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Dose painting radiotherapy is considered a promising radiotherapy technology that 
enables more targeted dose delivery to tumor rich regions while saving critical 
normal tissues. Obviously, dose painting planning would be more complicated and 
hard to be evaluated with current plan quality index systems that were developed 
under the paradigm of uniform dose prescription. In this study, we introduce a new 
plan quality index, named “index of achievement (IOA)” that assesses how close 
the planned dose distribution is to the prescribed one in a dose painting radio-
therapy plan. By using voxel-based comparison between planned and prescribed 
dose distributions in its formulation, the index allows for a single-value evaluation 
regardless of the number of prescribed dose levels, which cannot be achieved with 
the conventional indices such as conventional homogeneity index. Benchmark 
calculations using patient data demonstrated feasibility of the index not only for 
contour-based dose painting plans, but also for dose painting by numbers plans. 
Also, it was shown that there is strong correlation between the new index and 
conventional indices, which indicates a potential of the new index as an alternative 
to conventional ones in general radiotherapy plan evaluation.
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I. IntroductIon

Since its introduction in 2000, dose painting (DP) in radiotherapy has been accepted as a prom-
ising technique for the treatment of cancers where high-risk tumor subvolumes are associated 
within.(1) The main concept of DP is prescribing and delivering spatially nonuniform doses to 
the target regions defined by molecular or functional imaging.(2) To implement DP in clinics, 
two strategies about how to prescribe dose have been introduced:(3) 1) contour-based DP and  
2) voxel-based DP, which is specifically known as dose painting by numbers (DPBN). Contour-
based DP, obviously simpler to be implemented than voxel-based DP, was already found to be 
effective in several clinical studies.(1,4,5) On the other hand, DPBN has been an active subject of 
research in recent years, and its potential benefits have currently been reported by researchers.(6,7)  
Even though the importance of DP is increasingly recognized in radiation therapy, little attention 
has been paid, so far, in the aspect of plan evaluation.(8) For example, single-valued indices, 
such as the conformity index (CI) and the homogeneity index (HI), that are commonly used in 
routine clinical practice for plan evaluation need to be modified for DP planning, since such 
indices are formulated based on the paradigm of uniform dose prescription.
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Homogeneity index (HI) (or uniformity index) is a tool to assess the planned dose distribution 
in a target volume. Despite its lack of detailed information compared to dose-volume histogram 
(DVH), its simplicity has made it an attractive measure for quantifying the level of dose unifor-
mity in a tumor volume. Several indexing formulas have been introduced in literatures.(9-11) The 
basic concept of these methods is to calculate the ratio of the dose value of high-dose region 
to the reference dose value (such as prescription dose or dose value of normal-dose region) 
within a target. In DP planning, however, one cannot calculate the HI as a single index value 
because one plan could have multiple (in the case of contour-based DP) or countless (in the case 
of DPBN) reference dose values. Moreover, since DP is basically pursuing “nonuniform” dose 
distribution in a target volume, assessing dose homogeneity itself may be no longer meaningful. 
Similarly, dose standard deviation (STD) in a target volume, which is an alternative to HI,(12) 
is also inappropriate for the use in the evaluation of DP treatment plans.

In this study, we propose a new, simple index to score the dose distributions of DP treat-
ment plans. The proposed index of achievement (IOA) is formulated as the volume-weighted 
average of the deviation between prescription dose and planned dose. Two additional indices, 
index of hotness (IOH) and index of coldness (IOC), are also defined to indicate how hot or 
cold the target is. To evaluate the feasibility of the proposed indices, benchmark calculations 
were performed on sample treatment plans.

 
II. MAtErIALS And MEtHodS

A.  Formulas of new indices
To indicate the level of achievement of a prescription goal, IOA is defined as follows:

   

 
  

(1)
 
 

where V is the total volume of the target, vi is the volume of the ith voxel in the target volume,  
Di,Rx and Di,Plan are the prescribed and planned dose of the ith voxel, respectively. We also 
introduce two more indices, IOH and IOC, to provide the information on the direction of devia-
tion. The formulas of IOH and IOC are quite similar to that of IOA, except that they involve 
the selection of voxels where planned dose is either higher or lower than the prescribed dose 
as described below:

  

 
  

(2)
 

  

 
  

(3)
 

For all indices, 1 means perfect agreement between prescribed and planned dose, while value 
farther from 1 indicates greater dissimilarity. It should be noted that IOC has a value equal to 
or less than 1, representing underdose to the target volume, while IOA and IOH have values 
equal to or greater than 1.
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B.  Feasibility evaluation in contour-based dP cases
A well-established example of contour-based DP in present practice is simultaneous integrated 
boost intensity-modulated radiation therapy (SIB-IMRT).(10) SIB-IMRT delivers different dose 
levels to different target volumes within a single treatment fraction, allowing for both dose 
escalation to the tumor and better sparing of normal organs at risk (OARs).(13,14) Nasopharyngeal 
cancer patients (stage I or II), for instance, are often treated with SIB-IMRT or SIB volumetric-
modulated arc therapy (SIB-VMAT) in the institution of one of authors. To evaluate the feasibil-
ity of IOA, test calculations were performed on nine SIB-IMRT/VMAT plans for six randomly 
selected nasopharyngeal cancer patients of our institution. The prescription protocol used in 
the selected plans is briefly described as follows: 

1.  PTV1 includes GTV with both primary nasopharyngeal carcinoma and gross lymph nodes; 
total dose is 67.5 Gy in 30 fractions.

2.  PTV2 is defined as nasopharynx, posterior one-third of nasal cavity, both parapharyngeal 
spaces, both pterygopalatine fossa, and high-risk lymph node regions; prescription dose is 
54 Gy in 30 fractions.

3.  PTV3 is defined as low-risk lymph nodes; prescription dose is 48 Gy in 30 fractions.

B.1 Calculation method using differential DVH
Differential dose-volume histograms (dDVH), obtained from a commercial treatment planning 
system (Eclipse; Varian Medical Systems, Palo Alto, CA) were used in the calculation of IOA 
for the SIB-IMRT/VMAT cases. Since contour-based DP involves a few PTVs each of which 
has a single value of prescription dose, Eq. (1) can be modified as follows:

  (4)
 

where K is the total number of PTVs, Dk,Rx is the prescription dose for the kth PTV, and VPTV(k) 
is the volume of the kth PTV. By binning the dose values inside the target volume, Eq. (4) can 
be rewritten according to the definition of dDVH as follows:

  

 
  

(5)
 

where J is the total number of bins, Dj is the jth bin dose value, and dDVHPTV(k)(Dj) is the 
absolute volume (cc) of the jth dose bin in the kth PTV. This modification formula can also be 
applied to the calculation of both IOH and IOC for the contour-based DP plans.

B.2 Relationship between new and conventional indices
In the case of contour-based DP, conventional indices relevant to dose homogeneity also can be 
obtained if calculated separately for each PTV. A comparative study was conducted to investi-
gate the relationships between the newly introduced indices and the conventional ones. Three 
types of HI and STD were calculated for the same SIB-IMRT/VMAT cases. The definition of 
each index is described as follows:

 (10)  (6)
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 (9) (7)

 (11) (8)

 (12) (9)

where Dn is the corresponding minimum dose delivered to the hottest n% of the PTV, DRx is the 
prescription dose, Dmax is the maximum dose, and Dmean is the mean dose in the PTV.

In addition to the conventional homogeneity indices, some DVH parameters were also cal-
culated and their correlations to the new indices were investigated. To represent ‘coldness’ of 
the tumor (lack of coverage), 100-V95 was chosen since V95 (i.e., PTV volume receiving 95% 
of prescription dose or more) has been widely used as a metric for coverage.(15,16) Similarly, 
V110 was calculated for representing the ‘hotness’, as used for measuring dose homogene-
ity in previous studies.(15,17) Lastly, V95-V110 was calculated to provide a composite metric 
accounting for both hotness and coldness of the tumor volume.

Since the conventional indices should be calculated for each PTV separately, the average 
value over three PTVs was used in the comparison. The analysis consists of two steps: 1) rating 
of the plan quality based on each index, and 2) evaluating correlation among these ranks by 
using Spearman’s rank correlation test that has been shown useful in radiotherapy plan rating 
studies.(18,19)

c. Feasibility evaluation in dPBn cases
To evaluate the feasibility of the new indices for DPBN, simulated calculations were performed 
on two sets of fludeoxyglucose (FDG) PET-CT images of brain cancer patients. A heteroge-
neous prescription dose matrix was artificially generated by linear mapping from standardized 
uptake value (SUV) of the PET image, with the maximum SUV matching the prescription 
dose of 70 Gy. Outer tumor border was defined by the 60% of the maximum SUV value. Since 
no inverse planning technique for DPBN is available in our commercial treatment planning 
system, we employed IMRT optimization in conjunction with several shell-shaped virtual vol-
umes having different prescription dose values to realize an inhomogeneous dose distribution 
within the tumor volume, as illustrated in Fig. 1. In addition to the IMRT plans, 3D conformal 
radiotherapy (3D CRT) plans were also made and investigated using the new indices for the 
comparison purpose only. In the 3D CRT planning, beam apertures were fit to the SUV-defined 
tumor boundary and a prescription dose point was set on the maximum SUV point.

To calculate the new indices for DPBN, an in-house analysis program was written in MATLAB 
(The MathWorks, Inc., Natick, MA). The main features of the developed software are: 

1.  extraction of the prescribed and planned dose matrix from the PET images and the DICOM-RT 
dose files,

2.  resampling to match spatial resolution between prescribed and planned dose distributions,
3.  converting SUV values within a tumor volume to a prescription dose-matrix, and 
4.  calculating IOA, IOH, and IOC, according to Eqs. (1) to (3).

It should be noted that, in these DPBN cases, no other contour but the tumor’s outer bound-
ary defined by the 60% of the maximum SUV value was used in the calculations.
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III. rESuLtS 

A.  Feasibility of using the new indices for contour-based dP
Figure 2 shows DVHs of nine SIB-IMRT/VMAT plans used for the feasibility test of the new 
indices. As can be seen in the figure, DVHs of PTVs under different prescriptions are signifi-
cantly different from each other; thus, it would be hard to evaluate overall plan quality with 
conventional methods which could only calculate indices for each PTV separately. On the 
other hand, a single value of IOA could provide with a metric representing plan achievement 
over the entire target.

Table 1 summarizes the calculation result of the new indices, as well as the result of the 
conventional ones for the nine SIB plans. All the indices were categorized into three groups 
(achievement, hotness, and coldness) to be further analyzed separately. As indicated, the cal-
culated value of the conventional index is a mean value for all three PTVs in each plan, which 
can be applied to only contour-based DP cases, not DPBN cases.

Using the calculated values of the indices, individual plan rankings were made for each index. 
Figure 3 shows the degree of correlation between the rankings derived from the new indices 
and those from the conventional ones. IOA-based ranking was found to be highly correlated 
with most quantities — the conventional homogeneity indices, STD and V95-V110 indices 
(showing the coefficient over 0.8), except HI2 index (the coefficient of 0.45). Similarly, IOH 
and IOC demonstrated good correlations with V110 and 100-V95, resulting in the coefficients 
of 0.88 and 0.95, respectively.

Fig. 1. IMRT plans were made in regard to inhomogeneous prescription dose distribution based on SUV values of  
FDG-PET images.
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Fig. 2. Dose-volume histograms from nine IMRT/VMAT plans of nasopharyngeal cancer patients who were treated with 
simultaneous in-field boost (SIB) technique. Three different dose prescription values (6750, 5400, and 4800 cGy) were 
used in each plan. Obviously, it is hard to evaluate overall plan quality with conventional indices.

Table 1. The calculation result of the new and conventional indices for nine IMRT/VMAT plans.

 Achievement Hotness Coldness 
       V95-    100-
 Plan  HI1a   STDa V110

a  V110
a  V95

a

 No. IOA (%) HI2a HI3a (cGy)  (%) IOH (%) IOC (%)

 1 1.068 15.0 1.159 1.084 213.4 91.4 1.065 7.1 0.980 1.5
 2 1.070 16.9 1.185 1.123 229.7 88.9 1.069 10.5 0.990 0.5
 3 1.077 17.2 1.260 1.114 236.4 90.0 1.077 9.5 0.990 0.5
 4 1.086 18.0 1.179 1.126 266.3 86.6 1.083 12.5 0.977 0.9
 5 1.090 18.3 1.202 1.134 247.7 85.4 1.090 14.1 0.989 0.5
 6 1.092 17.7 1.187 1.128 255.5 85.2 1.091 14.2 0.988 0.6
 7 1.057 15.2 1.155 1.074 189.0 94.3 1.053 3.9 0.980 1.8
 8 1.076 17.5 1.202 1.131 242.7 86.0 1.075 13.4 0.988 0.6
 9 1.071 16.2 1.253 1.099 212.1 90.5 1.069 8.8 0.987 0.7
 Rank
 Criterion C L C C L H C L C L

a Mean value for all three PTVs.
C = closer to one is better; L = lower is better; H = higher is better.

Fig. 3. Spearman’s rank correlation coefficients calculated between plan rankings from the new indices and those from the 
conventional ones. The calculation was carried out for the three subgroups separately: achievement, hotness, and coldness. 
A coefficient close to 1 indicates high degree of correlation.
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B.  Feasibility of using the new indices for dPBn
Figure 4 shows an example result of the DPBN plans where an inhomogeneous distribution of 
prescription dose within the tumor volume was required. As shown in Fig. 4(b), the IMRT plan 
provided a nonuniform dose distribution meeting (not optimally, but at least in certain degree) 
the goal of DPBN plan, but the 3D CRT plan showed a uniform dose distribution across the 
tumor volume as is usual in the conventional dose prescription paradigm. In detail, as illustrated 
in Fig. 4(b), each 3D CRT plan was normalized to the maximum value of the prescription dose 
(7000 cGy), thus showing consistently higher doses compared to the prescription doses with 
no cold spots.

The new indices were successfully calculated for the DPBN cases, as summarized in Table 2. 
The 3D CRT plans resulted in relatively high values of IOA and IOH (approximately 1.4), 
indicating poor achievement and overall overdose, which was consistent with the observation 
described above. On the other hand, the index values of the IMRT plans were more reasonable 
(ranging 1.15–1.16 for IOA, 1.14–1.16 for IOH, and 0.96–0.98 for IOC), obviously because 
of the less discrepancies between the planned and prescribed doses, confirming the feasibility 
of proposed indices for DPBN paradigm. Further discussions on treatment planning issues in 
DPBN are presented in the Discussion section.

 
IV. dIScuSSIon

Biologically related models, such as tumor control probability (TCP) and normal tissue 
complication probability (NTCP), have been widely used for evaluating the quality of RT  
plans.(20-22) In particular, several studies addressed TCP models for an inhomogeneously irradi-
ated tumor.(23,24) In this study, we simply focused on comparing planned and prescribed physical 
dose distributions to indicate “achievement” in DP plans, mainly because 1) IOA is designed to 
be an alternative to the conventional homogeneity index that is routinely used without consider-
ing the biological effect, and 2) due to the uncertainty issue,(25,26) IOA may not necessarily be 

Fig. 4. An example showing the overlay of a PET-CT image and the tumor contour defined by the 60% of the maximum 
SUV (a), and the overlay profiles of the prescription and planned dose distributions from 3D CRT and IMRT plans (b).

Table 2. Calculation results of the new indices for two DPBN cases planned with 3D CRT and IMRT techniques.

 Case No. Planning Technique IOA IOH IOC

 1 3D CRT 1.397 1.397 1.000
  IMRT 1.162 1.160 0.979
 2 3D CRT 1.382 1.382 1.000
  IMRT 1.151 1.144 0.956
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correlated with the biological effect. However, as long as clear biological data are available, 
we believe, proposed indices can be easily modified to incorporate such effect.

Single index method is simple and convenient, so is being commonly used in radiotherapy 
plan evaluation and screening. However, it is obvious that it can suffer from lack of detailed 
information depending on the situation. Therefore, it should be noted that the developed indices 
are not to replace the standard tools, such as isodose lines and DVH curves, but to provide 
additional information. On the other hand, as a DP-specific alternative to the standard DVH, 
delta-volume histogram (ΔVH) was recently introduced by Witte et al.(8) Even though they 
mainly addressed cumulative ΔVH only in their study, interestingly, we found the concept of 
IOA could be supported by differential ΔVH (dΔVH) with the following correlation:

  (10)
 

where xj is the jth bin of dose difference in percentage (i.e., ), 

J is the total number of bins, V is the total tumor volume, and dΔVH (xj) is the differential ΔVH 
(in cc) corresponding to xj.

It was assumed, in this study, that each target voxel has equal amount of impact on the cal-
culation of IOA, IOH, and IOC metrics. In principle, however, the impact of each voxel can 
be different from voxel to voxel. For instance, cold spots in a PTV with a higher prescription 
dose may be clinically more risky than those in a lower dose target. This issue may be resolved 
by adopting voxel-specific weighting factors, and a simple approach is to form the weighting 
factor based on the relative prescription dose of each voxel. For example, Eq. (3) for IOC can 
be modified using the custom weighting factor as follows: 

  

  

(11)
 

 
 

where Wi is the sample weighting factor, defined as the square of the ratio of the voxel-pre-
scription dose and the mean prescription dose (Dmean,Rx) over the entire target volume. Figure 5 
demonstrates the effect of the weighting factor by comparing the DVHs of the two SIB patients 
(Patients 8 and 9 from Fig. 2). It was shown that the IOC-based ratings can be reversed when 
the weighting factor applied. A more accurate weighting factor system can be established when 
biological importance of hotness and coldness becomes much clearer in the future.

Another limitation of this study is that the proposed indices are applicable to target volumes 
only and not to normal/critical organs. This limitation can be justified, at present, by the fact 
that the DP technique was originally designed for target volumes where relevant molecular/
functional imaging information is available.(2) In theory, however, the DP technique can also 
be specifically used for normal/critical structure/region sparing, as inferred from the previous 
studies.(27,28) We expect that other indices specific for normal tissue sparing will be proposed 
if the spatially-varying dose constraint in a normal organ (dose-constraint painting) is available 
in the future.
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In the benchmark calculations of the DPBN cases, it was found that the values of the indices 
are relatively farther from the ideal value compared to those of the contour-based DP cases. 
It is mainly because the planned dose distributions of DPBN were not fully optimized due to 
the incapability of the RTPS to perform voxel-based optimization. However, we believe this 
limitation has little impact and would not alter the findings of this study.

 
V. concLuSIonS

We have proposed a new plan quality index to assess how close the planned dose distribution 
is to the prescribed one for DP radiotherapy. In contour-based DP cases, the applicability of the 
introduced index was demonstrated by showing strong correlations with diverse conventional 
homogeneity and DVH indices. It was also shown that the new index is feasible to be used in 
DPBN cases where conventional indices cannot be applied due to the varying dose prescription 
levels within the tumor volume. We believe that our study is a good first step towards establish-
ing a new paradigm of plan quality indexing compatible with DP radiotherapy.

 
AcknowLEdgMEntS

The authors appreciate the effort of Jangpil Park, Dosimetrist of Seoul National University 
Hospital, for assisting with IMRT/VMAT treatment plans used in this study.

 
rEFErEncES

 1.  Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and 
biological conformality. Int J Radiat Oncol Biol Phys. 2000;47(3):551–60.

 2.  Bentzen SM and Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 
2005;6(2):112–17.

 3.  Bentzen SM and Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy 
prescription. Semin Radiat Oncol. 2011;21(2):101–10.

 4.  Klem ML, Mechalakos JG, Wolden SL, et al. Intensity-modulated radiotherapy for head and neck cancer of 
unknown primary: toxicity and preliminary efficacy. Int J Radiat Oncol Biol Phys. 2008;70(4):1100–07.

 5.  Kachnic LA, Tsai HK, Coen JJ, et al. Dose-painted intensity-modulated radiation therapy for anal cancer: a multi-
institutional report of acute toxicity and response to therapy. Int J Radiat Oncol Biol Phys. 2012;82(1):153–58.

 6.  Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H. [18F]fluoro-deoxy-glucose positron emis-
sion tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head 
and neck cancer. Radiother Oncol. 2006;79(3):249–58.

Fig. 5. Comparison of dose-volume histograms from the two SIB patients (patient 8 and 9 in the previous analysis). 
Index-of-coldness (IOC) was practically adjusted to IOCw by applying a weighting factor that accounts for the higher 
priority of the high-dose prescription target (PTV1).



325  Park et al.: new index for dose painting  325

Journal of Applied clinical Medical Physics, Vol. 15, no. 4, 2014

 7.  Duprez F, De Neve W, De Gersem W, Coghe M, Madani I. Adaptive dose painting by numbers for head-and-neck 
cancer. Int J Radiat Oncol Biol Phys. 2011;80(4):1045–55.

 8.  Witte M, Shakirin G, Houweling A, Peulen H, van Herk M. Dealing with geometric uncertainties in dose painting 
by numbers: introducing the DeltaVH. Radiother Oncol. 2011;100(3):402–06.

 9.  Shaw E, Kline R, Gillin M, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. 
Int J Radiat Oncol Biol Phys. 1993;27(5):1231–39.

 10.  Wu Q, Mohan R, Morris M, Lauve A, Schmidt-Ullrich R. Simultaneous integrated boost intensity-modulated 
radiotherapy for locally advanced head-and-neck squamous cell carcinomas. I: dosimetric results. Int J Radiat 
Oncol Biol Phys. 2003;56(2):573–85.

 11.  Wang X, Zhang X, Dong L, et al. Effectiveness of noncoplanar IMRT planning using a parallelized mul-
tiresolution beam angle optimization method for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys. 
2005;63(2):594–601.

 12.  Yoon M, Park SY, Shin D, et al. A new homogeneity index based on statistical analysis of the dose-volume 
histogram. J Appl Clin Med Phys. 2007;8(2):9–17.

 13.  Wu Q, Manning M, Schmidt-Ullrich R, Mohan R. The potential for sparing of parotids and escalation of biologi-
cally effective dose with intensity-modulated radiation treatments of head and neck cancers: a treatment design 
study. Int J Radiat Oncol Biol Phys. 2000;46(1):195–205.

 14.  Dogan N, King S, Emami B, et al. Assessment of different IMRT boost delivery methods on target coverage and 
normal-tissue sparing. Int J Radiat Oncol Biol Phys. 2003;57(5):1480–91.

 15.  Donovan EM, Yarnold JR, Adams EJ, Morgan A, Warrington AP, and Evans PM. An investigation into methods 
of IMRT planning applied to breast radiotherapy. Br J Radiol. 2008;81(964),311-322.

 16. Senthi S, Gill SS, Haworth A, et al. Benchmarking dosimetric quality assessment of prostate intensity-modulated 
radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(2):998–1005.

 17. Vicini FA, Sharpe M, Kestin L, et al. Optimizing breast cancer treatment efficacy with intensity-modulated 
radiotherapy. Int J Radiat Oncol Biol Phys. 2002;54(5):1336–44.

 18.  Birkfellner W, Stock M, Figl M, et al. Stochastic rank correlation: a robust merit function for 2D/3D registration 
of image data obtained at different energies. Med Phys. 2009;36(8):3420–28.

 19. Figl M, Bloch C, Gendrin C, et al. Efficient implementation of the rank correlation merit function for 2D/3D 
registration. Phys Med Biol. 2010;55(19):N465–N471.

 20.  Adkison JB, Khuntia D, Bentzen SM, et al. Dose escalated, hypofractionated radiotherapy using helical tomo-
therapy for inoperable non-small cell lung cancer: preliminary results of a risk-stratified phase I dose escalation 
study. Technol Cancer Res Treat. 2008;7(6):441–47.

 21. Rosenzweig KE, Fox JL, Yorke E, et al. Results of a phase I dose-escalation study using three-dimensional confor-
mal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer. 2005;103(10):2118–27.

 22. Warkentin B, Stavrev P, Stavreva N, Field C, Fallone BG. A TCP-NTCP estimation module using DVHs and 
known radiobiological models and parameter sets. J Appl Clin Med Phys. 2004;5(1):50–63.

 23. Goitein M and Niemierko A. Intensity modulated therapy and inhomogeneous dose to the tumor: a note of cau-
tion. Int J Radiat Oncol Biol Phys. 1996;36(2):519–22.

 24.  Marks LB. Radiosurgery dose distributions: theoretical impact of inhomogeneities on lesion control. Acta Neurochir 
Suppl. 1994;62:13–17.

 25. Deasy JO, Chao KS, Markman J. Uncertainties in model-based outcome predictions for treatment planning. Int 
J Radiat Oncol Biol Phys. 2001;51(5):1389–99.

 26. Langer M, Morrill SS, Lane R. A test of the claim that plan rankings are determined by relative complication and 
tumor-control probabilities. Int J Radiat Oncol Biol Phys. 1998;41(2):451–57.

 27. Huang Y, Joiner M, Zhao B, Liao Y, Burmeister J. Dose convolution filter: incorporating spatial dose information 
into tissue response modeling. Med Phys. 2010;37(3):1068–74.

 28. Olsson C and Johansson KA. Do we need fractionation-corrected doses in sequential two-phase treatments? A 
quantification of dose differences between non-corrected and corrected combined non-uniform dose distributions 
in normal tissue. Acta Oncol. 2010;49(8):1253–60.


