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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized
by the progressive loss of motoneurons and paralysis. The mechanisms underlying
neuronal degeneration in ALS are starting to be elucidated, highlighting disturbances
in motoneuron proteostasis. Endoplasmic reticulum (ER) stress has emerged as an
early pathogenic event underlying motoneuron vulnerability and denervation in ALS.
Maintenance of ER proteostasis is controlled by a dynamic signaling network known as
the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER-located
kinase and endoribonuclease that operates as a major ER stress transducer, mediating
the establishment of adaptive and pro-apoptotic programs. Here we discuss current
evidence supporting the role of ER stress in motoneuron demise in ALS and build the
rational to target IRE1 to ameliorate neurodegeneration.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motoneurons
of cerebral cortex, brainstem and spinal cord, leading to muscle weakness, paralysis and premature
death within 3–5 years after diagnosis (Turner et al., 2013; Peters et al., 2015). Besides motoneuron
loss, the intracellular accumulation of protein inclusions of different compositions is a hallmark of
ALS (Turner et al., 2013; Peters et al., 2015; Ruegsegger and Saxena, 2016). The hereditary forms of
the disease account for approximately 5%–10% of total cases and are termed familial ALS (fALS),
caused by mutations in different genes such as SOD1, TARDBP, FUS and hexanucleotide repeat
expansions in C9orf72 (Turner et al., 2013; Leblond et al., 2014; Peters et al., 2015). Interestingly, the
corresponding mutant proteins and (repeat-associated non-ATG translated, RAN) dipeptides form
protein oligomers and aggregates, leading to impaired proteostasis with resultant motoneuron
dysfunction and death (Turner et al., 2013; Peters et al., 2015; Ruegsegger and Saxena, 2016). In
sporadic cases of ALS (sALS), misfolding and aggregation of the same proteins in the absence of
mutations suggest common pathogenic mechanisms in fALS and sALS (Neumann et al., 2006;
Bosco et al., 2010; Farg et al., 2012).

The development of genetic models of ALS has enabled dissection of disease course at
histological, cellular and molecular levels (Philips and Rothstein, 2015). Although multiple
mechanisms are proposed to drive ALS (Taylor et al., 2016), several recent unbiased
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studies inmutant SOD1 transgenicmice and induced pluripotent
stem cell (iPSC)-derived patient motoneurons have identified
endoplasmic reticulum (ER) stress as an early and transversal
pathogenic mechanism underlying selective vulnerability of
motoneurons in ALS (Saxena et al., 2009; Kiskinis et al., 2014;
Filézac de L’Etang et al., 2015; Sun et al., 2015). ER stress is a
condition generated by abnormal levels of misfolded proteins in
the ER lumen, engaging a signal transduction pathway termed
the unfolded protein response (UPR). The UPR operates as a
central controller of cell fate, mediating initial adaptive responses
to restore proteostasis through various mechanisms including
transcriptional and translational regulation, enhancement of
protein quality control mechanisms, degradation of abnormal
proteins, among other outputs (Hetz, 2012). The UPR is a
binary pathway that shifts its signaling toward a terminal
phase to eliminate irreversibly damaged cells through apoptosis
(Walter and Ron, 2011). The adaptive UPR is marked by rapid
inhibition of protein translation due to the phosphorylation
of the eukaryotic initiation factor 2α (eIF2α), in addition to
transcriptional induction of chaperones, foldases, protein quality
control and degradation systems, lipid biosynthesis, among
others. Under pathological conditions of chronic ER stress as
observed in numerous neurodegenerative diseases (Hetz and
Mollereau, 2014; Scheper and Hoozemans, 2015; Smith and
Mallucci, 2016), the terminal UPR engages pro-inflammatory
and apoptotic cascades leading to cell death (Urra et al., 2013;
Oakes and Papa, 2015).

UPR SIGNALING PATHWAYS

The UPR transduces information about protein folding status
from ER lumen to cytosol and nucleus through the action of
various type-I ER transmembrane proteins that respond to the
accumulation of misfolded proteins. These sensors reprogram
the transcriptional and translational profile of the cell by a
concerted action of transcription factors, phosphorylation events
and RNA processing (Hetz et al., 2015). The mammalian UPR
relies on three stress transducers, named activating transcription
factor 6 (ATF6), protein kinase R (PKR)-like ER kinase (PERK)
and inositol-requiring enzyme 1 (IRE1), being IRE1 the most
conserved sensor from yeast to human (Wang and Kaufman,
2016). IRE1 is a kinase and endoribonuclease that upon ER stress
is activated by dimerization and auto-transphosphorylation to
catalyze the unconventional splicing of X-box binding protein 1
(XBP1) mRNA (Figure 1), thus leading to production of a potent
transcription factor termed XBP1s (Hetz et al., 2015). During
the adaptive UPR, XBP1s induces expression of ER chaperones
and co-factors, ER-associated protein degradation (ERAD)
components and lipid biosynthesis to increase the protein folding
and quality control capacity (Walter and Ron, 2011). When
ER stress is chronic, IRE1 is overactivated through assembly
into high-order oligomers and reduces its substrate specificity to
catalyze degradation of mRNA and microRNAs (Figure 1), an
activity termed Regulated IRE1-dependent Decay (RIDD;Maurel
et al., 2014). The activation of RIDD depletes ER components and
reflects the terminal UPR directing cell fate towards apoptosis
by directly controlling the stability of microRNAs, apoptosis

genes and pro-inflammatory factors (Hollien and Weissman,
2006; Han et al., 2009; Hollien et al., 2009; Lerner et al., 2012;
Ghosh et al., 2014). Furthermore, IRE1 can interact with cytosolic
components, including adaptor proteins, to fine-tune UPR
outputs in a dynamic fashion (Figure 1), comprising a protein
platform termed ‘‘UPRosome’’ (Hetz and Glimcher, 2009). For
instance, IRE1 can be coupled to JNK and NF-κB pathways
through adaptor proteins to induce apoptosis upon prolonged ER
stress (Urano et al., 2000; Hu et al., 2006). Thus, IRE1 signaling
governs adjustment of proteostasis through XBP1-dependent
transcriptional control, turning into a pro-degenerative effector
when proteostasis cannot be recovered, engaging a variety
of downstream pro-inflammatory and apoptotic regulators
(Figure 1).

THE ER FOLDING NETWORK AND ALS

The involvement of ER stress on ALS pathogenesis has been
inferred from multiple studies in patient post-mortem tissue and
iPSC-derived motoneurons, as well as animal models of disease
(see examples in Atkin et al., 2006, 2008; Ilieva et al., 2007;
Hetz et al., 2009; Ito et al., 2009; Saxena et al., 2009; Sasaki,
2010; Matus et al., 2013; Kiskinis et al., 2014). A landmark
study developed a comparative gene expression profiling of
vulnerable and resistant motoneurons, identifying ER stress as
the earliest pathological event in mutant SOD1 mice occurring
before any denervation is detected (Saxena et al., 2009). On
a recent follow-up study, the Saxena’s group reported altered
ER chaperone network underlying differential susceptibility
of motoneurons in ALS (Filézac de L’Etang et al., 2015).
Briefly, the BiP co-chaperone SIL1 was found enriched in
resistant while progressively reduced in vulnerable motoneurons
over disease course, and SIL1 overexpression using adeno-
associated virus was proven to be neuroprotective (Filézac de
L’Etang et al., 2015). Using ribosome profiling of motoneurons
and glia in vivo, the Cleveland’s group indicated that ER
stress is a major pathological signature of motoneurons, and
may mediate cell autonomous neurodegeneration cascades in
mutant SOD1 models (Sun et al., 2015). Additional findings
support the concept that motoneurons are selectively vulnerable
to perturbations to ER function. For instance, deletion of
one calreticulin allele, an essential ER chaperone, led to
exacerbated muscle weakness and denervation in the mutant
SOD1 mouse model, accelerating the progression of the
disease (Bernard-Marissal et al., 2012). Importantly, motoneuron
dysfunction due to deficiency of calreticulin did not involve
increased motoneuron loss, suggesting a role of ER chaperone
network at early stages of ALS leading to muscle denervation
(Bernard-Marissal et al., 2012). We recently provided genetic
evidence supporting the concept that alteration in the ER
folding network may be part of the etiology of the disease.
Targeted sequencing of ALS cases identified point mutations
in two protein disulfide isomerases (PDI) family members,
ERp57 (also known as Grp58 or PDIA3) and PDIA1 (also
termed PDI) (Gonzalez-Perez et al., 2015). Functional studies
indicated that perturbation in the activity of these foldases
alters neuromuscular junction structure and function, possibly
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FIGURE 1 | Inositol-requiring enzyme 1 (IRE1) signaling outputs. Under transient and mild endoplasmic reticulum (ER) stress, IRE1 undergoes dimerization and
auto-transphosphorylation activating RNase activity and production of the potent transcription factor spliced X-box binding protein 1 (XBP1s), which induces
adaptive programs to reduce protein misfolding, mediated by the upregulation of genes involved in protein folding, quality control, ER-associated protein degradation
(ERAD) components and lipid biosynthesis. When ER stress is irremediable and chronic, IRE1 assembles into a scaffold platform for activation of ASK1-JNK and
NF-κB pathways, which cause induction of apoptosis and modulates inflammation and autophagy levels. Furthermore, IRE1 overactivation decreases its RNase
specificity and induces Regulated IRE1-dependent Decay (RIDD) activity, which degrades mRNA and microRNA and contributes to cell demise by depleting ER
components and inducing pro-inflammatory and apoptotic factors.

involving abnormal synthesis of synaptic proteins (Woehlbier
et al., 2016). These studies suggested that disrupted ER folding
capacity underlays early ALS stages that result in muscle
denervation.

IRE1 SIGNALING IN ALS

The rise of iPSC technology enabled the study of patient
motoneurons expressing mutant proteins at endogenous levels
(Matus et al., 2014; de Boer and Eggan, 2015). An elegant
study using iPSC-derived patient motoneurons harboring a
SOD1 mutation discovered that basal physiological levels of
ER stress is an intrinsic property of motoneurons linked to
their electrical activity (Kiskinis et al., 2014). Furthermore,
the exacerbated ER stress in patient motoneurons leads to
hyperexcitability, and knock down of XBP1s affords significant
neuroprotection (Kiskinis et al., 2014). This concept was also
corroborated in motoneurons from patients carrying repeat

expansions in c9orf72 and VCP mutations (Kiskinis et al.,
2014; Dafinca et al., 2016; Hall et al., 2017), evidencing the
transversal role of ER stress in disease etiology. Indeed, we
described abnormaly higher levels of the UPR transcription
factors ATF4 and XBP1s in post-mortem tissue of sALS cases.
To determine the significance of the UPR to ALS pathogenesis
in vivo, our group performed genetic manipulation of XBP1
or ATF4 in mutant SOD1 mice to assess the functional
impact on disease course (Hetz et al., 2009; Matus et al.,
2013). Genetic ablation of ATF4 increased the lifespan of
mutant SOD1 mice possibly due to attenuated expression
of the apoptotic factors CHOP and BIM (Matus et al.,
2013). On the other hand, conditional deletion of XBP1s
in the nervous system delayed disease onset and extended
lifespan of mutant SOD1 mice due to a homeostatic link
between the UPR and the autophagy pathway (Hetz et al.,
2009). We found that upon ablation of XBP1 expression in
mutant SOD1 mice, motoneurons up-regulated the autophagy
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pathway thus boosting degradation of toxic SOD1 aggregates
and slowing disease progression (Hetz et al., 2009). This
unexpected effect revealed that the proteostatic networks could
be reprogramed through homeostatic responses with potential
therapeutic benefits. Using pharmacological approach, we and
others provided evidence suggesting that activation of autophagy
with pharmacological agents reduce mutant SOD1 and TDP43
aggregates, increasing healthspan (Castillo et al., 2013; Zhang
et al., 2014).

The IRE1-XBP1 axis is proposed to play a role in other
diseases as well. For instance, we found that deletion of XBP1 in
transgenic models of Huntington’s disease (HD) also leads to
neuroprotection associated to autophagy induction, enhancing
degradation of mutant huntingtin (Vidal et al., 2012). Recently,
we have showed that phosphorylation of IRE1 directly correlates
with Alzheimer’s disease (AD) progression using histological
analysis of post-mortem human brain tissue (Duran-Aniotz
et al., 2017). Remarkably, we discovered that activation of
IRE1 exacerbates AD pathology by enhancing amyloid precursor
protein (APP) expression (Duran-Aniotz et al., 2017). The
specific deletion of the RNase domain of IRE1 strongly decreased
the deposition of amyloid plaques and neuroinflammation
on an AD mouse model. These effects resulted in improved
neuronal plasticity and cognitive function (Duran-Aniotz et al.,
2017). IRE1 activation also enhances the progression of glioma
and its signaling inhibition strongly reduces the growth of
tumors in vivo (Obacz et al., 2017). Similar findings were
reported in other forms of cancer, motivating the screening of
small molecules that inhibit IRE1 activity for disease treatment
(Hetz et al., 2013; see below). In contrast, many other studies
using gain of function to deliver XBP1s into the nervous
system using gene therapy revealed important neuroprotective
effects in various disease models due to artifical enforcement
of adaptive programs governed by the UPR (reviewed in
Valenzuela et al., 2016). A complex scenario is emerging where
the IRE1-XBP1 pathway can play physiological roles in the
nervous system related to neuronal function and plasticity
(Martínez et al., 2016) and promote distinct outcomes under
pathological conditions depending on the neurodegenerative
insult.

The participation of IRE1 signaling in motoneurons demise
in ALS has been reported in mutant SOD1 mice (Nishitoh
et al., 2008; Lee et al., 2016). Ichijo’s group showed that mutant
SOD1 contributes to ER stress by blocking ERAD through a
specific interaction with Derlin-1, an ER membrane protein
participating in the retro-translocation machinery (Nishitoh
et al., 2008). Mutant SOD1 possibly alters Derlin-1 function,
leading to impaired ERAD, resulting as a consequence in
ER stress and activation of the IRE1-ASK1 apoptotic module.
Remarkably, genetic deletion of ASK1 spared motoneurons and
delayed disease progression in mutant SOD1 mice (Nishitoh
et al., 2008). A recent study extended the role of IRE1 in
ALS by identifying homeodomain interacting protein kinase
2 (HIPK2) as an essential component of the IRE1-ASK1
apoptotic cascade, leading to JNK activation under ER stress
(Lee et al., 2016). Targeting HIPK2 in mutant SOD1 mice
delayed disease onset and prolonged survival due to attenuated

motoneuron loss (Lee et al., 2016). Relevantly, activation of
HIPK2 positively correlated with TDP-43 proteinopathy in
familial C9orf72 and sporadic ALS cases, implicating a broad role
of ER stress and IRE1 signaling in ALS pathogenesis (Lee et al.,
2016).

TARGETING IRE1 TO TREAT ALS?

The current state of the field supports a pathogenic role
of IRE1 pathway in ALS through activation of cell death
programs, besides the possible effects of XBP1s deficiency
in enhancing the activity of the autophagy pathway whereas
reducing hyperexcitability in motoneurons (Nishitoh et al.,
2008; Hetz et al., 2009; Kiskinis et al., 2014; Lee et al.,
2016). Moreover, we reason that the sustained activation
of IRE1 under chronic ER stress in motoneurons may also
lead to exacerbated RIDD through induction of high-order
oligomers, potentially causing excessive degradation of mRNA
and down-regulation of essential components necessary to
sustain motoneuron homeostasis. Indeed, the discovery of
ALS genes involved in transcriptional regulation highlighted
altered RNA metabolism as a relevant disease mechanism
(Peters et al., 2015). In the context of ALS, IRE1 can be
envisioned as a hub for integrating proteostasis and RNA
metabolism at organelle level, underlying neurodegenerative
cascades when these major cellular systems are significantly
compromised. It is also conceivable that the deleterious activity
of IRE1 may extend beyond motoneurons by enhancing
astro- and microgliosis, thus promoting neuroinflammation
(Boillée et al., 2006). In fact, the activity of IRE1 has been
shown to enhance immune responses, promoting cytokine
production in macrophages, in addition to modulate
the activity of dendritic cells (Martinon and Glimcher,
2011).

The involvement of ER stress and IRE1 signaling in a myriad
of diseases has fostered the development of different categories
of compounds targeting IRE1 (Figure 2A; Hetz et al., 2013;
Maly and Papa, 2014). Most IRE1 inhibitors target the activity of
the RNase domain, including 4µ8c, MKC-3946 and STF-083110
(Hetz et al., 2013; Figure 2B). Such compounds indiscriminately
shut off XBP1 splicing and RIDD activity, offering an interesting
approach where complete inhibition of IRE1 pathway is desired.
As suggested by many studies, the abrogation of IRE1 activity
in CNS may probably not be the optimal intervention since
basal levels of XBP1s appear to be needed for motoneuron
homeostasis (Kiskinis et al., 2014), in addition to neuronal
plasticity involved in memory and learning-associated processes
(Martínez et al., 2016). The recent development of highly potent
monoselective IRE1 inhibitors termed Kinase Inhibitors RNase
Attenuators (KIRA) brings about the possibility to fine-tune
IRE1 activity in vivo (Ghosh et al., 2014). KIRA compounds act
by breaking down IRE1 oligomers thus preferentially blocking
terminal IRE1 RIDD activity over XBP1 splicing depending
on the dose used (Figures 2A,B). Importantly, KIRA6 has
proven efficacious in preserving photoreceptor viability in ER
stress-induced retinal degeneration and sustain pancreatic β-cell
function in the aggressive Akita diabetic model (Ghosh et al.,
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FIGURE 2 | Pharmacological modulation of IRE1. Different classes of inhibitors target distinct IRE1 domains and differentially modulate RNase activity and oligomeric
states. (A) In the first step of activation, IRE1 suffers dimerization and auto-transphosphorylation to activate its RNase activity and initiate the unconventional splicing
of XBP1, in addition to low RIDD activity. Subsequently, IRE1 can form high-order oligomers to potentiate RIDD and catalyze degradation of a select pool of mRNAs
and microRNAs. The compounds directly targeting the RNase domain (e.g., 4µ8c, MKC-3946, STF-083110) completely inhibit XBP1 splicing and RIDD without
interfering with kinase activity or oligomeric states. The Type I kinase inhibitors (APY29, Sunitinib) prevent auto-transphosphorylation but promote RNase activity and
oligomerization by generating conformational changes. The Type II inhibitors (Kinase Inhibitors RNase Attenuators, KIRAs) affect both kinase and RNase activities,
possibly altering oligomerization through allosteric interactions. (B) Chemical structure of IRE1 inhibitors by mode of action is presented.

2014). More recently, KIRAs were shown to provide protection
in models of autoimmune diabetes (Morita et al., 2017).
KIRAs did not trigger any evident side effects after systemic
administration. It is proposed that KIRAs may specifically target
distinct oligomerization states of IRE1, which may selectively
affect pathological levels of RIDD triggered by hyperactive
IRE1, allowing the signaling through the beneficial effects
driven by XBP1s. The optimized use of KIRA compounds
in ALS is expected to prevent or halt neurodegeneration by
blunting terminal UPR in motoneurons, shifting deleterious

RIDD activity to attenuated XBP1 splicing at levels contributing
to homeostasis.

In addition to pathology, the UPR has essential roles in
various organs, highlighting specialized secretory cells that
require a developed ER for their proper function (Cornejo et al.,
2013). This is why serious adverse side effects are predicted
of the systemic and long-term administration of UPR-targeting
drugs (Dufey et al., 2014). However, the recent generation
of a conditional knockout mouse for IRE1 in the nervous
system demonstrated that it is devoid of any gross spontaneous
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phenotype. Similarly, the full deletion of IRE1, except in the
placenta, generates a viable animal with minor defects in
secretory organs (Iwawaki et al., 2009, 2010). Taken together,
these observations suggest that blocking the pathway in neurons
with small molecules may be safe.

In summary, the compelling evidence in the literature linking
ER stress to ALS pathogenesis and the continuous development
of specific small molecules to modulate IRE1 activity may offer
the opportunity to investigate novel therapeutic approaches
to treat this devastating disease. Further research in mouse
models of ALS is needed to address the relative contribution of
IRE1 signaling in motoneurons and glia to disease progression,
in addition to define its mRNA targets under pathological
conditions in the nervous system.
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