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Human‑agent coordination 
in a group formation game
Tuomas Takko1*, Kunal Bhattacharya1,2, Daniel Monsivais1 & Kimmo Kaski1,3

Coordination and cooperation between humans and autonomous agents in cooperative games raise 
interesting questions on human decision making and behaviour changes. Here we report our findings 
from a group formation game in a small‑world network of different mixes of human and agent players, 
aiming to achieve connected clusters of the same colour by swapping places with neighbouring 
players using non‑overlapping information. In the experiments the human players are incentivized 
by rewarding to prioritize their own cluster while the model of agents’ decision making is derived 
from our previous experiment of purely cooperative game between human players. The experiments 
were performed by grouping the players in three different setups to investigate the overall effect of 
having cooperative autonomous agents within teams. We observe that the human subjects adjust 
to  autonomous agents by being less risk averse, while keeping the overall performance efficient by 
splitting the behaviour into selfish and cooperative  actions performed during the rounds of the game. 
Moreover, results from two hybrid human‑agent setups suggest that the group composition affects 
the evolution of clusters. Our findings indicate that in purely or lesser cooperative settings, providing 
more control to humans could help in maximizing the overall performance of hybrid systems.

In digitized human societies interactions between humans and artificial autonomous agents is becoming more 
and more commonplace. This calls for a deeper understanding and study of the possible outcomes of these inter-
actions in different social situations or setups, e.g. in games, healthcare, retail stores and  transportation1–6. Given 
the fact that human behaviour is far from homogeneous, it may be difficult to predict the emergent behaviour in 
these systems. If one wants to realize a system, where the desired outcomes include cooperation or coordination 
between the humans and agents, understanding of the macro-level dynamics in terms of the different types of 
micro-level human-human, human-agent and agent-agent interactions, is needed. In addition, there is a need 
for benchmarking models to take into account the variability in human psychological preferences that influence 
their decision  making7–10.

Games and online games in particular provide valuable frameworks for studying dynamics of human-agent 
collectives as well as purely human groups. As an example, human-agent games that require cooperation from 
the human subjects, such as in the case of iterated Prisoner’s Dilemma, have been studied with regards to the 
human volunteer’s perception on the opposite player being an agent or a  human11. In this study, an interesting 
finding is that if the volunteers were told that they were playing with an agent, the level of cooperation was found 
to decrease. Similarly, introducing social networks into the design of studies have shed light on the non-local 
influence of the interactions taking place in games. For instance, Shirado and  Christakis12 studied how the col-
lective performance of humans trying to solve a coordination game on a network changes in the presence of 
agents (or bots), and showed the impact of the degree of randomness in agents’ behaviour on the outcome of 
the game. In other words, the inclusion of randomly acting autonomous agents was found to increase the overall 
performance of groups consisting of humans and agents. Also, games with network-based systems of agents 
with heterogeneous behaviour have been studied in the context of cooperation and evolutionary  behaviour13–15.

In this paper, we investigate a hybrid system of humans and autonomous agents in a cooperative game setup 
played on a virtual network. In order to observe how the inclusion of cooperative autonomous agents affects 
the outcomes, we use a model fitted on observed human behaviour from our prior  experiments10. In two cases 
we set up the experiments such that the agents are distributed into groups of humans in varying proportions 
and the resulting dynamics are compared to two control experiments, one with only humans and another with 
only agents. The framework used in the present study and in our previous  research10 is in the spirit of the earlier 
works by Kearns and colleagues  (see16 and the references therein). In their work they focused on studying the 
effect of network structure on the efficiency of solving problems like the graph coloring and consensus by human 
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 subjects1,16,17. The game of group formation also shares similarities to the matching problem that considers 
members of two distinct sets forming pairs for their own mutual  benefit18,19.

In the context of experiments involving problem-solving tasks the complex relationship between the indi-
vidual-level human behaviour, collective performance, and network properties, has been explored in several 
 studies20–22. It has been shown that coordination, cooperation, and other social actions within human groups can 
be described and analyzed through carefully designed online and incentivized experiments. In our experimental 
setup the players are incentivized to arrange themselves in groups. This game can be placed in the context of 
game-theoretic studies of social group formation, for example,   games23,24 that are based on Schelling’s segrega-
tion  model25, and more generally, the hedonic coalition formation  games26,27.

Our overall approach, includes two sets of experiments, a previous  work10 and the current study. In the former 
we conducted an online computer lab-based experiments with human subjects who were incentivized to form 
connected clusters or groups on a small-world network by coordinating and cooperating with members of other 
teams with non-overlapping information. From the results of the previous study we constructed a data-driven 
model of an autonomous agent to replicate the decision making of the ‘cooperating’ subjects. In the current setup 
we combine the humans and autonomous agents in games (detailed below) with a different incentive scheme for 
the humans, while for the agents we use the model of humans from the previous experiment. Our broad moti-
vation is to gain insight into the effects of including cooperative autonomous agents in a game, where a certain 
degree of competition is allowed between teams that includes human subjects. We note that, like in an earlier 
study of a hybrid human-agent  game12, in our hybrid games the human players were not informed to be playing 
with human-like agents. While the teams are allowed to work towards the goal to maximize their own benefit 
we examine whether the overall benefit can be maximized along the lines of public  goods28.

Materials and methods
The game of group formation is played on a fixed and regular network of n nodes 10. The players are divided into 
m equal sized groups, where each group is identified by a colour, and the number of players in each group is l, 
such that, n = m× l . The general objective for the players of the game is to maximize their group’s cluster size 
by exchanging positions in the network, such that all the players in a group eventually form a connected cluster. 
An example of the network configuration and the clusters in it is illustrated in Fig. 1 (right). The game is played 
in rounds where on a given round the players of one colour send requests to the players of a different colour 
located on the neighbouring nodes in order to swap places. These requests are then either accepted or rejected 
by the players on the receiving nodes. The colour for which it is turn to send a request is changed cyclically such 
that each colour has the same amount of opportunities to make requests. The maximum number of rounds that 
can be played in each game is r. Thus, each player would have at most r/m opportunities to send a request during 
a game if the latter is not completed before the r-th round. Similarly, each player would have maximally 2r/m 
opportunities to receive requests. In a given round, nodes having a colour different from the requesting nodes 
can simultaneously receive multiple requests. The actual number of opportunities to interact during a game 
depends also on the position of the player in the network. For example, players with all the neighbours belong-
ing to its own group can not send or receive requests. To request neighbours with the same color is forbidden, 
because such an exchange of places would not benefit the overall objective of the game or change the state of 
the game. During the course of the game the amount of information provided to the players (both humans and 
autonomous agents) is limited to the local neighbourhood in the network, the current number of points the 
player’s group has, and the global information about the largest clusters of each colour. The local information 
provided about the neighbourhood consists of the colour and the cluster size of the players in the nodes that are 
directly linked to the player. Nodes and edges that are not in the immediate neighbourhood of the player are 
displayed in grey colour (masked). The game is terminated once the designated objective is achieved or when a 
certain number of rounds is reached.

In our previous  work10, the recruited human subjects played the game of group formation in order to achieve 
a cooperative payoff. The players were expected to collectively achieve an overall configuration on the network 
such that all the m groups (colours) would finally attain the maximum cluster size (l). The experiment consisted 
of m = 3 coloured groups each with l = 10 human players, placed on a regular network with periodic boundary 
and randomized small-world links similar to Fig. 1 (right). In the game the payoff function was based on  the 
average collective progress (ACP), measured by calculating the average of the normalized size of the three largest 
clusters for each colour. The game was concluded once the players reached the maximized clusters ( ACP = 1.0 ) 
or the number of rounds played reached 21. To facilitate a larger number of exchanges in the game, the initial 
setup of the network was in a graph coloured formation, where the average collective progress would be around 
0.1, after which we added random small-world links between nodes with the restriction that the degree would 
not exceed 5.

In order to understand and quantify human behavior during the games, we implemented and trained a prob-
ability matching based model by utilizing the local information of the player’s neighbourhood including the 
cluster sizes of the neighbours and their respective colours. Furthermore, we evaluated the level of rationality 
and perception of risk, the human subjects were showing in the experimental sessions using this model and the 
obtained parameters. It was found that the human players were successful in forming the maximum clusters in 
most of the games of the experimental session. The results obtained by varying the model’s parameter weights 
during simulations suggest that the decision making and utilization of the provided limited information was 
effective and the perception of risk was close to optimal when the objective was purely cooperative.

The experimental sessions of the present study were held in a computer lab at Aalto University’s campus with 
30 volunteers, recruited via advertisements on social media. Informed consent was obtained from every volun-
teer before the experiment with signed consent forms. All the volunteers were non-minors. The experiment was 
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conducted according to the relevant guidelines and the procedure was approved in advance by the research ethics 
committee of Aalto University (2017_02_BSEN Experiment). The practical setup was similar to the previous 
 experiment10 in terms of using  oTree30 as the framework for running the game and restricting the players from 
mutual communication and the view of others’ workstations. A view of the graphical user interface can be found 
in our previous  study10. The players were introduced to the game by providing them with a presentation and a 
short tutorial of the game before the experiment started. The session lasted for four hours, during which a total 
of 13 games were played. A single game consisted of a maximum of 15 rounds and lasted approximately 20 min. 
Structurally the experiments were split into sessions of 3 games, which were incentivized with a participation 
bonus and a reward according to the player’s performance. Similarly to our previous experiment, the reward 
was given in the form of movie tickets. The show-up bonus for a 3-game session was one movie ticket and the 
reward was a second movie ticket for gaining a sum of 27 or more points. The payoff function for receiving 
points differs from the one used  previously10. Instead of the collective progress to form the maximum clusters, 
the players were tasked to obtain points by forming larger clusters with the formula illustrated in Table 1. This 
formula was aimed to direct the players towards a more selfish strategy in comparison to the purely collective 
objective used in the previous  experiment29.

The game was terminated once the maximum payoff for a single game was reached, i.e. the players had formed 
clusters of size l (points = 20 ), or when the initially set number of rounds ( r = 15 ) was reached. The initial 
network configurations, including the player colours and the added small-world links, were chosen before the 
experimental session in such a way that the starting configuration would have some degree of clustering whilst 
being far from completion. If the players managed to achieve the required 27 points for the maximum payoff 
in the first two games of the 3-game session, the third game would not be played as the full incentive for that 
particular session would already have been achieved. These parameters were motivated by the use of simula-
tions with a model (provided below) and by our previous experimental  study10. The simulations suggested that 

Table 1.  The rewarding scheme applied in the experiment. The players obtained points according to the 
requirements in the table and lost the respective amount of points if the requirement was no longer satisfied. 
With this scheme the maximum amount of points in a single game was  2029.

Requirement Points

The player’s respective group has cluster size of 6 or greater 5

The player’s respective group has cluster size 9 or 10 7

One of the other groups reaches cluster size of 9 or 10 4

Figure 1.  (a) Composition of the groups in experimental setups. Each icon represents 5 players or autonomous 
agents or bots. Setup A consisted of only human players, the hybrid setups B and C had 15 human and 15 agent 
players with varying group consistencies, and setup D consisted of only agent players. The difference in group 
consistencies between setups B and C provided different numbers of human–human, human–bot and bot–bot 
interactions. (b) An example snapshot from a game with setup B. The initial configuration of a game with setup 
B. The largest clusters are red 7, green 4 and blue 2. Each network configuration was randomized with the 
restriction that none of the groups could have more than 6 points at the start of each game and that none of the 
nodes would have degree above 5.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10744  | https://doi.org/10.1038/s41598-021-90123-8

www.nature.com/scientificreports/

completing the objective was achievable within the stipulated number of rounds. Also we note that a less number 
of rounds ensured the running of more games during the experimental session, thus yielding more data from 
the different stages of the game such as the initial formation of small clusters.

To investigate human behaviour and decision making in different combinations of human and autonomous 
agent players we use three experimental setups, A, B, and C. The setup A consisted of purely human players 
( n = 30 ) and it served as a baseline for the current rewarding scheme and for the population of players present 
in the experimental sessions. The setups B and C consisted of human-agent collectives with 15 human subjects 
and 15 autonomous agents, but with different concentrations of humans and agents in each colour group (See 
Fig. 1). These different group structures were chosen for discovering the possible differences between the number 
of human-agent interactions and changes in behavior and performance during such hybrid setups. The setup B 
consisted of 3 mixed groups of human subjects and agents in equal proportions (5 human subjects and 5 agents 
per group). The setup C consisted of a purely human group (10 human subjects), a mixed group of humans and 
agents (5 humans and 5 agents) and a group consisting of only agents (10 agents). In addition to the experimen-
tal setups with human subjects we simulated 100 realizations of the game with 30 autonomous agents, which is 
named setup D.

In the setups B, C, and D the design of autonomous agents, was obtained from fitting the data from our earlier 
experimental session to the following model which we describe in  brief10. We assumed that while requesting 
or accepting requests, players associate a utility, Pω with the choice of a neighbour ω (the goal being collective). 
Using probability matching, the probability of choosing the option is

where P0 is the utility for not sending a request (that is, not moving). A further simplification was done by choos-
ing Pω/P0 = exp{�+ αsi + βsj + δ�s(cj)�} which allowed fitting our experimental data to a logistic function. 
In the last expression, si is the cluster size of the focal player, sj is the cluster size of chosen neighbour and 〈s(cj)〉 
the average cluster size of rest of the neighbouring players sharing the colour of the chosen neighbour (also see 
Eq. 4). The parameters α , β , δ , and � were obtained from the fit. In the current context using this model allows 
us to mix agents with purely cooperative strategies with humans players.

Results
During the experiment of the present study a total of two sessions with four games of setup A, two sessions 
with five games of setup B and two sessions with four games of setup C were played, making a total of 13 games. 
These 13 games resulted in 591 requests sent by the human subjects and 549 requests received by the human 
subjects. The experiment started with the group of 30 human subjects playing four games of setup A, after which 
the pool of human subjects was split into two sets of 15 players each. These two sets of players then separately 
participated in the hybrid setups B and C, respectively, where the bots were included into the teams. This design 
enabled us to maintain the network size of 30 in each of the setups (15 humans + 15 bots; see Fig. 1) and allowed 
for a comparison between the three setups. The split into human-agent groups was not disclosed to the play-
ers as they proceeded to the next games after the first four games of setup A. The agents appeared in the game 
indistinguishable from the point of view of human subjects, and the fact that the players were now playing with 
agents was not announced until the end of the experimental session, was intended to reduce a possible bias in 
the decision making of the human subjects and in order to evaluate “organic” adaptation rather than to act as an 
 intervention12,31. The human subjects were effective in reaching the desired final configuration and the maximum 
obtainable points in each game of setup A, before the end of the given number of rounds (see Fig. 2).

The performance of the teams in obtaining points was found to be weaker in the two hybrid setups, especially 
in the setup B, which had a 3-game session going to the last game before the maximum payoff was obtained for all 
of the players. This difference between the purely human setup A and hybrid setups B and C hints at the human 
subjects’ adaptation to the autonomous agents’ decision making was not optimal or alternatively the strategy 
of the autonomous agents was not optimal for reaching the objective in the given payoff function when playing 
with human subjects. This incompatibility can be the result of the objective for the autonomous agents differing 
from the current objective of the game due to the model being fit to the data from purely collective games. The 
games in setup B showed a significantly lower performance due to the larger number of agent-agent interactions 
emerging from the difference in the compositions of the agents and humans in the colour groups (see Fig. 3). It 
should be noted that our autonomous agent model from our earlier  study10 also included a stability rule for the 
agents, which prevents them from sending requests between two large clusters, i.e. clusters having sizes larger 
than 60% of the maximum possible value. Even though this stability rule was enforced during the experiment, 
the agents were generally more active in terms of sending requests. This higher activity caused instability and 
resulted in breaking of otherwise beneficial clusters in the game as the agents’ goal was to reach the maximal 
clusters instead of obtaining points by forming clusters of size 6 or 9.

We measure the behaviour of the players using measures of activity, risk averseness and rationality of the 
taken actions based on an agent-based model implemented in our previous  study10. The activity corresponding 
to requesting an exchange of places with a nearest neighbour or accepting one of such requests, is measured as 
the rate of performing the action whenever it is allowed for the focal player. Hence we define the activity of a 
player i as:

(1)pω =
Pω/P0

1+
∑

ω′ Pω′/P0
,

(2)ai =
Ni

Ni
,



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10744  | https://doi.org/10.1038/s41598-021-90123-8

www.nature.com/scientificreports/

where Ni is the actual number of instances at which the focal player i chose to interact with a neighbour and Ni is 
the total number of instances when the player i had an option to interact. The quantity ai is separately measured 
for the requesting and accepting actions. For instance, a requesting activity of 1.0 indicates that a player sent a 
request every time the player had the option. The notion of risk averseness is very similar to the activity but is 
measured as a function of the player’s cluster size. The lower the value, the less a player is willing to risk losing 
the cluster size and eventually points that the player already possesses. For a player i with cluster s ∈ [1, l] , the 
risk averseness is quantified using the following ratio:

where Ni(s) is the number of instances when the player has a cluster size s and interacts with a neighbour, and 
Ni(s) denotes the total number of instances when the player i has a cluster size s and is in a position to interact. 
Again, ai(s) is separately defined for requesting and accepting. We define the rationality of players in the following 
way. For the focal player i that sends or accepts requests with respect to a neighbour j, we measure the quantity:

(3)ai(s) =
Ni(s)

Ni(s)
,

Figure 2.  Average number of points in each round for the different setups. Games with setup A reached the 
maximum number of points in all of the 4 games while the hybrid setups B and C as well as the setup D did not 
reach that within the maximum of 15 rounds The scheme of receiving the maximum reward for each 3-game 
series resulted in the players playing four games of setup A, five games of setup B and four games of setup C. The 
setup D consists of 100 realizations of the game simulated with cooperative autonomous agents. Out of the four 
setups, the hybrid setup B resulted in the worst performance. However, the difference between the hybrid setups 
is minor as individual players in one of the colour groups in setup B achieved the maximum reward before the 
fifth game (i.e. achieved a total sum of 27 points). The error bars represent the standard errors.

Figure 3.  Average number of interactions between agent and human players of different colour for a game in 
the experimental setups. The varying agent concentrations in the colour groups resulted in different numbers 
of interactions between humans and agents. The numbers represent all the initiated interactions (i.e. requests 
sent). The number of initiated interactions in the purely human setup A and the purely agent based setup D are 
of the same range. However, the different group compositions in setups B and C have an effect on the number of 
initiated interactions in terms of human to agent and agent to human. It should be noted that the performance 
of individual groups in the game can lead to situations where a single group has not been able to form a large 
cluster and the other groups initiate more interactions towards them in order to maximize their own payoff, 
thus adjusting their behaviour towards more cooperative interactions. This type of helping behaviour towards 
the autonomous agents occurred because of the smaller cluster size resulting from the cooperative interactions’ 
tendency to break clusters in order to facilitate movement of other players. In total, the hybrid setups had more 
interactions on average (B with 90 and C with 86) than the purely agent or human setups (both A and D with 
61).
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Here, cj is the colour of j, 〈s(cj)〉 is average of the cluster sizes of the neighbours of i having a colour cj , that is, 
the same as that of j, and sj is the cluster size of j. Note that the information on all the cluster sizes accounted above 
is available to i and not to j. The larger the difference between 〈s(cj)〉 and sj , the more is the expected gain for the 
neighbour j if an exchange is facilitated by player i. Therefore, large positive values would indicate a cooperative 
strategy on the part of the player i. In a purely cooperative setup this quantity would reflect on rational choices 
and cognition of the  players10.

In our previous experiment it was noticed that the players’ activity in sending and accepting requests 
decreased the closer they were to the objective of forming maximal clusters. In the presence of a different point-
based payoff function the players depicted a similar behavior when sending requests, but showed a more relaxed 
decision making when accepting incoming requests after achieving certain number of points (see Fig. 4). The 
less strict accepting behavior after reaching the required cluster size shows that the players understood the pay-
off function and adjusted their decision making after reaching the beneficial cluster sizes. This increase in one’s 
activity also shows that the players trying to optimize their points can sacrifice their position for helping other 
smaller clusters, thus gaining more points if the other groups reach larger clusters. However, due to the limita-
tions of the game and the obtained sample size, some situations rarely appeared during the games, which can 
be seen from the fluctuation caused by the lack of players with cluster size 8 in the setup B (Fig. 4). Evaluating 
the individual activities of the players in each setup does not show a significant difference between the setups as 
a whole, suggesting that the players did not behave differently in terms of overall activity (see Fig. 4). However, 
the activity of the human subjects adapted towards the setup D as can be seen from the Fig. 4.

As the activity of the human subjects suggests a difference between the decision making in the purely human 
setup A and the hybrid setups B and C, we investigate the rationality of the decision making of the human play-
ers. This averaged rationality of the choices over the possible cluster sizes is illustrated in Fig. 5. Individually 
the players’ strategies are heterogeneous, even with some of the players resulting in an average strategy with 
both negative value in accepting and requesting (see Fig. 5). This suggests that during those particular setups 
those players sent their requests to near neighbours with higher cluster size than the average in the specific 
neighbourhood. These decisions are not necessarily irrational, as the players can have information that is not 
obtained from the neighbourhood, but derived from the network structure and the previous moves the player 
has taken. The autonomous agents are excluded from this analysis as their decision making is homogeneous due 
to the implementation. However, the environment in the game can result in some variation in our measures for 

(4)Uj = �s(cj)� − sj .

Figure 4.  The requesting (a) and accepting (b) activity of the human players by cluster size in different setups 
and the autonomous agents’ activity in setup D. All of the setups show a similar decay in activity, but it is notable 
that the players showed a more relaxed accepting activity in the setups with autonomous agents than in the 
setup with only human players. This behaviour can be result of the point based rewarding scheme as well as 
the performance of autonomous agents and their fully cooperative behaviour not resulting in sufficiently large 
clusters in the hybrid setups. As the autonomous agents were based on the same model, their activity is also 
represented in the setup D. The points are connected for visualizing the trends and the error bars represent 
standard error of the mean. (c) Overall activity per player in the experimental setups. Each marker represents 
the fraction of times when a player performed an action having the opportunity to request or accept in a 
particular setup. The distribution of the markers shows that none of the human players requested a swap in 
every opportunity they had. It is notable that in a few instances in setups A and B, the player accepted every 
incoming request.
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strategy as the agents make their decisions based on a probability function over the possible choices, which in 
small sample sizes can show fluctuations.

Discussion
In this study we have focused on using human-agent experiments to get insight into complex dynamics of coor-
dination, cooperation, and decision making in interactions between humans and autonomous agents mimicking 
human behaviour. While the simulations using only autonomous agents can result in better or close to optimal 
performance, the results can vary when combining agents and humans in cooperative decision-making setups, 
as demonstrated in recent studies using communication or video game  setups32,33. These studies have shown that 
models for autonomous agents tend to perform worse when paired with human decision making whilst outper-
forming purely human groups coordinating themselves, unless the models are specifically trained to perform 
well with human  subjects33. However, the underlying reasons for the worse performance when cooperating with 
autonomous agents can stem from the lack of rule-based or uniform decision-making by the human players. In 
the case of comparing purely human groups to groups of agents, these type of differences can also stem from the 
higher operational capabilities of the agents in the current  environment34. In the present study we experimented 
on hybrid human-agents collectives in a cooperative group-formation game to evaluate the performance of 
such groups with varying compositions and to investigate the effects of non-uniform payoff functions. These 
autonomous agents were modelled using the results from our previous  study10 where the goal was purely collec-
tive, which is how to converge to a win-win situation in a limited number of rounds. As the objective of these 
agents would differ from the human objective, the questions were how and to what degree the agents modelled 
on outcomes from purely cooperative and uniformly rewarded payoff function could influence the dynamics 
and decision making of the human subjects. In addition, we have examined the differences in the outcomes from 
hybrid setups that were different in terms of the composition of humans and agents in the teams. Our initial 
anticipation based on running simulations with varying types of agent models, including the one in the setups, 
was that the human-agent groups would facilitate more movement and thus achieve the individualistic payoff 
faster than groups consisting of humans with more prudent behaviour.

For better understanding of the above aspects, the design of the experiment was split into three different 
setups with varying compositions of autonomous agents in two of the experimental setups. A control group 
for the agents was implemented with a setup of only autonomous agents using the same model as in these two 
hybrid setups. The experimental design of the present study followed that of the previous experiments with the 
choice of network topology as a mesh with periodic boundary and additional small-world links to facilitate the 
cognition and movement of the human players. However, as achieving the maximum payoff did not require the 
formation of the maximum clusters, the given number of rounds was reduced from 21 to 15, giving each of the 
three colour groups five opportunities to send a request for swapping places with their neighbours. The choice 
of the reduced number of rounds was motivated by training agents with the same point-based payoff function 

Figure 5.  Requesting (a) and accepting (b) strategies in the experimental setups by cluster size. The values 
are averages of the human interactions in terms of sent requests and accepted requests, where each value is 
the difference between the normalized average cluster size of the neighbours sharing the chosen neighbour’s 
colour ( 〈s(cj)〉 ) and the normalized cluster size of the chosen neighbour ( sj ). Positive values indicate more 
cooperative decision making in terms of choosing the neighbour with the lowest cluster size of that particular 
colour and negative values indicate the opposite. If the decision making was completely random, the value 
would be 0. (c) Individual average strategies in the games. Each marker represents a player in a particular setup. 
The autonomous agents are represented by the average value for all uniformly constructed agents in setup D. 
Negative values indicate that the player’s strategy on average was not to request the most beneficial neighbour, or 
accept requests from the neighbour with the smallest cluster size.
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and measuring the average completion time for the maximum payoff. This preliminary simulation of possible 
outcomes reinforced our initial anticipation that the human-agent groups would be more effective. The number 
of games was also limited by the length of the experimental session. Lengthening the session further could cause 
tiredness in the human players and thus affect their decision-making. It should be noted that this is a limitation 
imposed by the game design as the appearance of all possible states (i.e. combinations of different neighbour-
hoods) in sufficient numbers cannot be ensured during an experimental session.

First, in the case of human-human setup the game showed that the human subjects had comprehended the 
modified individualistic payoff function, even though the end result of each game in the setup was the formation 
of maximal groups as in the collective payoff games. The manifestation of this particular payoff was clearly seen 
in the human subjects’ accepting actions as the fraction of accepted requests for each cluster size follows the 
objective cluster sizes instead of a declining slope like in the collective payoff games with a payoff based on the 
cluster size. The measures for the strategies of the human players take this into account by aggregating the states 
of the game into combinations of three variables, i.e. cluster size of the focal player si , the chosen alter’s cluster 
size sj and the average cluster size of these neighbouring players sharing the colour of the chosen alter 〈s(cj)〉 . The 
payoff function affected the players’ strategy by making them more prone to accept incoming requests once their 
cluster size exceeded the required threshold. The same effect was not present in the request action, hinting that 
the human players split their strategy into achieving the maximum cluster (request) and helping other groups to 
form their clusters (accept). This imbalance of objectives was also evidenced in the experimental human-agent 
setups as the following. The agents, modelled after the players with the fully cooperative setup, performed well 
with the human subjects following a different payoff function, but when the agents played the game amongst 
themselves, the performance exceeded the performance in the hybrid setups. This suggests that the simultaneous 
presence of different strategies could be detrimental to the performance, thus proving our initial anticipation to 
be wrong, at least with the model the agents were based on. It should be noted that the agents had a fixed strategy, 
while the human players did not as they had to adapt to the agents’ strategies.

To sum up, our game had a payoff function that was partitioned into three types of benefits such that two of 
them were achievable from the performance at the player’s team level (a small and a large threshold for player’s 
own group size) and the third type that depended on the performance of the other teams. To achieve the third 
type of benefit, a team could be required to cooperate with other teams, which however also entailed some risk 
as its own cluster size could fall below the thresholds. Our previous experiment (incentivized on a collective 
goal)10 demonstrated that it is possible for all the teams to simultaneously achieve the maximum benefit if they 
all cooperated. Therefore, by using a setup with all human subjects we tested whether a different payoff function 
that made the game to appear less cooperative would modify the outcome of the game. Next, we focused on how 
the overall performance was modified with the inclusion of the agents and how the type of mixing (setup B versus 
setup C) would influence the outcome. Our experiments allow us to make two broad observations, first, that the 
overall performance is best when the teams are composed of solely humans (setup A) and second, that there is a 
hint that homogeneously composed human and agent teams (setup B) might lead to lowering of the performance 
in contrast to having separate teams of humans and agents (setup C). The plot for the average points reveals that 
quite fast increase is possible in the setups A and C. In cases when there is only human players in setup A and a 
single team entirely composed of human players in setup C, would imply better control of the overall dynamics 
by the human teams. This could be because of the superior information processing and adaptation by the human 
subjects in comparison to the autonomous agents. Also, the behaviour captured by our parsimonious model 
could limit the performance of the autonomous agents, thus for better performance a more accurate behavioral 
model of cooperative human subjects might be needed. Models taking into account human capabilities in terms 
of memory of previous states and approximating the information beyond the local neighbourhood could also 
provide more accurate depiction of human performance in the game of group formation. As stated above human 
decisions are evidenced as a mixture of being risk averse and making cooperative moves. The human teams 
appear to flexibly adopt different strategies during the different stages of the game. Therefore, in either purely 
or somewhat lesser cooperative settings, providing more control to humans in hybrid systems (as in setup C) 
could help maximize the overall performance of the system. Alternatively, hybrid setups with lesser number of 
agent-agent interactions are expected to perform better. However, if the payoff is further skewed such that there 
is even lesser or no benefit for the teams to help each other, then it is plausible that cooperative behaviour of the 
agents could be instrumental in improving the overall performance of the whole system.
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