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Abstract

Eukaryotic genomes are associated with a number of proteins such as histones that constitute chromatin. Post-translational
histone modifications are associated with regulatory aspects executed by chromatin and all transactions on genomic DNA
are dependent on them. Thus, it will be relevant to understand how histone modifications affect genome functions. Here
we show that the mono ubiquitylation of histone H2B and the tri-methylation of histone H3 on lysine 4 (H3K4me3), both
known for their involvement in transcription, are also important for a proper response of budding yeast cells to DNA
damaging agents and the passage through S-phase. Cells that cannot methylate H3K4 display a defect in double-strand
break (DSB) repair by non-homologous end joining. Furthermore, if such cells incur DNA damage or encounter a stress
during replication, they very rapidly lose viability, underscoring the functional importance of the modification. Remarkably,
the Set1p methyltransferase as well as the H3K4me3 mark become detectable on a newly created DSB. This recruitment of
Set1p to the DSB is dependent on the presence of the RSC complex, arguing for a contribution in the ensuing DNA damage
repair process. Taken together, our results demonstrate that Set1p and its substrate H3K4me3, which has been reported to
be important for the transcription of active genes, also plays an important role in genome stability of yeast cells. Given the
high degree of conservation for the methyltransferase and the histone mark in a broad variety of organisms, these results
could have similar implications for genome stability mechanisms in vertebrate and mammalian cells.
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Introduction

Genomes of living organisms are continuously exposed to DNA

damaging agents such as ultraviolet light, ionizing radiation,

reactive oxygen intermediates or other chemical mutagens. These

agents can cause mutations and ultimately genome instability. For

mammalian cells, it has been estimated that endogenous DNA

damage occurs at a rate of 10 000 events per day [1]. Of the

observed DNA damages, double strand breaks (DSBs) potentially

are the most deleterious and therefore must be efficiently detected

and repaired. Eukaryotic cells have developed multiple mecha-

nisms in order to respond adequately to such DNA damage and

many of those mechanisms are highly conserved [1–3]. In

Saccharomyces cerevisiae, the appearance of DSBs triggers DNA

damage checkpoints which ultimately lead to arrest of the cell

cycle [4]. It is thought that this controlled arrest provides sufficient

time for the repair machinery to locate the break and properly

repair the lesion by one of two major DSB repair pathways.

During S and G2/M phases of the cell cycle, DSBs are primarily

repaired by homologous recombination (HR) between sister

chromatids or homologous chromosomes. In G1 and if there is

no homology available elsewhere, non-homologous end joining

(NHEJ) can repair DSBs by direct religation of the break. This

pathway however is much more discrete in yeast.

The repair of DNA damage has to occur in the context of

chromatin and its local composition, modification and configura-

tion does affect DNA repair [5]. Therefore, DNA compaction by

chromatin must be tightly and locally regulated in order to allow

access of protein complexes associated with DNA transactions.

There are two key mechanisms to regulate relative opening and

closing of chromatin for example at a site of DNA damage:

chromatin remodelling and histone modifications [6–9]. Chroma-

tin remodelling is achieved by dedicated complexes that hydrolyse

ATP in order to remove or mobilize nucleosomes in the area of a

DSB (SNF2-type ATPases, see [10,11], for reviews). It is thought

that this creates a discrete change in the general chromatin

architecture that allows more efficient repair [12]. In budding

yeast, a number of chromatin remodelers such as Ino80, RSC,

Swi/Snf and Swr1 have been associated with the DSB repair

process [8,13–18]. These complexes are rapidly recruited to a

DSB and some directly interact with the DNA damage repair

machinery.

Modifying histone proteins is a second possibility by which cells

can change the chromatin at the site of a DSB [6,9,19]. Histones

can be the target of a number of covalent modifications, including

acetylation, phosphorylation, methylation, ubiquitination, ADP-

ribosylation and sumolyation [9,19]. An example of such a

modification is the phosphorylation of histone H2A on residue
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S129 which can be documented very rapidly after the formation of

even a single DSB [20]. A histone modification involved in a

number of chromatin-regulated pathways in yeast is the

ubiquitination of histone H2B on lysine 123 (H2BK123ub) [21].

This modification in fact is a necessary prerequisite for the

methylation on K4, K36 and K79 of histone H3 [22–24].

Methylation of K79 by Dot1p has been associated with DNA

damage resistance and the ability to induce the DNA damage

checkpoint [25,26]. Tri-methylation of H3K4 (H3K4me3) by

Set1p on the other hand is found in the 59-area of many highly

transcribed genes and is thought to be a marker for recent

transcriptional activity ([27–29], reviewed in [30]). A possible

association of Set1p with DNA repair has been invoked ([26,31],

reviewed in [32]), but no definitive evidence has emerged.

Furthermore, it has been shown that the Dot1p-mediated effect

on DNA repair is distinct and separate from any possible Set1p

effect [25].

Here, we show that H3K4 methylation by Set1p indeed is an

important event for efficient DNA DSB repair. Consistent with

previous results, Bre1p- and Lge1p-dependent ubiquitylation of

H2BK123 is also required. The results show that Set1p as well as

H3K4me3 accumulate at an inducible DNA DSB and the

appearance of Set1p is dependent on the presence of the RSC-

complex. In addition, set1D cells are deficient in the NHEJ repair

pathway and appear to be impaired in traversing S-phase in the

presence of replication stress. These data thus show that H3K4

methylation is associated with modulating chromatin at the site of

DNA damage and significantly broadens the functional impor-

tance of this modification.

Results

A strong synthetic interaction between LGE1/BRE1 or
SET1 and the MRX complex

In an attempt to find potential new regulators of telomere

homeostasis, a synthetic genetic array experiment was performed

using mre11D and rad50D mutants as baits and looking for lethality

or growth delay in double mutants [33]. The screen yielded, lge1D

(YPL055C) as displaying a synthetic slow growth phenotype at

23uC when combined with the deletion of any member of the

MRE11/RAD50/XRS2 (MRX) complex (Figure 1A). Lge1p has

been shown to interact genetically and biochemically with the

RING finger domain protein Bre1p [23,34]. Yeast Lge1p and

Bre1p thus have been suggested to form an ubiquitin ligase

complex (E3) that binds to Rad6p (E2) in order to monoubiqui-

tylate histone H2B [23,35]. Given these interactions, we asked if

BRE1 would display the same genetic interaction with MRX as

LGE1. Indeed, double mutant bre1D MRXD cells display a very

similar synthetic slow growth phenotype as lge1D MRX (D cells

(Figure 1A). Interestingly, both lge1D tel1D and bre1D tel1D mutants

do not display such synthetic slow growth (Figure 1A), suggesting

that for this particular phenotype, TEL1 is in a different genetic

pathway than MRX. This contrasts with the fact the MRX

complex and TEL1 have been shown to be in the same genetic

pathway with respect to telomere maintenance and DNA damage

checkpoints [36,37]. These experiments indicate that both Lge1p

and Bre1p act in a genetic pathway parallel to MRX and which is

important for normal growth of the cells.

In the course of these genetic analyses, we also discovered that

bre1D rad50D cells were highly sensitive to DNA damaging agents.

Both lge1D rad50D and bre1D rad50D display dramatically reduced

viability when treated with the IR-mimetic drug bleomycin, UV

light or the DNA replication inhibitor hydroxyurea (HU)

(Figure 1B and data not shown). Note that the conditions used

for inducing replication stress or DNA damage were relatively

mild such that in these experiments, even rad52D or rad50D cells

display only a minor growth defect as compared to a wild type

strain (see Figure 1B, for example). Consistent with the observed

growth properties at 23uC, a hyper-sensitivity to DNA damage

was not observed in bre1D tel1 (D double-mutants (Figure 1C).

These data thus suggest that in the absence of MRX, DNA

damage survival is dependent on the presence of LGE1 and BRE1.

Previously, the BRE1 and LGE1 genes had been characterized

as key players for modulation of gene transcription in yeast

(reviewed in [21]). These genes, together with RAD6, are required

for mono-ubiquitylation of histone H2B on the lysine residue 123

which in turn is required for the methylation of histone H3 on

lysines 4 and 79 [21,23,35]. Set1p and Dot1p are the two

methyltransferases that methylate, respectively, histone H3K4 and

H3K79. Given this known cascade of histone modifications, the

downstream effect of the absence of Bre1p or Lge1p could be

dependent on this histone modification pathway or occur via a

new and histone-independent pathway. We therefore tested

whether an absence of histone modifications also sensitizes MRXD
cells to DNA damage. Cells harbouring a combination of rad50D
and a mutant allele of histone H2B that cannot be ubiquitinated

(H2BK123R) are as sensitive to bleomycin as bre1D MRXD or lge1D
MRXD cells (Figure 1D). Therefore, the DSB sensitivity of bre1D
MRXD cells can be explained by the incapacity of the cells to

ubiquitinate histone H2B on lysine 123. Further, in MRXD cells,

neither the deletion of DOT1 nor the mutation of its substrate

histone H3K79 sensitizes the cells to bleomycin (Figure 1E and

1F). On the other hand, deletion of the methyltransferase SET1 or

the presence of a H3 allele that cannot be methylated on lysine 4,

H3K4R, combined with an absence of the MRX complex lead to

an indistinguishable sensitivity as observed in lge1D/bre1D MRXD
cells (Figure 1E and 1F). BRE2 and SPP1 have also been reported

to be required for methylation of H3K4, albeit to varying degrees

for the bi-methylated and tri-methylated forms [38,39]. However,

in our hands only a deletion of BRE2 but not that of SPP1 lead to a

complete lack of H3K4me3 (Figure S1A, S1B, and S1C).

Remarkably, the sensitivity of the respective double mutants (i.e.

Author Summary

Over the last years, it has become evident that chromatin
plays a crucial role in a variety of cellular processes.
Insights into the tight regulation of chromatin opening
and closing via chromatin remodelers, as well as post-
translational modifications of proteins making up chroma-
tin, have revealed new facets on the mechanisms used by
cells in order to replicate, transcribe, or repair their DNA. In
this report, we describe the involvement of a transcription-
linked histone modification, methylation of histone H3 on
lysine 4, in the DNA damage repair process. We discovered
that in addition to its presence at promoters of highly
transcribed genes, H3K4me3 is recruited to sites of newly
created double-stranded breaks. Moreover, the results
show that this recruitment is dependent on a chromatin
remodeler, namely the RSC complex. Cells lacking this
histone modification display similar defects as those
devoid of the RSC complex; i.e. a significant decrease in
the repair of DNA breaks by the non-homologous end-
joining repair pathway and a difficulty to survive in
presence of replication stresses. All these observations
highlight the importance of this conserved histone
modification, given that it is involved in a variety of
mechanisms affecting genome function.

H3K4me3 Is Crucial for Proper DNA Damage Response
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Figure 1. Genetic interactions between a histone modification pathway and the MRX complex. (A) Tetrad analysis of spores derived from
diploids micro-dissected on YEPD plates and allowed to grow for 3 days at 23uC. Circled colonies are double mutants. Diploids DFY001, DFY002,
DFY004 and DFY005 respectively, were used as starting strains. (B–F) Serial ten-fold dilution growth tests of exponentially growing cultures on plates
with the indicated compounds. YEPD: control plates without drug; (B) Growth of cells with a deletion of members of the Ubiquitin-Ligase complex in
combination with a deletion of RAD50 (spores derived from diploids DFY002 and DFY007); (C) Spot dilution test of bre1D tel1D double mutant cells on
plates containing the indicated concentration of Bleomycin (right) or no drug (left, spores were derived from DFY005); (D) Growth of cells with a
mutant that cannot be mono-ubiquitylated (H2BK123R) (strains YZS276, YZS246, DFY008, DFY009 and MT0-73); (E) Growth of cells with deletions of
DOT1 or SET1 genes in combination with absence of RAD50 (spores derived from diploids DFY010 and DFY012); and (F) Growth of cells with a mutant
histone H3 that cannot be methylated (H3K79R or H3K4R) and combined with an absence of RAD50 (strains YZS267, DFY013, DFY015, DFY016,
DFY017 and DFY018).
doi:10.1371/journal.pgen.1001082.g001

H3K4me3 Is Crucial for Proper DNA Damage Response

PLoS Genetics | www.plosgenetics.org 3 August 2010 | Volume 6 | Issue 8 | e1001082



bre2D/rad50D or spp1D/rad50D) to Bleomycin correlated with this

finding: a bre2D/rad50D strain in which H3K4me3 levels are

below detection as in a set1D/rad50D strain is exquisitely sensitive,

whereas the spp1D/rad50D strain is not (Figure S1A, S1B, and

S1C). Finally and as expected, set1D and H3K4R appear to act in

the same genetic pathway (see below Figure 5A). We conclude that

in the absence of the MRX complex, Set1p and the methylation of

H3K4 are important for the survival of the cells in presence of

DNA damage.

Set1p-mediated H3K4 methylation is involved in DSB
repair by NHEJ

Because cells lacking both SET1 and the MRX complex are

very sensitive to DSB, we decided to verify which of the main DSB

repair pathways, homologous recombination (HR) and non-

homologous end joining (NHEJ) were affected in cells lacking

Set1p. In order to test whether SET1 indeed is involved in NHEJ,

set1D-cells were analyzed for NHEJ efficiency. A plasmid religation

assay was performed using a transformation assay with linearized

vector DNA. The circularization efficiency in strains deleted for

YKU70 and DNL4 was about 5% of that obtained in wt cells,

confirming their importance in this assay (Figure 2A). Notably, the

absence of SET1 also caused an important decrease in the capacity

of cells to complete NHEJ and to religate the plasmid: overall

religation efficiency in these cells was reduced to about 30% of that

seen in wt (Figure 2A).

In addition, we used strain JKM179 harbouring the HO

endonuclease controlled by a galactose-inducible promoter. In this

strain, the natural donor sequences usually used for homologous

recombination after the HO recognition site is cut are deleted

from the genome. Therefore, upon induction of expression of the

HO endonuclease, these cells can only repair the DSB at the

mating type locus by NHEJ [40]. Deletion of SET1 in this strain

background and exposing the strains to galactose resulted in a

significant decrease of the viability of the cells as compared to wt,

albeit not to the level of sensitivity of yku70D cells that display the

expected dramatic decrease in viability due to an almost complete

absence of NHEJ (Figure 2B).

To confirm the involvement of SET1 in the NHEJ repair

pathway, we also used a strain that contains a cassette flanked by

two HO cleavage sites [41,42]. Following HO endonuclease

induction by addition of galactose to growth media, both HO

cleavage sites are cut and given the absence of homology in the

rest of the genome for sequences on either side of the cassette, the

gap had to be repaired by NHEJ (see Figure S2A). When grown in

liquid culture containing galactose as carbon source and thus

continuously induced HO cleavage, strains with a deletion of

SET1 display a similar extended lag-time before growth recovery

as strains deleted for YKU70 or DNL4 (Figure 2C). In these

conditions, growth recovery could be dependent on two different

mechanisms: error-prone NHEJ or MMEJ (Microhomology-

mediated end joining). In the case of wild type and set1D cells,

growth is restored via the error-prone NHEJ during which the

HO-recognition site must be lost such the HO enzyme does not

continuously induce the DSB. However cells completely unable to

carry out NHEJ (cells harbouring yku70D and dnl4D alleles), bypass

the continuous HO cleavage via MMEJ using small stretches of

homology in order to perform DSB repair [43]. The results

obtained with the liquid culture assays were paralleled by results

obtained with the same strain, but using a colony color assay for

error-free and error-prone assays ([41,42], Figure S2B). Given the

dependence of NHEJ on the presence of the Yku-proteins at the

DNA break, it was possible that in Set1p-lacking cells, the binding

of Yku to the break was impaired. We used chromatin

immunoprecipitation (ChIP) experiments with a myc-tagged

Yku80p to assess Yku binding at the induced break at the MAT-

locus and the results show significantly reduced association of Yku

with the breaks (Figure 2D). In parallel experiments, the same

experimental setup with gal-induced expression of the HO

endonuclease was used to assess HO-cutting efficiencies of the

HO-sites flanking the ADE2-cassette and on a plasmid borne

MAT-locus (see Figure S2A, S2C, and S2D). The results confirm

that these induced cleavages occur at indistinguishable rates when

wild-type and set1D cells are compared (Figure S2C and S2D), a

result that is also consistent with the sensitivity to HO-induced

DSB of the set1D cells (Figure 2C). These experiments establish

that in set1D cells, the efficiency of NHEJ, in particular of the

error-prone branch of this repair pathway, is impaired when

compared to wild type cells. Consistent with this conclusion, Yku-

binding at an induced DSB is reduced.

Abolition of the two DSB repair pathways (NHEJ and HR) at

the same time leads to synergetic sensitivity of the cells to DNA

damaging agents. As an example, this can be observed for cells

harbouring deletions of both DNL4 and RAD52 and in which

NHEJ and HR are lacking ([44], Figure 2E). Thus, we combined

deletions of DNL4 and/or RAD52 with set1D and tested the

sensitivity of the resulting cells to bleomycin. At the bleomycin

concentration used in this experiment, neither set1D nor dnl4D
single mutants display a significant sensitivity and grow as well as

wild type cells. As mentioned above, rad52D cells were only mildly

affected (Figure 2E). The set1D dnl4D double mutant cells also were

not sensitive to this bleomycin concentration, which is consistent

with the possibility that these two genes act in the same genetic

pathway. Yet, double mutant set1D rad52D and particularly the

triple mutant set1D dnl4D rad52D displayed a sensitivity to DSB

that is even higher than that of dnl4D rad52 D cells (Figure 2E).

However, as assessed by a Q-PCR method, we could not discern

in set1D cells a major defect in homologous recombination

mediated mating-type switching (Figure S3), which is consistent

with the observation that in the presence of the HR machinery,

set1D cells are not very sensitive to radiomimetic drugs (Figure 1E

and Figure 2E). These results confirm that SET1 is involved in the

NHEJ repair pathway and suggests that it may even have

additional roles in maintaining genome stability, particularly in the

presence of DNA damage.

Recruitment of the SET1 methyltransferase and detection
of H3K4me3 at newly created DSBs

It is well documented that H3K4 trimethylation is present on

H3 in nucleosomes at a majority of promoters and 59 parts of

active genes [27,28,30,32,45,46]. Based on the observations above

highlighting the importance of H3K4me3 in DNA damage repair

processes, we asked whether or not this histone modification could

be induced at the site of DNA damage. First, we tested whether

there was a global increase in H3K4me3 in chromatin following

DNA damage. Exposure to phleomycin of wild type cells did not

result in an increase in the global amount of H3K4me3 (Figure 3A

and Figure S4). Moreover, the levels of phosphorylated H2AS129

did not significantly vary between set1D cells and wild type cells,

indicating that this part of the chromatin modification at a DNA

damage site seems to be by en large properly activated in this

mutant (Figure 3A). The failure to be able to detect an increase in

H3K4me3 after DNA damage induction by phleomycin could be

explained by an already relatively high level of H3K4me3 that is

associated with active transcription. A slight further increase of

that global level in this experiment may simply be undetectable by

western blotting, even if high doses of phleomycin were used

(Figure S4). We therefore turned to an assay that verifies the

H3K4me3 Is Crucial for Proper DNA Damage Response
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Figure 2. The LGE1-BRE1-SET1 histone modification pathway is involved in DSB repair by non-homologous end joining (NHEJ). (A)
Set1D cells display a deficiency in a plasmid religation assay. Linearized plasmid pRS316 was transformed into wild type cells (wt, YW1276), set1D
(DFY021), yku70D (YW1283) or dnl4D cells (DFY022). Overall percentage of religation was calculated using transformation efficiency normalization. (B)
Survival of wt (JKM179), set1D (DFY023) or yku70D cells (JKM181) following induction of a DSB. Cells were held in galactose media for the indicated
time and then plated on glucose medium, shutting off HO endonuclease expression. In these strains, the induced DSB at the mating type locus can
only be repaired by NHEJ. (C) Growth curves of wt (YW1276), set1D (DFY021), yku70D (YW1283), and dnl4D cells (DFY022) exposed to a constant
expression of HO endonuclease. (D) Recruitment of Yku80-myc protein to an induced DSB site in wt (DFY048) and set1D (DFY049) cells. DSB induction
was performed for 1 and 3 hours, ChIP performed with an anti-myc antibody and immunoprecipitated DNA quantified by Q-PCR. Fold enrichment is
normalized to non-induced cells (glucose) set as 1. (E) Sensitivity to DNA damage of cells harbouring deletions of genes affecting, respectively, NHEJ
(DNL4) or homologous recombination (RAD52) when combined with a deletion of SET1. Strains used were spores of DFY020.
doi:10.1371/journal.pgen.1001082.g002

H3K4me3 Is Crucial for Proper DNA Damage Response
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potential recruitment of the Set1p methyltransferase to a specific

DSB by (ChIP) analysis. Fortunately, Set1p and H3K4me3 are

virtually absent from the endogenous HO cut site located at the

mating type locus ([23]; Figure 3B). In our setting, the HO

endonuclease was induced in wild type or bre1D cells, both also

harbouring a functional Set1p-HA allele. Chromatin was immu-

noprecipitated with an anti-HA antibody [23] or a H3K4me3-

specific antibody. As expected, irrespective of whether HO is

induced or not, Set1p and H3K4me3 can be detected on the

promoter of PYK1, a gene known to be highly expressed

throughout the cell cycle (Figure 3B, [23]). On the other hand,

neither was detectable at the centromere of chromosome 4, an

area that is transcriptionally repressed in a constitutive fashion.

Finally, when the cells were grown in glucose and in the absence of

the HO endonuclease, Set1p and H3K4me3 were not detected at

the MAT locus, while after induction of HO by galactose; both

became detectable at this same locus (Figure 3B). Formally, it was

possible that addition of galactose to growth media leads to a

transcription mediated recruitment of Set1p. However, as assessed

by Northern blotting and RT-QPCR, the level of Mata1-RNA

transcribed at the MAT locus in these cells did not vary

significantly between glucose and galactose-grown cells (Figure

S5A and S5B). Furthermore, we also assessed occurrence of

H3K4me3 at MAT in a strain containing a MAT locus that is not

susceptible to HO-cutting (MATa-inc) by ChIP and no increase of

the H3 modification could be detected (Figure S5C). These results

therefore show that Set1p associates with a newly created DSB in

vivo and induces de novo trimethylation of histone H3 at the site.

Intra-S retention of set1D mutants following exposure to
DNA damaging agents

In order to verify whether cell cycle transitions that are

controlled by checkpoint activation are normal in mutants where

H3K4 trimethylation was abrogated, we analyzed cell cycle

progression of cells after exposure to DSB inducing agents

(Figure 4A). Cells were arrested in G1, treated with 10 mg/ml of

phleomycin for 90 min, then washed two times with sterile water

in order to remove all traces of the DNA damaging agent as well as

the a-mating factor and finally released into fresh media lacking

drugs. Compared to untreated wild type cells, phleomycin exposed

cells were delayed for 30 min before entry into S-phase, as

expected (Figure 4A). However, once the G1 checkpoint delay

Figure 3. Site-specific recruitment of the Set1p methyltransferase and detection of H3K4me3 at a DSB. (A) Western blot of proteins
derived from wild type and set1D cells that were treated (+) or not (2) with phleomycin. Top: Tri-methylated H3K4 was detected with an antibody
against H3K4me3; middle: detection of phosphorylated H2AS129 as a positive control for phleomycin treatment; and bottom: anti-Pgk1p antibody as
a loading control. Strains used were wt DFY024 and set1DDFY026). (B) Left: Recruitment of HA-tagged Set1p methyltransferase to the mating type
locus was tested by ChIP analysis using an anti-HA antibody. HO endonuclease was expressed for 90 min in G1-arrested wt (DFY027) or bre1D cells
(DFY028). DNA was extracted from immunoprecipitates and PCR amplified with specific primers adjacent to the HO cleavage site, primers in the
promoter region of the highly expressed gene PYK1, or primers specific for the transcriptionally repressed CEN4 locus. Right: Same experiment as in
left panel, except that instead of the anti-HA antibody, an antibody specific for H3K4me3 was used for the immunoprecipitation.
doi:10.1371/journal.pgen.1001082.g003

H3K4me3 Is Crucial for Proper DNA Damage Response
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Figure 4. Set1D cells exposed to DNA damage in G1 are retained in S-phase. (A) wt (DFY024) and set1D cells (DFY026) were arrested in G1
phase of the cell cycle and exposed to phleomycin (see experimental scheme at bottom). Cells were then released and cell cycle progression was
monitored by flow cytometry of samples at regular intervals. Time 0 min represents the release of cells into rich medium immediately following the
phleomycin treatment. (B) In a separate release experiment, northern blot analysis was performed in order to confirm the expression of cell-cycle
specific mRNAs: Cln2 for G1, Hta1 for S-phase and Clb2 for G2/M specific RNA expression. A probe specific for the Act1-mRNA was used as a non-
varying control (bottom). The number below each lane indicates the change of the signal intensity for the particular RNA; the level at time 0 was set
as 1. (C) Budding indexes of wt (DFY024) and set1D cells (DFY026) subjected to a cell synchrony and release experiment as outlined below the curves.
Note that the final media did contain Nocodazole to prevent cells to traverse multiple cycles and that explains why the indexes stay high at the end
of the experiment.
doi:10.1371/journal.pgen.1001082.g004

H3K4me3 Is Crucial for Proper DNA Damage Response
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overcome, the majority of cells resumed their cell cycle and went

on to the G2/M phase. Untreated set1D-cells did also display a

slight delay in S-phase entry, but the cells did resume cycling

(Figure 4B). Exposure of the G1-synchronized mutant set1D to the

same concentration of DNA damaging agent as above resulted in a

retention of the majority of the cells in G1 or early S phase of the

cell cycle (Figure 4A). These cells appeared not to resume cycling

as they failed to reach the G2/M phases of the cycle (Figure 4B).

From these FACS analyses, it was not possible conclusively to

deduce whether treated set1D cells remained arrested in G1 or

actually did enter but could not complete S-phase. Therefore, in

order to determine more precisely the exact phase of the cell cycle

where these cells were arrested, we decided to analyze mRNA

expression profiles of the G1/S cyclin Cln2p, the S-phase specific

transcript for histone H2A (HTA1) and the G2/M cyclin Clb2p.

Aliquots of cells were taken at 30 min intervals after release from

the G1-arrest and mRNA was extracted. In untreated samples,

both for wild type and set1D cells the expected oscillations of the

expression of Cln2 or Clb2 RNA through the cell cycle can be

observed (Figure 4B, top and third rows). Peak expression levels for

these two cyclins are temporally separated and occur at the

expected time after G1 release indicating properly cycling cultures.

Following exposure to phleomycin, both wild type and mutant

cells display an induction of the Cln2 RNA at 30 min whereas

Clb2 RNA increases after about 60 min, but there is no detectable

mRNA peak at later time points, (Figure 4B). These data are

consistent with the FACS profiles as they confirm that such cells do

not complete further cell cycles. The expression profiles of the S-

phase specific histone H2B mRNA strongly suggest that bleomycin

treated set1D cells in fact do enter S-phase and are not blocked at

the G1/S boundary: Hta1 mRNA is induced at the 30 min time

point and remains at an elevated level for about 60 min

(Figure 4B). This induction of the Hta1 mRNA strongly suggests

actual entry into S and the assessment of budding indexes during a

similar experimental protocol supports this notion (Figure 4C).

Collectively, these data show that cells lacking Set1p and exposed

to DNA damaging agents can enter S-phase but encounter

difficulty traversing it.

Evidence for sensitivity of set1D cells to replication
stresses

The above experiments show that after genotoxic treatments,

cells without the ability to introduce the H3K4me3 chromatin

mark experience problems in S-phase. One hypothesis that could

explain the results is that replication of damaged DNA in set1D
cells is compromised. Indeed, set1D cells and cells expressing

H3K4R are sensitive to hydroxyurea, a compound affecting DNA

replication, confirming that tri-methylation of H3K4 is important

for the passage through S in the presence of genotoxic stress

(Figure 5A and 5B). The set1D, H3K4R double mutant displays a

similar sensitivity as each single mutant, again consistent with the

suggestion that they act in the same genetic pathway in terms of

HU-sensitivity (Figure 5A). Next, we analyzed S-phase progression

in wild type and set1D cells after a transient exposure to HU. Cells

were arrested in G1, then released into S in the presence of

200 mM HU and finally HU was washed out and cells released

into rich media containing Nocodazole (Figure 5C). In wild type

cells, this situation causes some delay in S-phase resumption (data

not shown), but after 30 min, most cells resumed and they

completed S-phase after 45 min (Figure 5C, left). For set1D cells,

the progression profile is delayed by about 15 min and many cells

have not reached G2 even 90 min after the release (Figure 5C,

middle). Another mutant known to enter but incapable to traverse

S-phase, arp8D, a member of the INO80-complex [8,17,18],

exposed to similar experimental conditions showed a comparable

phenotype as set1D cells (Figure 5B and data not shown).

Furthermore, set1D rad52D and mrc1D rad52D cells displayed a

very similar sensitivity to exposure to a low dose of bleomycin,

while either deletion alone or a combination of set1D mrc1D did not

display any significant sensitivity (Figure 5D). Mrc1p is involved in

the activation of the Rad53 kinase during the S-Phase checkpoint

[47,48] and also has an independent function in the stabilization of

stalled replication forks [49–51]. Moreover, while both set1D and

yku70D cells are compromised in their ability to repair DSBs by

NHEJ, only set1D-cells, but not yku70D cells are sensitive to HU

(Figure S6). These experiments strongly suggest that Set1p is

important for the passage of cells through S-Phase in presence of

DNA damage and replication stress and this effect is at least

partially independent of the effect of a set1D on NHEJ.

SET1 acts in conjunction with the RSC remodelling
complex

The above results show that binding of Set1p and methylation

at H3K4 are important events at sites of DNA damage in S-phase.

Thus, we speculated that the methylated histone H3 may be

important for the subsequently necessary chromatin remodelling

and DNA repair activities. Methylated histones can bind or

stabilize the association of various proteins that contain bromo-

domains, tudor domains alongside chromodomains or plant

homeodomain (PHD)-finger motifs [30,52]. Selected yeast candi-

date genes containing such domains and having the potential to

bind H3K4me3 were tested for a genetic interaction with RAD50,

similar to the one of the genes in H2BK123ub/H3K4me3

pathway in the presence of DNA damage. Amongst the genes

tested in this fashion were CTI6 (SAGA-complex), CHD1 (SAGA

and SLIK-complexes), SAS3 and YNG1 (Nua3-complex), EAF3

(Nua4-complex), ISW1, RDH54 and RAD54; none of which

showed an interaction comparable to the one of SET1 (Figure 6A

for YNG1 as an example). The exceptions in this regard were non-

essential members of the yeast RSC remodelling complex, RSC1

and RSC30. When deletions of either of those genes were

combined with rad50D, the cells displayed a DNA damage

sensitivity that was very similar to that of set1D rad50D cells

(Figure 6B and 6C) and rsc2D rad50D double mutants also showed

increased sensitivity, albeit not as dramatic (data not shown). In

addition the rsc30D set1D rad50D triple mutant cells were as

sensitive as each double mutant, which is consistent with the idea

that SET1 and RSC30 act in the same genetic pathway (Figure 6B).

In order to further examine whether cells lacking RSC30 or

SET1 behave in a similar fashion, cell cycle synchrony experiments

were performed (Figure 5C). Rsc30D cells were synchronized in

G1, released into a synchronous S-phase in the presence

hydroxyurea for 90 min and then released by washing out the

drug. As observed for set1D cells, rsc30D cells experienced an S-

phase delay (compare wt and rsc30D cells at 45 min after release,

Figure 5C). The above experiments thus establish a number of

intriguing correlations between the RSC complex and Set1p: they

are both associated with newly created DSBs, their absence causes

strongly compromised NHEJ and also an increased sensitivity to

genotoxic agents if HR is also compromised (Figure 2, Figure 3,

Figure 6B, and [13]). We therefore investigated whether the

recruitment of Set1p to DSBs was dependent on RSC or vice

versa. As already shown above, Set1p localization to an induced

DSB at MAT is readily detectable in wt, but abrogated in bre1D
cells (Figure 3, Figure 6D). In addition, similar to the situation in

bre1D cells, Set1p recruitment was undetectable in rsc30D cells

(Figure 6D). This absence of Set1p recruitment to a break was not

due to a general absence of the H3K4me3 modification in rsc30D

H3K4me3 Is Crucial for Proper DNA Damage Response
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cells: as assessed by western blot, the overall H3K4me3 levels

remained similar to wild-type in these cells (Figure 6E), suggesting

that the H3K4me3 modification associated with highly transcribed

areas occurs normally in rsc30D cells. On the other hand, myc-

tagged Sth1p, an essential subunit of the RSC-complex can be

detected on DSBs in wt and set1D cells (Figure 6F and data not

shown).

In order to verify whether a temporal order of binding of the

RSC-complex versus the occurrence of H3K4me3 at a DSB can

be established, Sth1p-myc and H3K4me3 were immunoprecipi-

tated at different time intervals after a DSB induction. The results

show a time dependent increase for both, peaking at about 40 min

after break induction (Figure 7A and 7B), but they don’t allow a

differentiation in terms of order of appearance. Note that after

only 30 min, cleavage efficiency in this strain reached about 60%

(Figure 7C).

These results are consistent with the genetic data above

(Figure 6B and 6C) and strongly suggest that Set1p recruitment

to a DSB is dependent on the proper function of the RSC-

complex.

Discussion

Appropriate regulation of chromatin modifications and chro-

matin remodelling is essential for efficient transcription, replication

and repair of DNA (Reviewed in [21,30]). The results of this study

demonstrate that in budding yeast, the methylation of lysine 4 on

histone H3 (H3K4me3) is involved in maintaining genome

stability. Strains lacking the respective methyltransferase Set1p

display three specific phenotypes that support this statement: an

impaired ability to recruit the Yku-proteins to a DSB leads to a

strongly reduced efficiency of NHEJ (Figure 2), de novo Set1p as

well as H3K4me3 appearance at a site of an induced DSB

(Figure 3), and a difficulty to pass through S-phase in presence of

replication stresses (Figure 5). These effects, when combined with

an absence of HR lead to a hypersensitivity to DNA-damaging

agents (Figure 1, Figure 2, Figure 5, Figure 6). Although these

Figure 5. Replication defects in set1D cells. (A) Serial ten-fold dilution growth test of strains with the relevant genetic setup on plates with 50mM
HU. Strains used were YZS267, DFY017, DFY038, DFY039, DFY024, DFY026 and MT0-73. (B) Viability curves of the indicated strains exposed to HU for
the indicated time. Strains used were wt (DFY024), set1D (DFY026), arp8D (DFY030), mec1D (DFY044). (C) wt (DFY024), set1D (DFY026)or rsc30D
(DFY029) cells were arrested in G1 phase of the cell cycle and released into a synchronous S-phase in the presence of 200 mM HU for 60 min. The HU
block was removed by washout and cell cycle progression was analyzed by FACS. Time 0 min represents the release of cells into rich medium plus
Nocodazole following the HU treatment. (D) Viability of strains with indicated genotype and derived from strain DFY032 were grown in liquid media
and ten-fold serial dilutions were plated onto YEPD control plates or onto a plate containing bleomycin, as indicated.
doi:10.1371/journal.pgen.1001082.g005
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Figure 6. Functional interactions between the RSC complex and SET1. (A) Example of a spot dilution - colony viability assay performed to unc
subunits RSC30 in (B) and RSC1 in (C), in combination with a deletion of RAD50 and/or SET1 (spores derived from diploid DFY034 and DFY050
respectively). Serial ten-fold dilution growth tests of exponentially growing cultures on plates containing DNA damaging agent bleomycin. YEPD:
control plates without treatment. (D) ChIP experiments assessing the presence of Set1p in wt cells (DFY027) or in cells lacking either BRE1 (DFY028) or
RSC30 (DFY037). (E) Western blot analysis detecting the presence of H3K4me3 in strains harbouring deletions of RSC complex subunit genes. A set1D–
strain serves as negative control and re-hybridization with and anti-Pgk1p antibody was used as a loading control. Strains used were spores of diploid
DFY034 and DFY050. (F) ChIP of an essential RSC-component, Sth1p, in cells lacking SET1. Strain used was DFY046. ChIP experiments essentially were
conducted as described in Figure 3 over genes displaying a similar DNA damage sensitivity enhancement as set1D in absence of homologous
recombination. Note that yng1D scored here is negative, the bre1D rad50D serves as positive control; strains used are spores of DFY033. (B,C) Growth
of cells with a deletion of RSC complex.
doi:10.1371/journal.pgen.1001082.g006
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observations are paralleled in strains that harbour mutations not

allowing ubiquitylation of H2B (Figure 1 and Figure 5), this fact

can be explained by the dependence of H3K4 methylation on

previous H2B modification [53,54]. However, while H2BK123ub

is also required for H3K79 methylation by Dot1p, our data

demonstrate that loss of NHEJ-efficiency and the synthetic

interactions with MRX are specific to a lack of H3K4me3 and

not H3K79me3 (Figure 1). Therefore, the roles played by Set1p in

genome stability are quite different from those of the Dot1p

methyltransferase [25,26].

This is one of the first reports directly linking H3K4me3, a

chromatin modification extensively described for its involvement

in marking transcriptionally active loci, to DNA damage repair

processes. Given that our results document the de novo occurrence

of Set1p and the H3K4me3 mark on an induced DSB (Figure 3,

Figure 6, Figure 7), we do not think that the effects observed in

set1D-cells are indirect consequences of a change in transcriptional

activity. Furthermore, analyses of microarray data of RNA derived

from cells harbouring H3K4R, a mutated version of H3 that

cannot be methylated, or from cells lacking either of Bre1p, Lge1p,

Rad6p and Set1p do not indicate important transcription variation

of genes implicated in the DNA damage checkpoints or repair

[27,55], M.-A. Osley, personal communication). For example, we

could find only 5 genes for which the change was more than 3 fold

(increase or decrease) in lge1D-cells (12 for bre1D cells) and none of

those have a known association with DNA repair (see http://www.

utoronto.ca/greenblattlab/BUR.xls). In fact, one study reported a

potential increase of repair genes in the absence of Set1p, which

would be the opposite effect and could not explain our results [56].

In yeast, there already is evidence for transcription-mark

independent functions of Set1p. For example, a number of

described subtle cellular phenotypes associated with a SET1

deletion could be independent of transcriptional changes [57].

More recently, Set1p has been shown to methylate Ipl1p and be

involved in chromosome segregation, an effect that is independent

of its transcriptional regulation [58]. Finally, recent data does

implicate H3K4me3 at sites of active meiotic DSB formation

independently of the transcriptional state of the local genomic area

[59] and there is one report that links Set1p absence with a

deficiency of meiotic S-phase passage, a phenotype similar to the

one reported here [60]. Intriguingly, the results on an involvement

of Set1p in the regulation of meiosis in yeast have parallels in

mouse, where a meiosis-specific H3K4 methyltransferase called

Meisetz/PRDM9 is required for passage through meiosis.

Remarkably, meiotic cells in mice lacking Meisetz also display a

strong deficiency in DSB repair [61].

Our present hypothesis stipulates that the H3K4me3 chromatin

mark is crucial for adequate repair of DSBs, whether they occur

accidentally during vegetative growth or are induced in meiosis.

For example, if there is a DSB occurring at a specific site in wt cells

and the H3K4me3 mark is not already present due to

transcriptional activity, Set1p is recruited to it in a RSC-

dependent fashion (Figure 6). Either concomitant to this

recruitment or thereafter, Set1p will induce de novo methylation

of H3K4 on the nucleosomes surrounding the site (Figure 3). RSC,

a SWI/SNF type chromatin remodelling complex, has recently

been shown to associate with DSB very early and the preliminary

time-coarse data reported here is consistent with those results

([62,63], Figure 7). The results further suggest that this may be

true for the occurrence of H3K4me3 too (Figure 7). Similar to

what is shown here for the H3K4me3 modification, the

recruitment of Mre11p, another protein involved in early

recognition DNA damage, is also RSC-dependent [63]. In

addition, cells lacking Rsc30p, a non-essential member of RSC,

display a number of indistinguishable phenotypes as cells lacking

Set1p: an important reduction of NHEJ repair and an increased

Figure 7. Kinetics of association of H3K4me3 and Sth1p of the RSC complex with an induced DSB. (A,B) ChIP analysis showing the
recruitment of H3K4me3 and Sth1p respectively to an induced DSB. Wild-type cells (DFY046) were exposed to galactose for the indicated period in
order to induce HO endonuclease. DNA was extracted from immunoprecipitates and analyzed by quantitative PCR using specific primers adjacent to
the HO cleavage site. (C) Analysis of the HO cleavage efficiency of cells used for ChIP analysis in (A,B) using Q-PCR. DNA was extracted from cells and
Q-PCR with primers overlapping the DSB was performed. Time 0 (glucose) was set to 0% cleavage efficiency.
doi:10.1371/journal.pgen.1001082.g007
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sensitivity to chronic exposure to HO endonuclease (Figure 2,

[13]) and a marked sensitivity to HU mediated S-phase arrest

(Figure 5C). Consistent with a close relationship between RSC,

Set1p and the H3K4me3 mark, the respective genes genetically

appear to be in the same epistasis group in terms of sensitivity to

genotoxic agents (Figure 6). We therefore speculate that

nucleosome remodelling by the RSC-complex in conjunction

with a relative opening of the chromatin by H3K4 methylation

could be important for the ensuing DNA repair mechanisms.

However, we failed to be able to demonstrate a direct physical

interaction between H3K4me3 and the RSC catalytic subunit

Sth1p by co-immunoprecipitation (data not shown).

The results also strongly suggest that an absence of H3K4me3

in cells with damaged DNA causes defects in traversing S-phase;

presumably the problems occur when replication forks encounter

the site of DNA damage (Figure 5). Recent evidence suggests that

the MRX complex plays a variety of roles in damage recognition

and checkpoint control during S-phase [64]. Interestingly, some of

those MRX functions are independent of the S-phase checkpoint

and our data here show that in the presence of DNA damage, cells

lacking any of the MRX genes, but not those lacking TEL1,

display a high degree of synthetic lethality with a SET1 deletion

(Figure 1). It is therefore plausible that MRX and SET1 define two

independent pathways that become important for passage through

S-phase in the presence of damage, which would explain our

synthetic interaction data (Figure 1, Figure 2, Figure 5). A very

comparable genetic interaction between the MRX complex and

SET1 as the one reported here for budding yeast has also been

found in S. pombe [65], which is consistent with the idea that this

convergence of two pathways on the DSB repair process is

conserved.

Set1p has also been shown to interact with and somehow

modify the activity of Mec3p, a conserved checkpoint protein [31].

In addition, in mammalians, there is increasing evidence for an

association of tumour suppressor genes with H3K4me3. For

example, both the ING1 and ING4 proteins that are associated

with DNA repair and cellular transformation bind to H3K4me3

[66,67]. These findings hint to a widespread conservation of this

alternate function of the H3K4me3 histone modification brought

about by Set1p and homologous proteins in genome stability

mechanisms.

This report highlights the complexity of downstream effects due

to histone modifications and the occurrence of separate influences

on major biological processes such as transcription, DNA

replication and DNA damage repair. H3K4me3 generally is

accepted as a very important mark in the genome of active

promoters and the occurrence of recent transcription [45,46,68].

Here we report our discovery of another, most likely independent

role for this chromatin modification: perhaps combined with the

recruitment of chromatin remodeling activities it acts as a key

player in the pathways governing genome stability in case of DNA

damage.

Materials and Methods

Nomenclature
We use the proposed histone modification nomenclature [69].

Trimethylation of the histone H3 on the lysine residue 4 becomes

H3K4me3.

Strains and plasmids
All individual S. cerevisiae strains used in this study are listed in

Table S1. All strains are isogenic with the S288c background;

except strains JKM179, JKM181, YZS276, YZS246, DFY023,

yFR016, DFY027, DFY028, DFY035, DFY036, DFY037,

DFY046 and DFY047 that were derived from a W303

background. Plasmid YCpHOcut4 has been described before [70].

The strain used for SGA analysis was MLY532 (Mata
rad50::NatR can1::MFA1pr-HIS3-MFalpha1pr-LEU2 his3D leu2D0

ura3D0 met15D0 lys2D0). To create this strain, Y3556 (Mata
can1::MFA1pr-HIS3-MFalpha1pr-LEU2 his3D leu2D0 ura3D0

met15D0 lys2D0) [71] was transformed with a plasmid pJH1032-

ad50D-NatR linearized by ClaI. pJH1032-rd50D-NatR was

constructed using pJH1032 (former name pNKY1070 [72]) in

which the NatR marker gene replaces a Xba1 fragment of RAD50.

MLY530 (Mata mre11::NatR can1::MFA1pr-HIS3-MFalpha1pr-

LEU2 his3D leu2D0 ura3D0 met15D0 lys2D0) was created by

transforming a BamH1+Xho1 fragment of plasmid pRS313-

MRE11d-NatR. To construct pRS313-MRE11d-NatR, MRE1

coding sequences were amplified using oligos CTCGAAAC-

TAGTGGATCTCAAACA and CTTGCTATACGAATTCAA-

GAGCAAAG harbouring respectively SpeI and EcoRI restriction

sites. This fragment was then cloned into pRS313 using the added

restriction sites. The resulting plasmid was digested with HpaI and

we replaced the excised 2135 bp fragment with a blunted NatR

fragment creating pRS313-MRE11d-NatR.

These strains were crossed with the library of nearly 4700

individual haploid strains with the a mating type (background

strain BY4741) purchased from Invitrogen Life Technologies.

Information is available at the Saccharomyces Deletion project

Website. In order to confirm potential hits, we created diploid

strains DFY001, DFY002, DFY004 by crossing haploid strains

MLY530 and MLY532 with the respective strain from the yeast

deletion library.

Strain DFY06 (hht1-hhf1D hht2-hhf2D rad50D::NatR pMS329

(HHT1-HHF1 CEN URA3) was derived from MSY421 (hht1-hhf1D
hht2-hhf2D pMS329 (HHT1-HHF1 CEN URA3) [73]. DFY07 and

DFY08 were obtained by a plasmid shuffle introducing plasmids

encoding the wild type or mutated versions of histone H3: pZS136

(HHT2-HHF2 CEN TRP1), pZS138 (hht2-K4R-HHF2 CEN TRP1)

and pZS138 (hht2-K79R-HHF2 CEN TRP1) [22], obtained from

Brian Strahl, UNC-Chapel Hill) with strain DFY06. Transforma-

tion of plasmids and DNA into yeast was performed as described

[74].

Mutant haploid strains were constructed by replacing the ORF

of the targeted gene in parental strain LLY33 (for MT0-73,

DFY003, DFY006, DFY011, DFY024, DFY049), YW1276

(DFY021, DFY022), JKM179 (for DFY023), yFR016 (DFY027,

DFY028, DFY037), YZS267 (DFY038), DFY017 (DFY039), FT4

Sth1-9myc (DFY047) and a spore of DFY042 (DFY044) with the

indicated selection markers using a PCR-mediated gene disruption

method [75]. The LLY33 strain was created by micro-dissection of

the diploid BY4705 [75]. Strains DFY008, DFY009 and DFY014

were constructed by the integration of a digested fragment derived

from the rad50D::NatR plasmid into the genomic locus [76]. All

strains used in this study had their mutations confirmed by marker

segregation and PCR analysis. Strain DFY048 (13XMYC-

YKU80) was constructed by adding a C-terminal myc epitope

tag to Yku80p using a PCR-based method.

General yeast growth conditions
Cells were grown on standard rich YEPD media containing, if

needed, 100 ug/ml of nourseothricin (Clonat, WERNER Bioa-

gents, Germany) or G418 at 150 ug/ml (Sigma). In some cases,

synthetic medium YC supplemented with needed amino acids and

bases was used. All genetic manipulations were performed as

described previously [77,78].
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Flow cytometry analysis
Cell synchronizations were performed as published with minor

modifications [79,80]. Following a three hours cell synchroniza-

tion in G1 using a-factor, phleomycin was added to cultures to

reach indicated final concentrations and cells were further

incubated for 90 min. In order to remove the DNA damaging

agent and the a-factor, cells were washed two times with sterile

water and resuspended in fresh growth media. At the respective

time points of the specific experiments, aliquots were processed for

FACS analyses [81] or budded cells were counted using an

hemacytometer and percentage of budded cells was calculated as

the ratio of budded cells over all cells. For the S-phase release

experiments, cells were synchronized in G1 phase for three hours

as above, washed two times using sterile water in order to remove

the pheromone and resuspended in YEPD media containing

200 mM Hydroxyurea (HU). Cells were left in this media for

60 min, washed again using sterile water and finally resuspended

in fresh YEPD media containing Nocodazole for the rest of the

experiment. Aliquots were again prepared for FACS analyses at

the indicated time points.

Drug sensitivity assays
Cell sensitivity to damaging agents was verified by spot tests on

YEPD media containing the indicated concentrations of MMS

(Sigma), HU (Sigma) and Bleomycin (BLENOXANE, Bistrol

Meyers). Mid-log cultures were spotted in serial 10-fold dilutions

and were allowed to grow for 3 to 4 days, before documentation.

In later stages of the project, we used Phleomycin in place of

Bleomycin as genotoxic agent. In control experiments 0,01 mg/mL

of Phleomycin caused the same phenotypes as 1 mU of Bleomycin

(data not shown) and the two can be used interchangeably.

For viability experiments after exposure to HU, cells were

grown to log phase in YEPD at 30uC and then arrested in G1 with

a-factor for three hours. Such synchronized cultures were then

washed three times and released into S-phase by resuspension in

YEPD to which HU was added to yield a final concentration of

1M. Aliquots of cells were taken after 1, 3 and 5 hours of

incubation, cell density determined by counting and aliquots of

26103 cells were plated on YEPD plates. Viability is expressed as

the percentage of colonies with respect to the counted cells.

For sensitivity to DNA breaks induced by the HO-endonucle-

ase, JKM179 cells and derivative strains were grown to log phase

in YEP-media supplemented with 2% raffinose. Cell concentration

was adjusted to 16107 cells/ml in YEPGal media and cells were

incubated for 2, 4 or 6 hrs. Cells were then counted and 26103

cells were plated on YEPD media and incubated at 30uC for 2

days. The survival rate of wt cells was determined by dividing the

number of colonies obtained by the number of cells plated. All

mutant survival rates were compared to the wild type rate which

was set to 1.

Plasmid religation assay
In general, the experiment was performed as described

previously [40]. The centromeric plasmid pRS316 was digested

with the BamHI restriction enzyme and then transformed into

yeast cells. The transformation of undigested plasmid done in

parallel was used to assess transformation efficiency of each

sample. Efficiency of religation was determined by the number of

colonies that were able to grow on a media selecting for the

marker contained on the plasmid and was normalized by the

transformation efficiency for each sample. All religation efficien-

cies in mutant cells were compared to wild type cells which were

set to 100% and yku70D and lig4D cells were used as controls.

HOSD(+1) NHEJ assay
Essentially, the experiments were done as previously described

[41]. Wild type, control strains carrying deletions of genes known

to be involved in NHEJ (yku70D and lig4D) and set1D cells were

grown in Yc-Met media containing Raffinose as carbon source for

16 hours. For an observation of a chronic exposure to break

induction, 46104 cells were incubated in media containing either

glucose or galactose and their re-growth characteristics monitored

over 48 hrs using an automatic plate incubator and reader (see

[82], for details).

Error-prone/Error-Free NHEJ-ratio was obtained by growing

cells for 2 days in Yc-Met+Ade +2% raffinose media, followed by a

dilution into Yc-complete supplemented with 2% galactose. Cells

were allowed to grow for 2 days and then plated at appropriate

dilutions onto Yc-complete +2% glucose plates to obtain the total

of viable cells, and onto Yc-Ade +2% glucose plates in order to

reveal the +2 imprecise NHEJ events. Results were determined by

dividing the number of colonies on Yc-Ade plates (imprecise

NHEJ) by the total colonies on Yc-complete (all NHEJ events).

Assay for efficiency of homologous recombination
Wild type and set1D cells harbouring the YcpHocut4 plasmid

were grown for overnight in Yc-Ura media +2% raffinose and

diluted to 16107 cells/mL. A first control aliquot (non treated) was

removed and cells were re-suspended into Yc-Ura +2% galactose

for 1 hour. After this incubation, the second aliquot (galactose) was

removed. The remaining culture was washed 3 times in sterile

water and resuspended in Yc-Ura +2% glucose. Aliquots were

taken at hourly intervals (t = 1 to t = 4). DNA was extracted,

quantified and QPCR was performed on all samples in order to

analyze the production of the MATa switching product. For both

strains, results were normalized to non-treated samples.

Western analyses
Midlog cell cultures were either exposed to 10 mg/ml of

Phleomycin for one hour or left untreated and protein extracts

were prepared using a modified TCA method [83]. Proteins were

separated on an 8% and 15% acrylamid-bisacrylamid gels (ratio

29:1) using standard techniques [84]. Gels were transferred onto a

PVDF membrane and treated according to manufacturer’s

instructions (Perkin Elmer). Anti-H3K4me3 polyclonal antibody

was purchased from Abcam (Ab8580) and used at a 1: 5000

dilution. H3K4me0 peptide (a kind gift of Alain Verreault) was

used with Ab8580 in order to reduce non-specific binding of the

antibody. Anti-H3K4me2 polyclonal antibody was obtained from

V. Geli. Polyclonal anti Phospho-H2AS129 (Ab15083) was

purchased from Abcam and used at a 1:750 dilution. Signals

were detected using horseradish-peroxidase-coupled anti-rabbit

secondary antibodies (GE Healthcare) and enhanced chemilumi-

nescence (Perkin Elmer). Monoclonal anti-Pgk1p was obtained

from Molecular Probes and used at a 1/20000 dilution.

Northern analyses
RNA extraction and Northern blots were performed as

previously described [85]. Cln2 and Hta1 RNAs were detected

using radiolabeled probes prepared by a random priming method

using the following primers:

Cln2 = TAACAGCAATAACGCAACCA and CCGCAACG-

GCGCATTACCT

Hta1 = ATGTCCGGTGGTAAAGGTGG and TCTTGAGA-

AGCCTTGGTAGC

Act1 = TCCGGTGATGGTGTTACTCA and ATTCTCAA-

AATGGCGTGAGG
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Mata1 = CACCGCACAATTCATCATTTGCGT and CTG-

GGTAGAGTCTTATTGGCAAGA

RT–QPCR analyses
Synthesis of cDNA was performed using 2 mg of total RNA and

SuperScript II Reverse Transcriptase (Invitrogen, Burlington,

ON). A gene-specific primer protocol using a ‘‘Flap sequence’’ was

used to avoid DNA amplification during subsequent PCR

amplification. RNase treated samples were used as negative

controls. The cDNA was purified using the QIAgen mini-elute

system (Qiagen Inc., Mississauga, ON, Canada). All primers used

for RT PCR and the following QPCR are listed in Table S2.

Chromatin ImmunoPrecipitations (ChIP)
DFY027 or DFY028 cells were arrested in G1 phase with a-

factor for three hours in Yc-Ura +2% raffinose and the expression of

the HO- endonuclease was induced or re-repressed by the addition

of 2% galactose or 2% glucose, respectively. Chromatin samples

were prepared essentially as described [86]. Slight modifications

include: following formaldehyde-mediated crosslinking, cells were

resuspended in 4 ml of ChIP buffer [86] and dropped into liquid

nitrogen in order to form ‘‘popcorn-like’’ particles. Such frozen cell

pellets were then lysed using a SPEX CertiPrep 6850 Freezer Mill to

produce deep frozen powdered whole cell extracts. Extracts were

thawed on ice and sonicated (30615 pulses, setting 2, 40% output

power) using a Branson Sonifier. H3K4me3 and myc immunopre-

cipitation were performed using respectively anti-H3K4me3

polyclonal antibody Abcam (Ab8580) and anti-myc antibody Roche

(Clone 9E10). Detection of the indicated loci was achieved by PCR

using the following primers:

HO cleavage site at mating type = ATTCTTAGCATCA-

TTCTTTGTTC and TCCAATCTGTGCACAATGAAG;

CENIV = ATGTTGAAGGAACAGCTGGG and AGGCT-

CAATGTTGACTAGCC;

PYK1 = GAAACGATAAGTGCTACTCCGTCCTA and GG-

TCATCTATGGGGCTTGAATCT.

Time course HO-cleavage analysis and cleavage
efficiency

Cells were grown overnight in Yc-Uracil +2% glycerol lactate

medium. Once exponential phase reached, 2% galactose was

added and aliquots taken at the specified time points. Cells were

then prepared for ChIP analysis or DNA was directly extracted for

cleavage efficiency. HO cleavage efficiency was calculated by

QPCR using primers listed in Table S2. These primers overlap the

cleavage site. Percentage of cleavage was calculated by dividing

the number of QPCR amplicons of experimental samples by the

number obtained in non-induced cells. Cells grown in glucose

(non-induced) were set at a cleavage efficiency of 0%.

Quantitative PCR analyses
For QPCR analyses, specific sequences were amplified by real-

time PCR using either a Rotor-Gene RG-3000A or a Rotor-Gene

RG-3000 (Corbett Research) and the FastStart SYBR Green

Master kit (Roche Applied Sciences). The different primers used

are listed in Table S2. Each 10 ml reaction containing 2 ml of DNA

sample and 0.3 mM of primers was quantified in triplicate 30 to 45

cycles of 15 s at 94uC, 30 s at 53u to 59uC (Table S2) and 30 s at

72uC.

Supporting Information

Figure S1 Genetic interaction between BRE2 and the MRX

complex. Sensitivity to the radiomimetic drug Bleomycin of strains

harbouring deletions of genes encoding COMPASS complex

subunits, BRE2 in (A) and SPP1 in (B) in combination with a

deletion of RAD50. Serial ten-fold dilution growth tests of

exponentially growing cultures on plates without Bleomycin

(YEPD control, left) and with Bleomycin (right) are shown. (C)

Western blot analysis of H3K4me2 and H3K4me3 levels in wt

(LLY33) set1D (DFY011) bre2D (BY4741 YLR015W) and spp1D
(BY4741 YPL138C) cells. Pgk1p was used as a loading control.

Found at: doi:10.1371/journal.pgen.1001082.s001 (1.43 MB TIF)

Figure S2 Levels of precise or imprecise NHEJ in set1. (D. A)

Schematic of the gal-HO region flanked by two HO-recognition

sites in strain YW1276. Upon cleavage of the indicated sites,

NHEJ can occur in a precise fashion which will not recreate the

ADE2 ORF, resulting in red colonies or the ADE2 orf can be

reconstituted by imprecise (+2) NHEJ, yielding white colonies. (B)

Overall percentages of precise and imprecise NHEJ as determined

in wild type cells wt (YW1276), set1D (DFY021), yku70D (YW1283)

or dnl4D (DFY022) cells. Note that total surviving colonies (precise

plus imprecise NHEJ) in wild-type cells was set to 100% and the

fraction of colonies of the respective mutant cells were expressed in

relation to that. (C) Genomic HO cleavage efficiency in both wt

(YW1276) and set1D (DFY021) cells grown in galactose for 1 hour.

(D) HO cleavage efficiency of the cleavage site on plasmid

YcpHocut4 of wt (DFY027) and bre1D (DFY028) cells incubated in

galactose for the indicated number of hours. Genomic locus

hybridization serves as a DNA loading control.

Found at: doi:10.1371/journal.pgen.1001082.s002 (1.11 MB TIF)

Figure S3 Normal levels of homologous recombination in set1D
cells. Analysis of the mating type switching of strains wt (DFY046)

and set1D (DFY047). Strains were initially MATa and switched to

MATa following induction of the HO cleavage at mating type

locus. Appearance of MATa switching product was measured by

QPCR using oligos specific for MATa locus. Values were

normalized with the amount of switching product found in non-

induced samples (glucose) which was set to 1.

Found at: doi:10.1371/journal.pgen.1001082.s003 (0.70 MB TIF)

Figure S4 Variation of histone modification levels after

treatment of cells with Phleomycin. Wild type cells ÿLLY33) were

exposed to 1, 10 or 100 mg/mL of phleomycin and levels of

H3K4me3 and H2AS129P (yeast c-H2A) were assessed by

western blotting. set1D (DFY021) cells were used as a negative

control for H3K4me3 protein modification and Pgk1p was used as

a loading control.

Found at: doi:10.1371/journal.pgen.1001082.s004 (0.75 MB TIF)

Figure S5 Mata1 RNA levels do not vary upon treatment of

cells with galactose. (A) Northern blot analysis of Mata1 RNA

derived from wt (DFY027) cells that contain a gal-HO-endonu-

clease gene on a plasmid and that were grown in glucose or

galactose media as indicated. Signals for Mata1 RNA were

quantified using a Phosphorimager (Storm) and corrected for

loading with using the signals for Act1 mRNA (below). Numbers

below each lane indicate the actual ratio if the first lane was set to

1. (B) The same RNA samples as in (A) were used and relative

levels quantified by RT-QPCR. RNase treated samples served

negative controls. (C) Localization of H3K4me3 to the MAT locus

in cells harbouring a MATa-inc allele and where the HO site is not

cleaved. Cells harbor an integrated copy of the gal-HO gene and

were grown either in glucose or in galactose as indicated.

Found at: doi:10.1371/journal.pgen.1001082.s005 (0.82 MB TIF)

Figure S6 Lack of NHEJ components does not sensitize cells to

hydroxyurea. Serial ten-fold dilution growth tests of exponentially

growing cultures of wt (JKM179), set1D (DFY023), yku70D
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(JKM181), rad52D (MT0-73) cells on plates with 50 mM

hydroxyurea. Colonies were allowed to grow for three days at

30uC.

Found at: doi:10.1371/journal.pgen.1001082.s006 (0.95 MB TIF)

Table S1 Strains used in this study.

Found at: doi:10.1371/journal.pgen.1001082.s007 (0.43 MB

RTF)

Table S2 Oligonucleotides used in this study.

Found at: doi:10.1371/journal.pgen.1001082.s008 (0.06 MB

RTF)
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