCE algorithm, originally developed for
the more difficult case of folded proteins but which works
easily for disordered states.44

Associated and Integrated Tools. IDPConformerGener-
ator is designed as a platform to facilitate the generation of
disordered protein conformations, including analysis of
resulting ensembles and scoring or reweighting with respect
to experimental data. Tools for the analysis of structure are

integrated within IDPConformerGenerator, including those for
secondary structure, torsion angle distributions, radius of
gyration (Rg), end-to-end distances, asphericity (deviation
from the spherical shape of the conformers), and Cα−Cα
distance and distance-difference matrices. The software easily
enables the use of downstream tools for scoring, reweighting,
or subsetting to fit experimental data and will serve as a future
platform for integrating these tools, including the simple
ENSEMBLE approach and the X-EISD Bayesian model.
IDPConformerGenerator Software Platform. To facil-

itate its development and use, IDPConformerGenerator is
open source and extensively documented and the architecture
is modular to allow easy extension with other modules and
strategies (https://github.com/julie-forman-kay-lab/
IDPConformerGenerator). IDPConformerGenerator is writ-
ten in Python, and all of its automated functionalities are
available as command line commands. In addition, all of
IDPConformerGenerator’s functionalities are available through
the Python interpreter and can be imported and used

Figure 1. Schematic diagram of the IDPConformerGenerator approach. Generating conformers requires the creation of a reusable database of
backbone torsion angles and input of the primary sequence, with optional user-defined parameters including those for amino acid substitutions,
secondary structure sampling, and fragment size probabilities. An example of a peptide of 2 residues (fragment size 2) that is used to build
inhibitor-2 (I-2) is shown with backbone torsion angles labeled, a helical secondary structure with all-atom side chains of an I-2 conformer, and an
illustrative set of 100 generated conformations of I-2. Conformers that are generated can then be scored or reweighted based on experimental data.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.2c03726
J. Phys. Chem. A 2022, 126, 5985−6003

5987

https://github.com/julie-forman-kay-lab/IDPConformerGenerator
https://github.com/julie-forman-kay-lab/IDPConformerGenerator
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03726?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03726?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03726?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c03726?fig=fig1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.2c03726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


independently by more advanced users. Also, all IDPConfor-
merGenerator pipelines are distributable across multiple CPU
cores. IDPConformerGenerator’s software design facilitates a
flexible approach to building conformers with numerous user
parameters that enable very different realistic ensembles to be
built, with the design philosophy and options discussed here.
The overall workflow of IDPConformerGenerator is described
in detail next and is schematized in Figure 1.
Backbone Conformer Generation. IDPConformerGen-

erator requires a torsion angle database from which to build
backbone conformers. Users can provide custom-made lists of
the PDB chains to assemble the torsion angle database, thus
allowing tuning for resolution and diversity. IDPConformer-
Generator considers only continuous chains and selects the
atoms with the highest occupancy for those with alternative
locations. The IDPConformerGenerator parser works with
both the older PDB format and newer mmCIF files. For the
results reported here, we employed a fixed nonredundant
database of PDB structures from the Dunbrack PISCES
database38 (Oct 15, 2020), including high-resolution structures
with resolution better than or equal to 2.0 Å and an R factor of
≤0.25 with a maximum mutual sequence identity of 90%.
Conformer backbones are built fragment-by-fragment, where

fragments can be configured for different lengths (described
below). Physical validation of the conformers (for example, a
steric clash check) is parametrizable via force fields and
threshold parameters. If a clash is found, then IDPConfor-
merGenerator will delete the last fragment and attempt a new
one. If no new fragment can be added without a steric clash,
then the building process will backtrack to delete additional
fragments. This process is repeated until the whole backbone is
complete. With the default parameters, some sequences can be
built very fast while others require extensive sampling times,
also dependent on length (see below).

Including the Peptide Bond ω Torsion Angle. One of the
major differences between IDPConformerGenerator and
previous backbone sampling tools is that IDPConformerGen-
erator includes peptide ω torsion angles in the sampling and
building regime. The ω torsion angle is considered to be part
of the torsion angle set for each residue in the order ω/φ/ψ.
The decision to include ω is fundamental to our strategy to
explore the IDP landscape by the addition of multiple residue-
sized fragments, and since ω angles can vary to up to 20° in
loop regions of high-resolution structures (Figure 2), including
ω in the generator increases the accuracy of the extracted
fragment. Note that this variation is not dependent on the
resolution of the structure but that helices have a narrower ω

torsion angle distribution (Supporting Information Figure 1).
Accurate ω torsion angles are also critical for the future
incorporation of folded domains within otherwise disordered
chains.

Sequence Specificity of Chosen Torsion Angles. IDPCon-
formerGenerator builds structures based on extracting back-
bone torsion angles from the torsion angle database, using
torsion angles either (i) only from residues that exactly match
the input sequence (when possible; see below) or (ii) from
residues that match user-defined residue substitutions, i.e.,
isoleucine matching either isoleucine or leucine. The ability to
explore a narrow or broader sequence space of the PDB with
user-defined flexibility is an important feature of IDPConfor-
merGenerator. Utilizing the exact sequence to find torsion
angles in the PDB-derived database will guide IDPConfor-
merGenerator to choose torsion angles that reflect the
structural biases of that sequence. This capitalizes on the
PDB-derived database as an “empirical force field” and is
expected to generate local and secondary structure biases based
on the sequence dependence of these structures. Enabling the
substitution of residues for similar residues, with a user-defined
substitution list, recognizes the availability limits of exact
sequence matches in the PDB and extends the potential
torsion angles possible to be sampled.
IDPConformerGenerator has the ability to extract sub-

stitution lists based on a table derived from the EDSSMat50
IDP-specific substitution matrix45 (Supporting Information
Table S1A), with the user specifying the columns to be used to
define how conservative or liberal to make the substitutions.
Users can also provide specific substitution lists through the
command line (with an example shown) ′-subs {“A”: “AG”}′,
with substitutions described in the form of a Python dictionary
where keys are the residues to replace and values are the list of
residues to include.

Peptide Fragment Sizes. IDPConformerGenerator enables
users to define the size and probability of the peptide
fragments used to build the IDP chain stepwise, modulating
the sampling strategy to explore. By default, IDPConformer-
Generator samples fragment sizes of one, two, three, four, and
five residues with 10, 10, 30, 30, and 20% probabilities,
respectively. Users can freely configure these values in any
given manner. Therefore, IDPConformerGenerator can
emulate previously published algorithms that build conformer
chains by single residue or tripeptide additions while allowing
selection using countless other strategies. Shorter fragments
(such as one residue at a time) disregard the sequence context
of residue torsion angle frequencies, while with larger fragment

Figure 2. Histogram of ω dihedral angle distributions for structures found within the IDPConformerGenerator database. PDBs from the 24 003
PDB structure database were used, with sets of this with resolutions better or equal to 1.5 Å (∼5000 structures), better or equal to 1.8 Å (∼16 000
structures), and better or equal to 2.0 Å (full set). The deviations from an ω torsion angle of 180° (trans) are plotted, centered around 0°, to
facilitate the visualization of the distribution rather than the actual ω angles. Cis peptide bonds are ignored for visualization purposes.
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sizes, information about cooperative structure (helical, turn, or
extended strand-like elements) from the PDB is included in the
growing disordered protein chain. In practice, fragment sizes of
up to pentapeptides are most valuable because it is hard to find
sequence matches for longer segments, and cooperative
structures found in disordered proteins generally do not
extend beyond five residues (although there can be regions of a
longer cooperative helix). If a sequence match for the
requested fragment size is not found, then IDPConformerGen-
erator reduces the fragment size, one residue at a time, until a
sequence match is found in the database, taking into account
residue substitutions. Fragments are reduced until single
residue additions are sampled. Regardless of the size of the
fragment, if a proline residue in the input sequence follows the
selected fragment, then IDPConformerGenerator tries to
expand the fragment sequence to include the proline as well
because prolines impose severe torsion restraints on preceding
residues, a strategy used by other disordered chain-generating
tools.16,46,47

Secondary Structure Sampling. IDPConformerGenerator
uses DSSP nomenclature39,40 and the IDPConformerGener-
ator-created torsion angle database can be configured to
annotate residues by DSSP or any other third-party software
(via the IDPConformerGenerator ′sscalc′ interface) that
classifies secondary structure elements. Because of this, the
secondary structure classes of the PDB database that are
sampled can be defined by users. A logical approach for
generating disordered ensembles is to sample the loop regions
of folded structures, which dominate most IDPs/IDRs.
FastFloppyTail focuses on these regions, and others have
noted an increased ability to fit local structural experimental
data to ensembles derived from the coil or loop regions of
PDBs,48 even though these regions can be poorly defined.49

Using loops will bias to irregular structural elements found in
the PDB that most likely represent disordered states and will
also include short helical and extended elements. However,
significantly populated helical elements and other secondary
structure elements are found in disordered proteins states, so
other DSSP codes are valuable to include. Therefore,
IDPConformerGenerator allows users to sample any residues
regardless of secondary structure annotation (“ANY” flag) or
to specifically sample loops, helices, extended structures, poly
proline II helices, or an individual or combination of any DSSP
secondary structure code.
The secondary structure bias can be performed uniformly

across the sequence or in a residue-specific manner, using
knowledge such as from NMR chemical shifts for fractional
populations of secondary structures as a function of
residue.41−43 Depending on user choice, IDPConformerGen-
erator can prioritize building with the secondary structures of
interest over the full sequence, leading to sampled fragments
consisting only of residues matching a single secondary
structure annotation, or can completely disregard secondary
structures while building to allow the inherent secondary
structure propensities observed in the PDB database to
emerge. In this way, for example, ABC could be a fragment
in which A and B residues are annotated as a loop and C is
annotated as a helix (with C being the first residue of a helix
following a loop). Moreover, custom secondary structure
sampling based on experimental knowledge of the fractional
populations of secondary structures can be used, which can in
turn override the database bias to build conformers to match
known structural probabilities. For the bias of secondary

structure on a per-residue basis, building utilizes a custom
secondary structure sampling database file containing fractional
propensities for different secondary structures as a function of
residue derived from NMR chemical shift data (using csssconv
with δ2D42 or CheSPI43). If the chemical shift data are not
available but other knowledge of sampling of helical or
extended/β-strand regions exists (or if users want to explicitly
define these), then users can specify where significant sampling
of helical or extended/β-strand regions occurs and sample the
rest of the conformer without bias. Combining the rich ability
to sample torsion angles from specific secondary structure
annotations with the residue-type substitutions that increase
the matching tolerance and specification of fragment sizes,
users can sample highly restrictive or very broad conforma-
tional spaces.

Side-Chain Building. During the backbone building process
immediately after each backbone fragment is created, alanine
side chains are added to all residues, except for glycines and
prolines for which the full residue is added. These dummy
alanines serve as coarse-grained representations of the real side
chain. They avoid building backbone conformations that are
too compact to fit side chains without steric clashes, yet the
volume of the alanine side chain is small enough to allow the
backbone to sample packed conformations, enabling the
exploration of side-chain packing.
However, full side chains must be added, and IDPConfor-

merGenerator adds side chains using the MC-SCE algorithm
by sending backbone atom coordinates only and excluding any
alanine and proline side chains. The MC-SCE algorithm is a
Monte Carlo approach to building side-chain conformations
on a predefined backbone structure44 that utilizes a convergent
Rosenbluth sampling scheme and an augmented Dunbrack
library for side-chain rotamer sampling.44 The MC-SCE
algorithm was originally written in Fortran but was fully
rebuilt in Python to interface with IDPConformerGenerator to
build side-chain structures. Given a backbone structure, MC-
SCE builds the side chains by aligning the backbone N, Cα and
C′ atoms of the Dunbrack templates with the backbone from
IDPConformerGenerator. The side chains are then rotated
according to the sampled torsion angles, and this sampling
procedure is the key to the Monte Carlo nature of the
algorithm.
MC-SCE can be used both as a stand-alone option (https://

github.com/THGLab/MCSCE) and as two modes for work-
ing within IDPConformerGenerator. The simple mode
provides an option for rapidly adding side chains to a
backbone structure without introducing clashes, but the
conformations might be energetically suboptimal. Conversely,
the exhaustive mode generates side-chain conformations via
the user-defined total number of trials for the parallel execution
of the building process, with the all-atom structure having the
lowest energy of these returned to IDPConformerGenerator,
but takes longer to run. (See the Supporting Information for
more details.)
The FASPR44 algorithm used to build side-chain structures

is also an integrated option. This stand-alone software for side-
chain packing performs quickly for folded proteins. Note that
FASPR does not include hydrogens, leading to a need to
identify an optimal approach to build them afterward. We have
opted for MC-SCE as our preferred approach because it
generates a complete all-atom description of conformers,
including hydrogens, which is an important advantage over
FASPR.
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Internal to Cartesian Coordinate Transformations. The
design of IDPConformerGenerator as a builder based on
torsion angle sampling, rather than based on Cartesian
coordinate space, has benefits and drawbacks. One clear
benefit is that building with secondary structure biases, such as
from NMR chemical shifts and backbone 3J-coupling data, is
“native” to the builder. Building with tertiary contact biases,
such as from NMR 1H−1H NOE or PRE data, is not.
Importantly, energy calculations are made on Cartesian
coordinates. In order to facilitate energy calculations, the
conformers based on internal coordinates must be back-
transformed to Cartesian coordinates.
The original approach used for most of the work reported

here uses statistical sampling of bond angles for the set of
matched fragments and average values for bond lengths based
on the identity of the previous residue and the one following
the residue being built. The currently recommended approach
that improves upon the aforementioned strategy uses Int2Cart
developed by Li and co-workers,37 which is a deep learning
model that better predicts the correlations among the whole
sequence and the bond lengths and bond angles for a given set
of ω, φ, and ψ torsion angles to yield more accurate Cartesian
coordinates. This very recent implementation can be used as a
stand-alone option (https://github.com/THGLab/int2cart)
and is also integrated within IDPConformerGenerator directly.

Energy Considerations. Instead of using hard spheres to
model atom volumes, IDPConformerGenerator computes the
whole Lennard-Jones (L-J) potential to create conformers that
are self-avoiding polymers. The default L-J parameters are the
Amber14SB force field, which were used for the results
generated here but are also user-definable. Computing the
whole L-J potential allows the building engine to tolerate small
clashes that can be compensated by favorable interactions and
compensates for the fact that rigid conformers are created; i.e.,
no flexible minimization is performed at any stage. Severe
clashes will, nonetheless, have a profound impact on the energy
term, and thus the energy threshold for rejection can be
defined by users, with higher values allowing the exploration of
broader conformational space. This feature is useful when
modeling sequences with reduced representations in the
database.
IDPConformerGenerator can build backbone-only or full

side-chain-containing conformers. For this reason, two energy
threshold parameters are implemented: one to control the
tolerance for backbone atoms (“-etbb”) and another to control
the energy threshold in all-atom conformers with side chains
(“-etss”). The energy thresholds to accept or reject a
conformer can be calculated pairwise (atom-by-atom) or
over the full structure based on user choice. For each fragment
built, the energy is computed; if it is below the threshold, then
the fragment is accepted, otherwise it is rejected. If side chains
are being built, then once the backbone is complete,
IDPConformerGenerator attempts to place the side chains. If
successful (the energy term is below the threshold), then the
conformer is saved. Otherwise, the backbone conformation is
considered to be too restrictive to build side chains, the whole
conformer is discarded, and the creation of a new conformer
starts. Since the energy threshold for acceptance after side
chain addition is distinct from the threshold controlling
backbone building, a user can accept all side-chain packing
results by providing a large number for the side-chain energy
threshold.

X-EISD Bayesian Model. IDPConformerGenerator is
designed as a platform and supports the direct incorporation
of the calculated ensemble into downstream tools for scoring
and reweighting based on experimental data. The internal
integration of these tools is envisioned in the near future. Of
particular interest is X-EISD,22,23 a method which calculates
the maximum log likelihood of a protein structural ensemble
by accounting for the uncertainties in a wide range of
experimental data and back-calculation models from structures.
These data include NMR chemical shifts, J couplings, residual
dipolar couplings (RDCs), hydrodynamic radii, nuclear
Overhauser effects (NOEs), and paramagnetic resonance
enhancements (PREs); smFRET; and SAXS curves.22,23 We
have also introduced new data types, NMR R2 relaxation rates
and S2 order parameters, for the selection of an IDP ensemble
consistent with NMR dynamics data.50 Given the ensembles
created with IDPConformerGenerator, the X-EISD model can
be used as a scoring function to reweight the IDP ensembles
for the best agreement with experimental data based on the
different experimental and back-calculation uncertainties.

Analysis Tools. There are a number of commands currently
integrated within IDPConformerGenerator that can enable the
analysis of resulting ensembles. These include the analysis of
the resulting fractional secondary structure. In addition, a set of
complementary analysis tools were utilized to ask specific
research questions regarding the ensembles (see below;
available as stand-alone scripts). These include the RMSDs
from experimental data restraints and ENSEMBLE and X-
EISD scores; pairwise RMSDs of atomic coordinates; measures
of local structure, including secondary structure and φ/ψ/ω
distributions; measures of hydrodynamic properties, including
Rg, end-to-end distances, and asphericity (deviation from
spherical shape of the conformers); and measures of tertiary
contacts, including the Cα−Cα distance and distance differ-
ence matrices.

Additional User-Defined Parameters. Parameters are
available to control reproducibility, including random seeds.
IDPConformerGenerator runs are deterministic; i.e., the same
results can be achieved by providing the same initial database,
the same input parameters, and the same random seeds on the
same machine. Users can also specify the number of cores of a
multiprocessor computer to use.

■ RESULTS
In order to demonstrate the utility of IDPConformerGenerator
and ask questions regarding the optimal parameters for
building diverse and physically meaningful ensembles, we
have used a set of intrinsically disordered proteins (IDPs) of
various sizes: Sic1,51 α-synuclein,52 inhibitor-2,53 and Tau,54 as
well as the unfolded state of the N-terminal SH3 domain of the
Drosophila signaling protein Drk (drkN SH3).55

• Sic1 is a yeast cell-cycle regulator that inhibits a cyclin-
dependent kinase and is degraded following ubiquitina-
tion due to binding the ubiquitin ligase substrate-binding
domain (Cdc4 WD40 domain) in a dynamic complex
dependent on multisite phosphorylation.51 The N-
terminal 92 amino acids (aa) of Sic1 are necessary and
sufficient for binding and have been extensively
characterized by NMR, SAXS, and smFRET, and this
fragment is therefore used here.6,56−58

• Human α-synuclein (aSyn, 140 aa) is highly abundant in
the brain, where it is found largely in the axon terminals
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of presynaptic neurons to regulate synaptic vesicle
trafficking and subsequent neurotransmitter release.52

In the presence of membrane vesicles (or other lipid
environments), α-synuclein forms a helical structure, but
in the absence of lipid, it is highly disordered with a
minimal propensity for helical or other secondary
structure. It has been studied in both states, but for
testing purposes, we utilize NMR and SAXS data from
the disordered state.15,21,59−64

• Inhibitor-2 (I-2, 159 aa) is an inhibitor of protein
phosphatase 1 (PP1), forming a dynamic complex with
PP1 that orders only a limited portion of I-2 upon
binding, based on crystallographic data.53 In the absence
of PP1, I-2 is disordered yet has a significant population
of helices, based on characterization by NMR.65,66

• Tau (microtubule-associated protein tau) is a 758-
residue IDP with numerous functional annotations,
including the promotion of microtubule assembly and
stability and roles in establishing and maintaining the
polarity of axons in neurons.54 It is an RNA-binding
protein that phase separates in vitro and is found in
cellular biomolecular condensates, consistent with its
lower complexity sequence.67 We use the first 441
residues as a test system since a fragment encompassing
these residues has been studied using NMR.68,69 Short
Tau peptides have also been studied,15 and we similarly
utilize a Tau peptide as a test system.

• Finally, the drkN SH3 domain exists in dynamic
equilibrium between folded and unfolded states, with
the unfolded state extensively studied as a model
disordered protein for the development of ensemble
calculation methods due to the large number of
experimental NMR, SAXS, and smFRET restraints
available and its small size (59 aa).22,50,66,70

Sequences for these proteins and fragments are given in
Supporting Information Table S1B. Note that there are some
peptide sequences of aSyn and Tau in the PDB database we
use (Supporting Information Table S1C), many in complex
with antibodies. It may be valuable to include structures of the
protein of interest or homologous proteins, such as complexes

of folded proteins with the disordered protein of interest (or its
fragments), to provide conformations that are likely to be
sampled at some level. Alternatively, users may choose to
exclude such structures to avoid potential bias. Either approach
is possible because IDPConformerGenerator allows users to
assemble custom-made databases of torsion angles from user-
defined input PDB lists. The number of sequence matches for
different fragment sizes of the drkN SH3 domain in our
database for different secondary structure sampling, including
exact matches or with substitutions, is given in Supporting
Information Table S1D to provide concrete examples of how
torsion angles are chosen in IDPConformerGenerator. The
′stats′ subclient calculates the sequence matches in the
database for an input sequence and considering the input
parameters of the building process. In this way, users can easily
assess the number of angles available for each chunk and
identify possible bottlenecks where residue tolerance might be
needed.
Here we characterize multiple aspects of IDPConformer-

Generator: computational speed for generating ensembles, the
diversity of conformer sampling, the presence or absence of
secondary structure (especially helical fraction), how well these
unoptimized disordered ensembles recapitulate experimental
data, and comparisons to other structural ensemble generators
including TraDES, FastFloppyTail, and MD simulations.
Computational Timings. The speed of conformational

ensemble generation is important, particularly for larger
proteins, as large and conformationally diverse input pools
are valuable for further reweighting or subsetting. We
compared speeds for generating disordered conformers using
IDPConformerGenerator with different fragment sizes and
different secondary structure options for all of the test systems.
For these, we generated backbones for each protein with a 100
kJ backbone energy threshold and used MC-SCE for side
chains. The goal was to yield 1000 successful full conformers
for each protein such that timings were normalized on a per
successful conformer basis. Exact timings and the percentage of
successful conformers from the generated backbones can be
found in Supporting Information Table S2A.
Figure 3A demonstrates the general trend of faster

conformer generation for shorter chains, as expected, with a

Figure 3. Timings for IDPConformerGenerator with MC-SCE and dependencies on the protein test system (size), secondary structure sampling,
and fragment length. Speed is defined as the number of conformers per hour. (A) Speeds for variable secondary structure sampling methods on
disordered proteins with different lengths, shown for sampling with custom secondary structure propensities (CSSS, yellow), “ANY” secondary
structure (gray), combinations of loops, helices, and strands (orange), and only loops (blue). Speeds are shown for selected ensembles of the drkN
SH3 domain unfolded state (59 amino acids, aa), the Sic1 N-terminal targeting region (92 aa), α-synuclein (aSyn, 140 aa), and inhibitor 2 (I-2, 159
aa). Speeds for all conformer ensembles generated including for the Tau fragment (441 aa) are in Supporting Information Table S2A. (B) Speeds
for variable fragment sizes and secondary structure sampling methods for Sic1 are shown for sampling with only loops with substitutions (gray),
only loops without substitutions (orange), and “ANY” secondary structure (blue). Default fragment length probabilities are 0.1, 0.1, 0.3, 0.3, and
0.2 for fragment lengths of 1, 2, 3, 4, and 5, respectively.
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nonlinear dependence. Building with only helices or extended
strands is usually faster than building with loops or mixtures of
loops with helical or extended structures, such as with CSSS or
ANY, as loops increase the likelihood of steric clashes and
difficulties in side-chain packing, although helices and strands
are not as representative of disordered states (Supporting
Information Table S2A). As shown in Figure 3B, increasing the
fragment size significantly increases the speed of conformer
generation for the proteins investigated, and varying the
secondary structure sampling method alters the speed for
different fragment sizes. In most cases, using substitutions was
also found to be faster, likely due to more fragment matches in
the database. Overall, conformer generation is reasonably
efficient but strongly dependent on chain length, with speeds
of 400−500 conformers per hour per computer node for the
drkN SH3 domain unfolded state (59 aa), 200−275 for Sic1
(92 aa), 50−100 for aSyn (140 aa), 40−75 for I-2 (159 aa),
and about 5 for Tau (441 aa) using one node on the Graham
supercomputing resource. For this and all other calculations
unless otherwise specified, we used one node of the Graham
resource of Compute Canada (now Digital Research Alliance
of Canada) with 2x Intel E5-2683 v4 Broadwell @ 2.1 GHz
CPUs and with 125 GB of RAM per node.
We also tested the intersection of the impact of sequence

length and the diversity of amino acid residues in the sequence
on the speed of conformer generation. Low-complexity IDRs
using fewer amino acids are increasingly understood to play a
functional role in facilitating phase separation within
biomolecular condensates or membraneless organelles.71,72

Of our test proteins, the Tau fragment is the longest (441 aa)
and is known to phase separate.67 It is also lower in complexity
than the other test proteins, with the first 300 residues
annotated as having compositional bias by CAST and being
low complexity by SEG, respectively.73,74 Such low-complexity
sequences are not found in the folded proteins in our database,
and we explored if they would take longer to build. We
quantified the speed of conformer generation in minutes per
amino acid on the multiprocessor server. Tau was segmented
into 3 segments of 147 aa to compare with I-2 (159 aa) and

aSyn (140 aa) and 5 segments of ∼90 residues in order to
compare with Sic1 (92 aa). We found that the central 147-
residue segment of the Tau fragment was the fastest to build
but that there were no clear trends on the basis of complexity
when comparing Tau to aSyn or I-2 (Supporting Information
Figure S2).
The side-chain addition step is much longer than backbone

generation, with our preferred side-chain packing algorithm
MC-SCE taking a larger fraction of the time as the chain length
increases. MC-SCE was initially optimized for packing side
chains onto the backbone of folded proteins. Although the
success rate decreases with longer backbone lengths, we found
that the settings in MC-SCE could be optimized for IDPs by
reducing the number of attempts/trials spent on packing side
chains onto backbones from 128 to 32. For Tau, using 32 trials
increased the speed per conformer by 3 to 4.4 times depending
on secondary structure sampling (Supporting Information
Table S2B). Another observation based on these benchmarks
is that the success rate increases with an increased number of
backbone conformers available as input to MC-SCE.
For methodological purposes, we also asked about the

optimal energy flags for the speed of calculation of conformers
that do not have significant steric clashes in order to facilitate
the rapid building of structural ensembles. We built sets of
1000 backbone conformers of I-2 with loops or other
secondary structure sampling with either 100 or 250 kJ
pairwise energy thresholds and used MC-SCE for side chains,
with average times of 68 and 38 min, respectively. The ∼80%
increase in time for the 100 kJ threshold led to only an ∼10%
gain in clash-free conformers. We observed similar results for
aSyn, with average times of 45 and 25 min, respectively, and an
∼80% increase in time for the 100 kJ threshold and only an
∼15% gain in clash-free conformers. Thus, increasing the
energy threshold can speed up the full conformer generation
time for proteins at least as long as I-2 (Supporting
Information Table S2C).

Sampling Depth. Next, we interrogated the depth of the
torsion angle space in ensembles built from torsions derived
from the PDB data set. When building proteins with a specific

Figure 4. Phi (φ) torsion angles in Sic1 ensembles sampled using different fragment sizes, with and without substitutions. Calculations were for
1000-conformer ensembles generated by sampling loops only, with fragment sizes of 1, 2, 3, 4, and 5 and default fragment size probabilities. The left
and right columns are for the Sic1 sequence without and with substitutions, respectively. Substitutions are derived from columns 5, 3, and 2 of the
EDSSMat50 amino acid substitution matrix. The plot was generated with the ′--plots′ flag in the ′idpconfgen torsions′ CLI.
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sequence, particularly for fragment sizes of 3, 4, and 5, the
finite size of the PDB-derived database leads to minimal
torsion angle options as only sequence matches of the defined
fragment size can be used to build. This leads to what we call
torsion angle bottlenecks for specific residues. Figure 4 shows
the φ distributions for Sic1 generated using loops with various
fragment sizes, demonstrating decreasing numbers of distinct
torsion angles as the fragment size increases. For fragment sizes
of 5 between residues 20−30, essentially 1 set of backbone
torsion angles was used over all of these 1000 structures.
Supporting Information Figure S3 shows histograms of how
many segments of the drkN SH3 domain sequence for various
fragment sizes are present in the database, demonstrating the
minimal data for fragment sizes of 6 and 7, with values also
provided in Supporting Information Table 1D. In order to
avoid such torsion angle bottlenecks, mixtures of fragment
sizes are optimal when requesting exact sequence matches. The
default of probabilistic sampling of fragment sizes of 1, 2, 3, 4,
and 5 in a ratio of 1:2:3:3:1 enables contributions from larger
fragment sizes with cooperative structural elements while
minimizing torsion angle bottlenecks, as seen in the bottom
right rows of Figure 4. Using substitutions can help avoid
bottlenecks, with Figure 4 panels reporting on ensembles with
substitutions showing greater torsion angle coverage than for
those without. Increasing the number of DSSP codes utilized
can also be beneficial (Supporting Information Figure S4), as

using only helices or only strands yields limited torsion angle
sampling (and is not realistic for disordered chains). Being
agnostic to secondary structure annotation is another
approach, as seen for the difference between using loops
only or all possible annotations for the drkN SH3 domain
sequence (Supporting Information Figure S5).
We then looked for the optimal parameters (fragment size,

secondary structure flags) for increasing diversity of calculated
structures, as measured by average pairwise RMSDs, hydro-
dynamic parameters, and asphericity. Rg, the end-to-end
distance (Ree), and asphericity are all measures of the shape
of a conformation, with smaller Rg and Ree values and
asphericity approaching 0 implying more spherical, compact
chains while large values reflect irregular, less compact shapes.
As expected, we note that it is critical to incorporate loop
regions to build diverse structural ensembles of disordered
protein states; with only helical or extended DSSP flags, long
helices or strands are built, which are not representative of
disordered conformations (Figure 5, Supporting Information
Figure S6, and Supporting Information Table S3). This is seen
by the much higher Ree and asphericity values, such as for those
built with helices only having asphericity values of >0.8 and
with strands only having Ree values 1.5 to 2 times as large as for
those built with loops. To further increase the diversity of
calculated structures, the “ANY” secondary structure flag is
optimal as it will use the natural secondary structure

Figure 5. Diversity analysis of conformational ensembles of the drkN SH3 domain unfolded state and I-2. The radius of gyration (Rg), end-to-end
distance (Ree), asphericity (A), and pairwise root-mean-squared deviations of atomic positions (pwRMSDs) are shown as a function of secondary
structure sampling parameters for 1000-conformer ensembles generated with different secondary structure sampling, including loops (L+), loops
and helices (L+H+), loops, helices, and extended strands (L+H+E+), and all torsion angles agnostic to secondary structure (ANY) and biased by
δ2D chemical shifts (CSSS) or with FastFloppyTail (FFT) for the drkN SH3 unfolded state (row 1) and I-2 (row 2). Standard deviations for Rg,
Ree, A, and pwRMSD are also shown as bars. Supporting Information Figure S6 shows similar data for other protein systems. * is for the standard
FFT protocol, which for this case treats the protein as a mixture of ordered and disordered, while the other is for a modified protocol in which the
protein is considered to be fully disordered.
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propensities of the entire PDB database and will not be limited
to user-defined secondary structures that restrict the sampling
of conformational space (see below).
Plotting pairwise RMSDs as a distribution (Figure 6)

demonstrates that the ensembles are smoothly sampled, with
no significant clusters of similar structures, consistent with our
goal of generating diverse conformers. Varying secondary
structure sampling approaches can also increase the variety of
conformational space explored, as the custom secondary
structure sampling shifts the RMSD histogram to larger values.
As seen in plots of pairwise RMSD distance matrices
(Supporting Information Figure S7), no regions of lower
pairwise RMSDs are seen, indicating that the generated
conformers have a large variability in Cα backbones. Pairwise

RMSD is correlated to protein length, with RMSD values
ranging from above 5 Å to 30 Å for the shorter disordered
drkN SH3 domain unfolded state (59 aa) and from 15 Å to
above 50 Å for I-2 (159 aa), indicating significant
heterogeneity in conformational sampling.
We were also interested to see if IDPConformerGenerator is

able to effectively capture local structural changes with amino
acid sequence changes. We used a 16-mer peptide from the
Tau K18 fragment previously studied by Stelzl and co-workers;
reweighted hierarchical chain growth was used to generate Tau
ensembles recapitulating structural details that were identified
by NMR to have microtuble binding capacity and that are lost
upon mutation of position P301.36 To investigate the
conformational diversity explored by IDPConformerGenerator

Figure 6. Pairwise RMSD distributions for ensembles of the (A) drkN SH3 domain unfolded state and (B) I-2. Calculations were for different
ensembles of 1000 conformers each, plotted with bin sizes of 5 Å. “ANY” indicates sampling the database without biasing secondary structures,
“nosub” indicates no substitutions, “sub532” indicates amino acid substitutions from columns 5, 3, and 2 of the EDSSMat50 amino acid
substitution matrix, and “CheSPI” or “δ2D” indicates custom secondary structure sampling (CSSS) pools biased by CheSPI or δ2D estimations of
secondary structure propensities.

Figure 7. Local structural variations between the Tau K18 16-mer WT and different mutants. (A) Distribution of the distance between V300 O and
G303 N atoms in 10 000-conformer ensembles generated with no substitutions. (B) Torsion angle distributions for position 301 of the different
conformers in these WT and mutant ensembles, with ω representing the torsion angle N-terminal to the φ, as is our convention (typically denoted
as ω of the preceding residue).
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and the variation in conformations for single-site mutations, we
generated sets of 10 000 conformers for wild type (WT),
P301L, P301S, and P301T for the Tau fragment sequence:
DNIKHVP301GGGSVQIVY. We sampled by considering only
sequence matching, disregarding secondary structure annota-
tions, and allowed no residue substitutions for sequence
matching.
One of the structural parameters explored in the Stelzl study

is the distance between V300 O (backbone carbonyl oxygen)
and G303 N (backbone amide nitrogen). Figure 7A shows
distributions for this O−N distance for the different variants.
In agreement with the Stelzl study, we observe a considerable
fraction of conformers for the WT with distance below 4 Å,
reflecting a turn structure and likely hydrogen bond, while for
mutants these occurrences are much rarer. Each mutant reveals
different patterns of O−N distances, showing that IDPCon-
formerGenerator can capture local conformational diversity
from single-point mutations and that these will be incorporated
into the larger disordered chain. Figure 7B shows the torsion
angles for residue 301 in the variants. Here, we also observe
very different profiles. Note the presence of conformers with a
cis-prolyl peptide bond for P301 reflecting the natural tendency
of cis-Pro in the context of this sequence but absent in the
mutants lacking proline. These results demonstrate that

IDPConformerGenerator can effectively sample realistic local
conformations in a sequence-specific manner, consistent with
its design. Another approach to sampling particular turn types
or other structures that is available with IDPConformerGen-
erator is to utilize an amino acid substitution dictionary to
incorporate residues with known propensities for these
structures.
Fractional Secondary Structure. An obvious question

regards the impact of the secondary structure flags on the
ultimate fractional secondary structures in the ensembles built.
We generated 1200-conformer ensembles of Sic1 using
different combinations of secondary structure sampling with
loops (activated by default), helices, and strands. IDPConfor-
merGenerator can pool together DSSP codes T (hydrogen-
bonded turn), S (bend), B (β-bridge), P (PPII helix), I (pi-
helix) and ’ ’ (blank, loops/irregular) as loop (L), H (α-helix)
and G (3-10 helix) as helix (H), and only E (extended strand,
participating in β-ladder) as strand (E). For all of our
calculations, we utilized this pooled set of DSSP codes. We
generated Sic1 ensembles due to its lack of inherent significant
biases in secondary structure propensity56,57 (Figure 8). When
restricting to loops only or loops and strands, similar sampling
is observed with greater sampling of the β-region of the
Ramachandran diagram, but since there are no hydrogen-

Figure 8. Fractional secondary structure in Sic1 ensembles. Analyses were performed on 1200-conformer pools of Sic1 generated with different
combinations of secondary structure sampling consisting of loops, helix, and extended strands. Orange indicates α-helix detected by DSSP (solid)
and the α-region on the Ramachandran (Rama.) diagram (dashed). Blue indicates extended strand for DSSP (solid) and the β-region on the
Ramachandran diagram (dashed). Black indicates coil/loop for DSSP (solid) and other regions on the Ramachandran diagram (dashed).
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bonded interactions, DSSP catalogs these as loops. There is
also significant sampling of the α-region and some small
amounts of cooperative helix are observed. With strands only,
sampling of the β-region of the Ramachandran diagram is
dominant, with no strands defined by DSSP, again due to the
lack of hydrogen bonds. Restricting sampling to helices,
however, leads to dominant sampling of the α-region of the
Ramachandran plot, and as expected, these structures show
significant α-helix as defined in the DSSP. With loops and
helices, there are also significant cooperative helices generated.
Similar results were seen for the drkN SH3 unfolded state
(Supporting Information Figure S8).
Sampling with all three secondary structure options in

combination (loop, helix, strand) is not the same as sampling
with the ANY flag (′--dany′), as the latter approach samples
based solely on the sequence matching patterns, disregarding
secondary structure annotations, thus reflecting the inherent
structural propensities of the input sequence fragments as

present in the database. The explicit listing of secondary
structure codes limits to sampling fragments with the same
secondary structure code for all residues while with the ANY
flag this is not a requirement, so we wondered if there would
be significant differences in emerging structural patterns. An
analysis of ensembles of the drkN SH3 domain unfolded state
demonstrates no significant visual differences in torsion angle
distributions, but the ANY pools do have greater psi ranges
between residues 22 and 29 and there are greater helical
propensities for the LHE pool compared to the ANY pool
(Figure 9). Although the general trends of secondary structure
propensities seem similar between the LHE and ANY pools,
small differences demonstrate that these options generate
different conformer pools. We recommend the ANY flag to
build IDP conformer ensembles with the sampling of torsion
angles based on frequencies observed in the PDB. To
maximize the sampling of torsion angle space, we recommend

Figure 9. Comparison of torsion angle sampling for L+/H+/E+ and ANY. Ensembles of 1000 conformers each of the drkN SH3 domain unfolded
state were generated with sampling a combination of loops (L), helix (H), and extended strands (E) or sampling without biasing secondary
structure with the ANY flag. Phi and psi (φ and ψ) torsion angle distributions for each conformer pool are shown as a scatter plot in the first two
rows. The third row depicts fractional secondary structure based on DSSP (dark solid lines) or the Ramachandran (Rama.) diagram (dashed lines),
with orange indicating α-helix for DSSP and the α-region of the Ramachandran diagram, blue indicating extended strand for DSSP and the β-region
of the Ramachandran diagram, and black indicating coil/loop for DSSP and other regions of the Ramachandran diagram.
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sampling with both ANY and LHE to minimize torsion angle
bottlenecks.
Importantly, we were interested in whether our design of

IDPConformerGenerator to exploit the secondary structure
propensities found in the PDB would match experimentally
measured propensities from NMR chemical shifts. Two sets of
3000 conformers each of the drkN SH3 domain unfolded state
were generated using a backbone energy threshold of 100 kJ,
with the “ANY” flag and with the CSSS flag to do custom
secondary structure sampling based on δ2D42 calculations
from NMR chemical shift data75 on a per-residue basis. As seen
in Figure 10 (left), there are natural secondary structure
propensities for α-helix, particularly for residues 16−29, based
on δ2D predictions for secondary structure propensities.42 At
residues 58 and 59, the predicted probabilities of secondary
structure are set to 1/3 as no chemical shift data are available.
Although extended β-strand regions have also been predicted
with δ2D, DSSP defines extended strands based on both
torsion angle ranges (the same ones as used for segmenting the
Ramachandran space) and hydrogen bonds, and there are
minimal cases of tertiary contacts satisfying β-hydrogen bonds
in these disordered ensembles. However, sampling in the β-
region of the Ramachandran diagram is plentiful. (Note that it
may be valuable to utilize a different definition of strand
pairing besides DSSP that is more permissive for local

backbone geometries to characterize potential β-strands.)
This ensemble shows that helical structure is oversampled
relative to what is found experimentally. However, the regions
where significant α-helical secondary structure is sampled do
overlap with the observed secondary structure propensities
identified by δ2D. With custom secondary structure sampling,
in contrast, there is very good agreement for the α-helical and
coil/loop structure on a per-residue basis with that suggested
by δ2D (Figure 10, left). Sampling in the β-region is somewhat
increased, with no observed β-strand H-bonding structure seen
using DSSP. Overall, biasing the sampling for torsion angles in
the PDB based on secondary structure yields an ensemble with
an overestimate of helical structure compared to the δ2D
estimates, while directing the sampling by NMR data, as
expected, yields an ensemble in much closer agreement to
these data.
Similar results were found for I-2, which has significantly

populated helices around residues 85−99 and 121−145, based
on NMR chemical shifts75 with δ2D assignments. These peaks
match with sampling from the α-region of the Ramachandran
plot in the ANY ensemble (Figure 10, right), but there is
significant helical structure throughout. Biasing by the NMR
data, we can generate an ensemble with nearly exact
agreements of the secondary structure propensities calculated
by δ2D to the secondary structure propensities of the

Figure 10. Custom secondary structure sampling. (Left) For the drkN SH3 domain unfolded state, two sets of 3000 conformers each were
generated, and (right) for inhibitor-2 (I-2), two sets of 1500 conformers each were generated, with (A, B) the “ANY” flag or with (C, D) the CSSS
flag to do custom secondary structure sampling based on δ2D calculations from NMR chemical shift data. (A, C) Plots of fractional secondary
structure based on DSSP (dark solid lines), the Ramachandran (Rama.) diagram (dashed lines), or δ2D (light solid lines). Orange indicates α-helix
for δ2D and DSSP and the α-region on the Ramachandran diagram. Blue indicates extended strand for δ2D and DSSP and the β-region on the
Ramachandran diagram. Black indicates coil/loop for δ2D and DSSP and other regions on the Ramachandran diagram. (B, D) Aligned conformers
of the ensembles using PyMOL.
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conformer ensemble calculated by DSSP (Figure 10, right).
While sampling torsion angles in the PDB using the ANY flag
may provide some insight into the natural propensities for α-
or β-regions of the Ramachandran diagram, biasing the
sampling based on experimental NMR data can yield
conformer pools that are more likely to be representative of
the disordered protein. Additional plots of residue-specific
fractional secondary structures for calculated ensembles are
provided in Supporting Information Figures S9−S12.
Comparison with Experimental Data. Beyond the

chemical shift-derived secondary structure, we were interested
in the ability of the generated ensembles to match
experimental data. While the goal is to build diverse conformer
pools that have the potential to fit experiment following a

subsetting or reweighting procedure, such as with ENSEM-
BLE20 or X-EISD,22,23 an initial match to experiment clearly
demonstrates this potential. Using RMSD from experimental
data (Figure 11 and Supporting Information Figure S13) and
ENSEMBLE and X-EISD scores as metrics (Supporting
Information Table S4), we found that IDPConformerGener-
ator ensembles are not in very close agreement with the
experimental data, as expected, but that the deviation is not
large for many restraint types, such as SAXS, chemical shifts, 3-
bond 1HN−1Hα J couplings, and RDCs. While there are larger
deviations for those representing tertiary contacts, PREs and
1H−1H NOEs, it is difficult to directly compare the RMSD
values for the different experimental data types as the range of
data varies considerably. An RMSD of ∼4 Å for PRE, a

Figure 11. Root-mean squared deviations (RMSDs) of back-calculated values from conformational ensembles to experimental data for the drkN
SH3 domain unfolded state. Analyses of 1000-conformer ensembles generated using various secondary structure sampling and using
FastFloppyTail (FFT). RMSDs are given for SAXS, chemical shifts (carbonyl, Cα, Cβ, Hα), PRE, 3JHN‑HA, and NOE if available. Sources of
experimental data are provided in Methods. * is for the standard FFT protocol, which for this case treats the protein as a mixture of ordered and
disordered, while the other is for a modified protocol in which the protein is considered to be fully disordered.

Figure 12. Analysis of tertiary contacts for Sic1 ensembles. (Top row) Cα−Cα distance matrices (lower) with deviations (upper) for 1000-
conformer ensembles of Sic1 generated with the loops-only flag for secondary structure, with substitutions from columns 5, 3, and 2 of the
EDSSMat50 amino acid substitution matrix and with variable fragment lengths. (Bottom row) Significant differences between Cα−Cα distance
matrices (lower) and deviations (upper) (P < 0.05 from a Mann−Whitney U test).
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measurement that goes out to 20 or 30 Å, may be closer than
an RMSD of ∼0.8 ppm of Cα chemical shifts, a measurement
that varies less than 2 ppm. CSSS generally provides ensembles
in better agreement with Cα and Cβ chemical shift restraints,
as expected, particularly for proteins with known significant
sampling of secondary structure, such as I-2.
A significant measure of the ability to match experimental

restraints is the effective sampling of various tertiary contacts.
A comparison of the Cα−Cα distance matrices for fragment
sizes of 1, 3, and 5 as well as the default fragment size sampling
for Sic1 shows that there is a relatively smooth sampling of
longer distances (Figure 12, top row). Significant differences
are observed between ensembles generated with the three
different fragment sizes, as seen in the difference distance
matrices between ensembles, demonstrating that mixtures of
fragment sizes are valuable for sampling a diverse set of tertiary
contacts (Figure 12, bottom row). In addition, there are
significant differences in tertiary contacts for Sic1 ensembles
generated with loops and with “ANY” (Supporting Information
Figure S14). Together, these results provide evidence that
using a large, combined input pool of conformations created
with varying fragment sizes, secondary structure sampling, and
other parameters would enable reweighting or subsetting to fit
the distance restraint and other data types.
Comparison to Other Disordered Chain-Generating

Tools. One of the early motivations for building IDPConfor-
merGenerator is the significant number of steric clashes found
in TraDES12,13 conformers. The definition of a clash depends
on whether only the repulsive portion of the L-J potential is
considered or the whole L-J potential is used, allowing closer
distances which are compensated for by favorable interactions.
We generated a set of 1000 Sic1 conformers using default
TraDES parameters and used Chimera to check for steric
clashes76 using a stringent criterion based largely on distance
(similar to the repulsive portion of the L-J). With criteria of no
backbone clashes and ≤5 side chain clashes, this TraDES
ensemble had no conformers meeting the criteria. In contrast,
1000-conformer IDPConformerGenerator ensembles of Sic1
built using custom secondary structure sampling and default
fragment sizes had 324/1000 conformers meeting these
criteria. A similar drkN SH3 domain unfolded state pool had
395/1000 conformers meeting these criteria. Chimera’s clash
definition is more stringent than the one we utilize in
IDPConformerGenerator and MC-SCE, which allows close
contacts if compensated for by favorable L-J energy, thus all of
these IDPConformerGenerator conformers are arguably physi-
cally realistic conformations. IPDConformerGenerator does
generate many more conformers with fewer steric clashes as
defined by Chimera than does TraDES.
We also calculated a set of FastFloppyTail15 ensembles to

enable comparison with IDPConformerGenerator. While there
are different parameters for running FastFloppyTail, it is not
user customizable in terms of sampling specific secondary
structures or various fragment lengths, with the exception of
using 3-mer and/or 9-mer fragment libraries. We therefore
used the recommended protocol for each system, with 3-mer
fragment libraries and with an additional run to force the drkN
SH3 domain to be disordered throughout. (See the Supporting
Information for details.) We measured the speed, diversity,
sampling of secondary structure, and match to experimental
data (Figures 5 and 11, Supporting Information Figures S6 and
S9−S13, and Supporting Information Tables S2, S3, and S4).
For the quantitative speed comparison, we considered only the

time of the calculation following setup with the initial files. For
IDPConformerGenerator, initial setup includes the generation
of the initial torsion angle database, which we needed to do
only once for all of the systems, and provides the specific
protein sequence with input parameter files. Generating the
initial torsion angle database took 37 min on a desktop
computer using 63 of the 64 cores, 20−30 min for
downloading, while processing and generating the database
were fast. The time is very dependent on the Internet
connection speed and number of cores since the process is
embarrassingly parallel. For FastFloppyTail, there is no ability
to define multiple processors, and there are a number of steps
and files required before the conformer generation process,
including the prediction of disordered regions and secondary
structure and creating a fragment library, which is required for
each protein. The predictions require multiple external
websites or programs. For the test systems, we could utilize
the premade files on the FastFloppyTail website, but for other
proteins, this would not be the case. For the drkN SH3
domain, Sic1, aSyn, and I-2, the fragment libraries took
between 11 and 16 min each to calculate on the HPC system
that we used for ensemble generation, while for Tau it was
about 45 min (Supporting Information Table S2). Another
issue with FastFloppyTail is that disordered proteins that are
not predicted to be disordered can yield challenges in setup. In
particular, the unfolded state of the drkN SH3 domain has a
sequence that is not predicted to be disordered, leading to our
testing both the recommended algorithm and one defining it as
disordered (Supporting Information). α-Synuclein is known to
fold into a long α-helix in the presence of lipid or micelles and
different predictive algorithms have variable success in
predicting its disordered state,77 and the authors of
FastFloppyTail noted a need to find a predictor which
correctly identified its disordered state.15

The results demonstrate that IDPConformerGenerator is
faster than FastFloppyTail for chains shorter than 200 residues
with default parameters. There is generally minimal difference
in the diversity of the ensembles between the two tools,
although asphericity values are higher for IDPConformerGen-
erator and FastFloppyTail ensembles are often more compact.
The secondary structure sampling for FastFloppyTail ensem-
bles often falls between IDPConformerGenerator ANY and
CSSS biased by NMR chemical shifts, with FastFloppyTail
having higher populated secondary structure than suggested by
experiment. Matches to experimental data are more variable,
with IDPConformerGenerator run using different secondary
structure sampling approaches giving the lowest RMSD values
for different data types for different systems, often lower than
the FastFloppyTail ensemble, particularly for the CSSS with
chemical shifts, although not always. A clear distinction is that
IDPConformerGenerator enables users to flexibly define
different approaches for the generation of conformers,
including for diversifying the resulting ensembles.
To compare an alternative strategy of IDP conformer

ensemble generation, we have extracted conformers from MD
trajectories generated using an optimized force field from
Robustelli et al.78 (See Supporting Information, Additional
Methods, for details.) We compared the three overlapping
protein systems with ours (drkN SH3, Sic1, and aSyn) from
this MD study, calculating fractional secondary structure
profiles (Supporting Information Figures S15−S17) and
agreement with experimental data (Supporting Information
Table S4A). As seen in Supporting Information Figures S15−
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S17, ensembles from these MD simulations deviate from
δ2D42 predicted secondary structure propensities, while
IDPConformerGenerator’s CSSS approach can easily recreate
any secondary structure profile, including δ2D calculated
propensities, while maintaining diversity. The agreement of
IDPConformerGenerator conformers with experimental data is
in general comparable to that of these MD simulations using
an optimized force field for disordered proteins (a99SB-
disp),78 even showing better agreement in some cases
(Supporting Information Table S4A). IDPConformerGener-
ator, with its significantly lower computational cost than the
MD, facilitates the calculation of multiple ensembles with
various secondary structure sampling approaches. This
includes CSSS, which usually leads to better agreement with
chemical shift data than the MD conformers. Different
IDPConformerGenerator secondary structure sampling ap-
proaches also enable comparable or better fits than MD to
other data. Interestingly, the drkN SH3 IDPConformerGen-
erator ensembles have significantly better agreement with the
PRE and NOE data than the MD conformers, while for Sic1
the MD fits better to PRE data. Overall, IDPConformerGen-
erator performs very well compared to MD trajectories
generated with the a99SB-disp force field.

■ DISCUSSION AND CONCLUSIONS
A range of theoretical and computational approaches for
generating disordered ensembles exist,10,79 each of which has
strengths and unique features based on the design philosophy.
Testing of IDPConformerGenerator on our set of model
disordered proteins demonstrates that this tool is highly
flexible and can function as a platform to enable the generation
of various initial conformational pools built with different
biases and parameters, which is valuable for addressing a range
of scientific needs. It is computationally efficient depending on
the sequence length and parameters and can enable sampling
using the frequencies of secondary structures within the PDB
database provided or the experimental secondary structure
propensities from NMR experiments. The resulting ensembles
are not far from fitting experimental data, including those for
local structure, tertiary contacts, and overall hydrodynamic
properties. IDPConformerGenerator ensembles have agree-
ment with experiment comparable to those generated by MD
simulations, at significantly less computational cost. Ensembles
generated with the various secondary structure sampling
approaches have distinct levels of agreement with the multiple
experimental restraint types, suggesting that each IDPConfor-
merGenerator build configuration samples unique regions of
conformational space. Future work will explore the optimal
parameters for sampling structures to facilitate the identi-
fication of subsets or reweighting to best fit restraints, including
tertiary contacts. However, the current results strongly suggest
that using an input pool with a combination of ensembles
generated with different approaches, including with and
without substitutions, varied fragment sizes and combinations,
and varied secondary structure sampling including bias with
NMR chemical shift-derived probabilities, can effectively
sample a range of conformational space to facilitate fitting
experimental data with subsets or reweighting.
Scientific software is often created by scientists and not

software engineers, leading to tools that are not as user-
friendly, generalizable, easy to maintain, or thoroughly
documented as desired. A larger goal of developing
IDPConformerGenerator was to design it to be easy to use

so that it would be widely used, not only to generate
disordered protein ensembles as starting pools for subsetting or
reweighting but also to enable it to function as a platform for
adding existing functionality or future approaches to define
ensembles that best fit experimental data, for computational
experiments testing various ideas, and for analyses of resulting
ensembles. There are a number of straightforward extensions
of IDPConformerGenerator planned, including the ability to
build disordered regions around a folded domain, an important
functionality (and one that motivated the creation of
FastFloppyTail). Due to IDPConformerGenerator’s modu-
larity, analysis tools can easily be built utilizing current
functions. Currently available functions include those to
analyze ensembles for fractional secondary structure and
torsion angle distributions and to analyze the database for
the number of available sequence matches and for identifying
structures with select keywords. Further additions, such as the
analysis of tertiary contacts, could be implemented with ease
and are planned for a future release. More significantly, this
platform is being developed to include back-calculators for
comparison to experimental data and Bayesian scoring and
reweighting approaches such as X-EISD.22,23 We envision that
IDPConformerGenerator will be the basis for an expanding
platform of tools to facilitate the structural characterization of
IDPs and IDRs consistent with solution experimental data. We
hope that our goal of developing a user-friendly and flexible
platform will draw more researchers to the field of intrinsically
disordered protein structural characterization, which in one
view should be almost half the size of the folded protein
structural biology community, given the relative amounts of
disorder and folded structure in eukaryotic proteomes (∼0.35
to 0.65).4 Ultimately, the resulting structural ensembles should
provide physical insights into how these abundant and
dynamics states regulate and carry out their critical biological
functions and how disease variants in IDPs/IDRs lead to
pathology.
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pooled DSSP codes for α-helix and 3-10 helix; I-2, inhibitor-2;
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disordered regions; L, pooled DDSP codes for hydrogen-
bonded turn; bend, β-bridge; PPII helix, π-helix and loops/
irregular structure; L-J, Lennard-Jones; MD, molecular
dynamics; MC-SCE, Monte Carlo side-chain entropy; NMR,
nuclear magnetic resonance spectroscopy; PDB, Protein Data
Bank; PP1, protein phosphatase 1; SAXS, small-angle X-ray
scattering; SMF, single-molecule fluorescence; smFRET,
single-molecule fluorescence resonance energy transfer; Tau,
microtubule-associated protein tau; Rama, Ramachandran;
RDC, residual dipolar coupling; Ree, end-to-end distance; Rg,
radius of gyration; RMSD, root-mean-squared deviation; WT,
wild type
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