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Abstract: Patients in intensive care units (ICUs) were at higher risk of worsen prognosis and mortality.
Here, we aimed to evaluate the ability of the Simplified Acute Physiology Score (SAPS II) to predict
the risk of 7-day mortality, and to test a machine learning algorithm which combines the SAPS II with
additional patients’ characteristics at ICU admission. We used data from the “Italian Nosocomial
Infections Surveillance in Intensive Care Units” network. Support Vector Machines (SVM) algorithm
was used to classify 3782 patients according to sex, patient’s origin, type of ICU admission, non-
surgical treatment for acute coronary disease, surgical intervention, SAPS II, presence of invasive
devices, trauma, impaired immunity, antibiotic therapy and onset of HAI. The accuracy of SAPS II
for predicting patients who died from those who did not was 69.3%, with an Area Under the Curve
(AUC) of 0.678. Using the SVM algorithm, instead, we achieved an accuracy of 83.5% and AUC
of 0.896. Notably, SAPS II was the variable that weighted more on the model and its removal resulted
in an AUC of 0.653 and an accuracy of 68.4%. Overall, these findings suggest the present SVM model
as a useful tool to early predict patients at higher risk of death at ICU admission.

Keywords: healthcare-associated infections; machine learning; intensive care unit; risk prediction;
mortality; adverse outcomes

1. Introduction

Healthcare-associated infections (HAIs) are the most frequent adverse outcome occur-
ring when patients stay in hospital wards, especially in intensive care units (ICUs) [1–9].
Due to their impact on patients’ morbidity and mortality, as well as on antimicrobial resis-
tance and assistance healthcare costs, these infections represent a major concern for public
health [5,10–15]. As reported by the World Health Organization (WHO), the global burden
of HAIs raises up to 15% among all hospitalized patients, with a proportion that achieves
more than 30% in those who stay in ICUs [16–18].

Indeed, patients admitted to ICUs generally had a worse clinical prognosis, including
prolonged hospital stays, sepsis and mortality [19]. Particularly, mortality in ICUs is two
time higher among infected patients than those not infected [6,8]. This in turn depends on
several patients’ factor such as the use of invasive procedures, their severity, type of infec-
tion, therapy, and microorganisms’ characteristics, including clonal spread [19–22]. Nowa-
days, several early warning scores have been proposed as a helpful instrument to monitor
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patients’ clinical deterioration and disease severity during their stay in ICUs [23–27]. In
clinical practice, the Simplified Acute Physiology Score (SAPS) II represents the most
commonly used score. Specifically, it is able to predict patients’ prognosis and to esti-
mate their risk of HAIs, sepsis and dying, according to 17 physiological variables at ICU
admission [28–37].

With this in mind, the complexity of HAI burden suggested the need of novel ap-
proaches aimed at early identifying patients at higher risk of adverse events in ICU [38].
Indeed, the prediction of patients at higher risk of mortality in ICU play a key role in
improving patients’ survival and in implementing their management [39]. Although
several traditional statistical approaches are widely used in clinical practice, modern ma-
chine learning models showed more accurate results in the early identification of patients
who are more likely to die during their stay in ICU, considering different sets of risk
factors [9,39–42]. For instance, support vector machine (SVM) algorithm is a supervised
machine learning method with a high performance in discriminating two different classes
of events, especially in many medical fields where a large amount of patient’ variables are
collected [43,44].

In the present study, we aimed to identify and predict patients at higher risk of dying,
considering their clinical and pathological characteristics at ICU admission. The primary
purpose of this study is to evaluate the ability of the SAPS II to predict the risk of death after
7 days from their admission to ICU. The secondary purpose is to develop and test a machine
learning algorithm, which combines the SAPS II with additional patients’ characteristics,
to further improve the predicting performance. Here, we used data collected during the
seven editions of the “Italian Nosocomial Infections Surveillance in Intensive Care Units”
(SPIN-UTI) network, an ongoing surveillance system established by the Italian Study
Group of Hospital Hygiene (GISIO) of the Italian Society of Hygiene, Preventive Medicine
and Public Health (SItI) [45–51]. From 2006 to date, the SPIN-UTI network has collected
data of nearly 20,000 patients, 4300 infections and 5300 microorganisms, which helped to
feed the European surveillance network with data of HAIs in Italian ICUs [45–51].

2. Materials and Methods
2.1. The SPIN-UTI Project

Here, we used data collected during the seven editions of the SPIN-UTI project,
which were conducted from 2016 to 2019 in Italian ICUs, using the ECDC protocol [52].
The protocols used and characteristics of 20,060 patients surveyed were fully described
elsewhere [45–51]. In general, the SPIN-UTI project prospectively surveys patients staying
in ICU for more than two days and collects data at hospital, ICU and patient level. By
contrast, patients who stay in ICU less than two days are excluded a priori. The reason for
their exclusion is because the primary outcome of the SPIN-UTI project is the incidence of
HAIs, which by definition develop after two days of ICU stay. The study was approved
by the Ethics Committee “Catania 1”, Catania, Italy (protocol numbers 111/2018/PO and
295/2019/EMPO).

2.2. Definition of SAPS II and Other Predictors

In the present work, SAPS II at ICU admission was initially used as the main pre-
dictor. As previously described [35], the computation of SAPS II included the following
components: Age; heart rate; systolic blood pressure; temperature; Glasgow Coma Scale;
continuous positive airway pressure; PaO2; FiO2; urine output; blood urea nitrogen;
sodium; potassium; bicarbonate; bilirubin; white Blood Cell; chronic diseases; type of
admission. Each component was assessed within 24 h from ICU admission and the worst
value was recorded. The total SAPS II was finally computed as the sum of weighted
values for each component [35]. The SPIN-UTI project also collected information on pa-
tients who underwent non-surgical treatment for signs and symptoms related to the acute
coronary syndrome. Moreover, we defined admission with trauma those resulting from
blunt or penetrating traumatic injury to the patient, with or without surgical intervention.
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Instead, impaired immunity was defined as an impairment due to treatment, diseases or
<500 PMN/mm3. Finally, we also collected if any antibiotic therapy was administered
in the 48 h preceding ICU admission and/or during the first two days of ICU stay. The
occurrence of HAI was defined according to a set of clinical and laboratory criteria that are
fully described in the ECDC protocol [53].

2.3. Dataset of “Real” Records

We first worked only on patients with a complete assessment of the following in-
formation: Sex, patient’s origin, type of ICU admission, non-surgical treatment for acute
coronary disease, surgical intervention, SAPS II, presence of invasive devices at ICU
admission, trauma, impaired immunity, antibiotic therapy in 48 h before or after ICU
admission and onset of HAI. The primary outcome of the current analysis was mortality
within seven days from ICU admission. Accordingly, the current analysis included: (1)
Patients who stayed in ICU for at least seven days and (2) those who died within two to
seven days after ICU admission. By contrast, patients who stayed in ICU for less than
two days, those who were discharged prior to 7 days, and those who died with the first
two days were excluded. The matrix of missing values and the selection of “real” records
are showed in Figures S1 and S2. Specifically, this dataset of “real” records consisted on a
total of 3782 patients with complete data and meeting the inclusion criteria. The dataset
described above was used for traditional statistical analyses and as test set for the machine
learning algorithm.

2.4. Dataset of Synthetic Records

The missing data is arguably the most common problem encountered by machine
learning professionals when analyzing real-world data. The same applies for the SPIN-UTI
project, where a lot of records present missing information. For instance, in the current
analysis there were 61% (n = 12,237) of records with missing data for variables defined
in the paragraph above. As many statistical models and machine learning algorithms
rely on complete datasets, it is key to handle the missing data appropriately. Moreover,
machine learning algorithms generally requires large datasets to be trained. For these
reasons, we created a dataset of synthetic records that was used as training set for the
machine learning algorithm. Accordingly, we first imputed missing data from incomplete
records of the original dataset, using the K-Nearest Neighbor (K-NN) imputation method
described by Malarvizhi and Thanamani [54]. Specifically, we applied the K-NN algorithm
considering the Euclidean distance in the feature space for non-binary variables and the
Jaccard distance for dichotomic variables. After applying two cycles of K-NN imputation
to the two classes of data (i.e., alive or died patients), we recovered 3258 records. More
details on methods used for data imputation are reported in the Supplementary Materials.
Moreover, synthetic data were generated to balance the two classes of died and alive
patients, using the Synthetic Minority Over-sampling Technique (SMOTE). In contrast to
under-sampling, the oversampling approach is useful to increase the cardinality of the
minority class by duplicating records. In general, the SMOTE first selects random records
from the minority class population, then identifies the K-NN, and finally creates synthetic
records from the random ones and the randomly selected K-NN [55]. After applying the
SMOTE to 3782 “real” records, we obtained 1131 synthetic records for the class of died
patients. Given that, the dataset of synthetic records, which was used as the training set,
included a total of 4389 records. To confirm the goodness of the training set, we compared
the distributions of primary outcome and exposure variables with those obtained from the
test set (Table S1 and Figures S3–S5).

2.5. Statistical Analysis

All variables of the “real” dataset were described according to their type and skewness
using descriptive statistics (frequencies and percentages [%] or median and interquartile
range (IQR)). In an epidemiological and descriptive point of view, we compared these



J. Clin. Med. 2021, 10, 992 4 of 13

variables between dead and alive patients using the Mann–Whitney U test for quantitative
variables and the Chi-Squared test and Chi-Squared for trend test for qualitative variables.
We first used a logistic regression model to evaluate the association of SAPS II (continuous)
with death. Next, we applied a logistic regression model, also including sex (dichotomous),
patient’s origin (categorical: Other ward/healthcare facility, community), type of ICU ad-
mission (categorical: Medical, surgical), non-surgical treatment for acute coronary disease
(dichotomous), surgical intervention (dichotomous), presence of invasive devices at ICU
admission (three dichotomous variables for urinary catheter, intubation and central venous
catheter, respectively), trauma (dichotomous), impaired immunity (dichotomous), antibi-
otic therapy in 48 h before or after ICU admission (dichotomous). We also used Receiver
Operating Characteristic (ROC) curves to assess the ability of the logistic regression models
to accurately identify patients who dead from those who did not. Results were reported in
terms of Area Under the Curve (AUC) and 95% Confidence Interval (95% CI). With respect
to the model on SAPS II alone, we identified the best cut-off value which maximized the
Youden Index. For the best cut-off value, sensitivity and specificity with their 95% CI were
calculated. All tests were performed at a significance level α = 0.05 and statistical analysis
was conducted using SPSS v.25 (IBM Corp., Armonk, NY, USA).

2.6. Machine Learning Algorithm

We next compared the predictive performance of 7-day mortality between logistic
regression model and a machine learning algorithm. Specifically, the algorithm combined
SAPS II with the following variables collected at ICU admission: Sex, patient’s origin, type
of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention,
presence of intubation, presence of urinary catheter, presence of central vascular catheter;
trauma, impaired immunity, and antibiotic therapy in 48 h before or after ICU admission.
For the current analysis, we chosen the supervised SVM algorithm as modelling tool, which
can be used for classification—especially for binary classification—and regression problems.
However, our dataset was not linearly separable, not allowing to satisfy all the constraints
of SVM [44]. For this reason, we used a non-linear Kernel function (i.e., the Gaussian
Kernel, also called as Radial basis function Kernel, RBF). Slack variables with penalty were
also introduced to satisfy all the constraints in the minimization problem of SVM [44]. More
details on the machine learning algorithm are reported in the Supplementary Materials.
The SVM model was trained on the training set composed by synthetic records, and then
tested on the test set made of “real” records. Since patients who developed HAIs during
their ICU stay are generally at higher risk of death, we also tested the SVM model on those
who did not acquire HAIs within seven days from ICU admission. We also assessed the
predictive performance of a SVM model, which included all variables collected at ICU
admission except of SAPS II. Results are reported in terms of AUC, accuracy, sensitivity,
and specificity with their 95% CI. The analyses were performed using Python and Support
Vector Classification (SVC) from Sklearn 0.22.1.

3. Results
3.1. Characteristics of the Dataset of “Real” Records

The current analysis included 3782 SPIN-UTI participants without missing data
(60.2% males), surveyed from 2006 to 2019. In this subsample, the median age was 70.0 years
(IQR = 20) and median SAPS II score at admission was 49 (IQR = 27). Overall, 70.9% came
from other wards/hospitals and 56.9%, reported a medical type of ICU admission. In
particular, 4.7% and 11.4% of patients reported trauma and/or impaired immunity, respec-
tively. Patients who underwent antibiotic therapy, surgical intervention, or non-surgical
treatment for acute coronary disease were 62.6%, 34.8%, and 9.0%, respectively. With
respect to invasive devices, the presence of urinary catheter, intubation and central venous
catheter was reported in 77.0%, 62.4%, and 40.5% patients, respectively. Table 1 compares
characteristics of patients who died (n = 875; 23.1%) within seven day from ICU admission
with those who were still alive (n = 2907; 76.9%). Specifically, patients who died were older,
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more likely men, and with a higher SAPS II than those who did not die. Moreover, they
were also more likely to come from other ward/healthcare facility and to report a medical
type of ICU admission than those alive. The first group also consisted more of patients who
reported impaired immunity and less traumatic events. Instead, no differences were evi-
dent for surgical intervention, non-surgical treatment for acute coronary disease, antibiotic
therapy on admission and presence of invasive devices at ICU admission.

Table 1. Characteristics of patients with complete data according to their outcome status.

Characteristics Patients
(n = 3782)

Died Patients
(n = 875)

Alive Patients
(n = 2907) p-Value

Age, years 70.0 (20.0) 74.0 (17.0) 69.0 (21.0) <0.001

Sex (% men) 60.2% 55.0% 61.7% <0.001

Patient’s origin

Other ward/healthcare facility 70.9% 70.1% 71.1% <0.001

Community 29.1% 29.9% 28.9%

SAPS II at admission 49.0 (27.0) 59.0 (27.0) 46.0 (25.0) <0.001

Type of ICU admission

Medical 56.9% 59.3% 56.1% <0.001

Surgical 43.1% 40.7% 43.9%

Trauma 4.7% 2.4% 5.4% <0.001

Impaired immunity 11.4% 15.0% 10.3% <0.001

Non-surgical treatment for
acute coronary disease 9.0% 10.2% 8.7% 0.174

Surgical intervention 34.8% 32.5% 35.5% 0.306

Antibiotic therapy in 48 h
before or after ICU admission 62.6% 62.2% 62.8% 0.744

Presence of urinary catheter at
ICU admission 77.0% 75.9% 77.4% 0.351

Presence of intubation at
ICU admission 62.4% 61.7% 62.6% 0.646

Presence of central venous
catheter at ICU admission 40.5% 38.5% 41.0% 0.182

* Results are reported as median (interquartile range) for continuous variables, or percentage (%) for categorical
variables. Statistical analyses were performed using the Mann–Whitney, the Chi-squared test, or the Chi-squared
test for trend.

3.2. Applying Logistic Regression Models to Predict the Risk of 7-Day Mortality

We first applied a logistic regression model on the dataset of “real” records, using
SAPS II as the independent and 7-day mortality as the dependent variable. Accordingly,
Figure 1A illustrates the accuracy of SAPS II for predicting the risk of 7-day mortality for all
patients admitted in ICU. We noted that SAPS II was able to discriminate patients who died
from those who did not, with AUC of 0.678 (95% CI = 0.657–0.700; p < 0.001) and accuracy
of 69.3% (95% CI = 67.8–70.8%). The coordinates of the ROC curve are reported in Table S2.
Specifically, the best cut-off value of SAPS II, which maximized the Youden index, was 54.5.
The application of this value resulted in sensitivity of 61.9% (95% CI = 60.4–63.4%) and
specificity of 67.1% (95% CI = 65.6–68.7%). We further applied a logistic regression model,
which combined SAPS II with additional patients’ characteristics collected at ICU admis-
sion. However, as indicated in Figure 1B, both AUC and accuracy of this model remained
moderate (AUC = 0.637; 95% CI = 0.616–0.659; Accuracy = 65.2%; 95% CI = 63.7–66.7%).
In line, sensitivity and specificity for death were 49.0% (95% CI = 47.5–50.5%), and 70.0%
(95% CI = 68.5–71.5%), respectively.
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Figure 1. Receiver Operating Characteristic (ROC) curves of logistic regression models to predict 7-day mortality. (A) This
curve shows the predictive performance of a logistic regression model using Simplified Acute Physiology Score (SAPS II)
alone. (B) This curve shows the predictive performance of a logistic regression model including sex, patient’s origin, type of
intensive care unit (ICU) admission, non-surgical treatment for acute coronary disease, surgical intervention, presence of
invasive devices at ICU admission, trauma, impaired immunity, antibiotic therapy in 48 h before or after ICU admission.

3.3. The SVM Algorithm Improved the Prediction of Patients Who Died

Next, we aimed to develop a machine learning algorithm, which could improve the
prediction of 7-day mortality in ICU. To do that, we used the SVM algorithm by combining
SAPS II with other characteristics collected at ICU admission. Interestingly, the ROC
curve of SVM predictive model (Figure 2) achieved an AUC of 0.896 (95% CI = 0.881–0.910;
p < 0.001), with an accuracy of 83.5% (95% CI = 82.4–84.7%). In line, sensitivity and
specificity were 81.0% (95% CI = 79.9–82.1%) and 84.0% (95% CI = 82.9–85.1%), respectively.

Figure 2. ROC curve of the Support Vector Machines (SVM) algorithm to predict 7-day mortality. This
curve shows the predictive performance of the SVM algorithm including SAPS II, sex, patient’s origin,
type of ICU admission, non-surgical treatment for acute coronary disease, surgical intervention,
presence of invasive devices at ICU admission, trauma, impaired immunity, antibiotic therapy in 48 h
before or after ICU admission. The parameters applied to the SVM algorithm were C = 2 and γ = 0.3.
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3.4. The SVM Algorithm Maintained Its Predictive Ability among Patients Who Did Not
Develop HAIs

We also tested the predictive ability of the SVM classifier among patients who did not
develop HAIs within 7 days from ICU admission. To do that, we removed 520 patients with
at least one HAIs from the test set. Interestingly, the model did not depend on the onset of
HAI, since both AUC (0.903; 95% Confidence Interval = 0.881–0.912; p < 0.001) and accuracy
(83.8%; 95% CI = 82.6–85.0%) remained stable (Figure 3). In line, sensitivity and specificity
were comparable to those obtained in the overall analysis (82.0%; 95% CI = 80.8–83.2%;
and 84.0%; 95% CI = 82.8–85.2%, respectively).

Figure 3. ROC curve of the SVM algorithm to predict 7-day mortality, by excluding infected patients.
This curve shows the predictive performance of the SVM algorithm including SAPS II, sex, patient’s
origin, type of ICU admission, non-surgical treatment for acute coronary disease, surgical interven-
tion, presence of invasive devices at ICU admission, trauma, impaired immunity, antibiotic therapy
in 48 h before or after ICU admission. The parameters applied to the SVM algorithm were C = 2 and
γ = 0.4.

3.5. The Predictivie Performance of the SVM Model by Removing SAPS II

The Shapley plot reported in Figure S6 shows the contribution of each predictors
to the SVM model output. Since SAPS II was the predictor with the highest importance,
we finally evaluated the predictive performance of the classifier after removing SAPS II.
Interestingly, the SVM model without SAPS II led to an AUC of 0.653 (95% CI = 0.632–0.675;
p < 0.001), with an accuracy of 68.4% (95% CI = 66.9–69.8%) on the test set (Figure 4).
Accordingly, sensitivity and specificity decreased to 32.0% (95% CI = 30.5–33.5%) and 74.0%
(95% CI = 72.5–75.5%), respectively.
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Figure 4. ROC curve of SVM algorithm predicting 7-day mortality, by excluding SAPS II score. This
curve shows the predictive performance of the SVM algorithm including sex, patient’s origin, type of
ICU admission, non-surgical treatment for acute coronary disease, surgical intervention, presence of
invasive devices at ICU admission, trauma, impaired immunity, antibiotic therapy in 48 h before or
after ICU admission. The parameters applied to the SVM algorithm were C = 2 and γ = 0.1.

4. Discussion

In past years, numerous early warning scores were developed and employed to
monitor and predict patients’ conditions and severity, as well as their adverse events
in healthcare facilities [23–27]. Among these, SAPS II still represents one of the most
widely used tool to estimate patients’ risk of death and other adverse outcomes [28–37]. In
view of these considerations, we first aimed to evaluate the accuracy of SAPS II alone to
identify patients who died within seven days from their admission in ICUs, using a large
dataset from the SPIN-UTI project. Although AUC obtained was statistically significant,
the low accuracy of nearly 69% discouraged the routinely application of SAPS II to achieve
this purpose.

Applying novel predictive algorithms, however, could be important to ameliorate
patient’s safety and management in clinical practice, especially in the ICU setting. Thus, we
hypothesized that combining SAPS II with other variables collected at ICU admission could
improve the prediction of 7-day mortality [56–60]. Indeed, it is now well-established that
machine learning algorithms could overcome the limitations of traditional existing tools,
also allowing early prediction of mortality [9,23–27,40–42,56,61]. To do that, we developed
a SVM model, which combined SAPS II with the following patients’ characteristics at ICU
admission: Sex, patient’s origin, type of ICU admission, non-surgical treatment for acute
coronary disease, surgical intervention, presence of invasive devices at ICU admission,
trauma, impaired immunity, antibiotic therapy in 48 h before or after ICU admission and
presence of infection in seven days of ICU stay. The model exhibited an AUC of 0.90 with
an accuracy of 83.5% on the test set. Interestingly, its predictive performance was higher
than SAPS II alone and even than a logistic regression model including additional patients’
characteristics collected at ICU admission. We also demonstrated that the performance for
predicting 7-day mortality was also similar in only patients who did not acquired HAIs
during their hospitalization. However, other early warning scores—for example the Acute
Physiology and Chronic Health Evaluation II (APACHE II) and the Mortality Probability
Model (MPM)—can assess disease severity at ICU admission and predict the risk of death,
with results that were similar to SAPS II [32,62]. Thus, it will be interesting to validate our
model in countries where other early warning scores are most commonly used.

Overall, our findings underlined the potentially crucial role of machine learning al-
gorithms in many public health issues, providing clinicians with better diagnostic tools
and improving medical care in the next future. The promising benefits of applying ma-
chine learning on healthcare quality rely on the opportunity of making prevention and
diagnosis as early as possible, in a context of precision medicine applicable to all set-
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tings. We recognize that findings from machine learning are frequently considered as a
sort of “black box” for clinicians [63,64]. However, in our study, we aimed to use only
predictors that might be related to severity and mortality of ICU patients on the basis
of previous experience and expert opinion. This has certainly resulted in a more inter-
pretable algorithm for clinicians and public health professionals [63,64]. Indeed, applying
supervised machine learning algorithms could support medical professionals in param-
eter optimization, clustering and classification problems [21,64–70]. Accordingly, these
algorithms—if properly applied—could overcome limitations of existing traditional early
warning scores [9,23–27,40–42,56,61]. For instance, a previous study developed a machine
learning algorithm based on vital signs of ICU patients, such as heart and respiration rate,
oxygen saturation and blood pressure. In particular, the algorithm was able to predict
mortality in ICU with an accuracy of 91.6% [71]. Our findings—together with those from
other research groups—lay the foundations to develop automated and real-time tools able
to identify patients who need more attention because of their high risk of death.

Our model had several strengths, including the better ability of predicting 7-day mor-
tality if compared with an early warning score as SAPS II. Moreover, our model was trained
and tested on large datasets obtained through patient-based surveillance, structured and
standardized according to ECDC protocol. This should allow validation and comparison
with other European countries. On the other hand, however, we cannot completely exclude
historical bias due to a 14-year period of data collection. Beyond that, there were other
considerations to keep in mind when interpreting our results. The first one was that our
findings confirmed the importance of developing and validating early warning scores to
predict the risk of death and other adverse outcomes in ICUs and other wards. Indeed,
although we used several variables collected at ICU admission, the removal of SAPS II from
the model significantly reduced the predictive performance. The second consideration was
that machine learning requires a lot of variables and records, which are not always available
in each healthcare settings. Although we used variables that can be easily collectible at ICU
admission (e.g., patients’ demographic, origin, and type of admission, medical history, and
disease severity), a lot of patients had both structural missing and missing at random data.
While the first type of missing data could be easily managed by improving their collection
in the next SPIN-UTI editions (e.g., making them mandatory), those that miss at random
will continue to exist. This still remains a common issue encountered when analyzing
real-world data. For this reason, we cannot completely exclude potential bias related to
the high proportion of missing data. To partially manage missing data, we adopted a dual
approach to generate synthetic records from those incomplete. Indeed, we created a dataset
of synthetic records that was used as the training set for our machine learning algorithm.
However, while it remains preferable using real data to train the algorithms, the compari-
son between training and test sets showed no significant differences. Finally, we recognize
that our model was based on non-temporal variables related to patients’ characteristics as
predictors and 7-day mortality as a sort of surrogate outcome for identifying patients who
needed more attention in ICU. Thus, it will be our task to consider clinical outcomes prior
to death and a time-series approach (e.g., survival analysis) for improving our model.

5. Conclusions

With these considerations in mind, to the best of our knowledge, our study is the first
employing the SVM algorithm to discriminate patients who died within seven days from
their ICU admission from those who did not. The model showed good predictive perfor-
mance, even though improvable. For this reason, further studies should be encouraged to
develop and validate risk prediction models, which could help to predict adverse outcome
as early as possible, and to improve patient care globally.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/5/992/s1, Figure S1: Matrix of missing values; Figure S2: Selection of records with complete
data satisfying inclusion criteria; Figure S3: Comparison of Age (A) and SAPS II score (B) distributions
between Training and Test sets, Figure S4: Comparison of dichotomous variables between Training
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