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INTRODUCTION 
 

Obesity is a long-term metabolic disease triggered in part 

by the mutual interaction of genetic, environmental as 

well as other factors. According to WHO criteria, obesity 

is commonly described in terms of body mass index 

(BMI) ≥ 30 kg/m2 [1, 2]. Obesity is associated with an 

elevated risk of depression, metabolic, anxiety, 

cardiovascular, and chronic inflammation, as well as 

some malignant diseases [3]. Studies have shown that 

obesity is most likely to amplify the prevalence of 

depression and anxiety disorders [4, 5]. Obesity stems 

from an expansion of adipose tissue and an imbalance 

between caloric intake and energy expenditure [6]. Obese 

patients with higher amounts of visceral fat are at higher 
risk for serious complications [7]. White adipocytes, 

which store energy, and thermogenic brown and beige 

adipocytes, which produce energy, secrete hormones, 

such as adipokines, lipokines and exosomal microRNAs 

[8]. The secretion of adipokines and lipokines, such as 

leptin, adiponectin, monocyte chemoattractant protein-1 

(MCP-1), plasminogen activator inhibitor type 1 (PAI-1), 

retinol Binding Protein 4 (RBP4), visfatin, resistin, 

apelin, chemerin, palmitoleic acid and lysophosphatidic 

acid is modified in the presence of adipose tissue 

dysfunction and may cause a range of obesity-related 

disorders [9–11]. With a greater comprehension of the 

functional and molecular targets of adipokines and 

lipokines, it will hold enormous promise for both new 

drug treatment strategies and diagnostics. 

 

Depression is a severe psychiatric disorder characterized 

by persistent low mood, diminished interest, slowed 

thinking, reduced volitional activity, sleep difficulties or 

disturbances in appetite, affecting more than 300 million 

people worldwide and the number is growing [12, 13]. 
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ABSTRACT 
 

Depression and obesity are both common disorders currently affecting public health, frequently occurring 
simultaneously within individuals, and the relationship between these disorders is bidirectional. The association 
between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related 
depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is 
largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain 
the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, 
gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy 
metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future 
treatments for obesity and depression and raises several questions that need to be answered in future research. 
This review will provide a comprehensive description and localization of the biological connection between 
obesity and depression to better understand the co-morbidity of obesity and depression. 
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There is a growing body of research recognizing that 

negative emotions such as anxiety, stress and depression 

exert a significant negative influence on health and 

illness. There are also relevant clinical studies that show 

that obesity suffers from varying degrees of depressive 

symptoms [14, 15]. Recent scientific evidence suggests 

that depression and obesity are not independently linked. 

The two disorders can be interrelated through a vicious, 

mutually reinforcing cycle of maladaptive physiological 

adaptations [5]. Lassale et al. demonstrated a bi-

directional and complex multifactorial relation between 

mood disorders and obesity [16]. Data from their meta-

analysis revealed that men and women suffering from 

obesity had a 55% elevated risk of developing 

depression, while those suffering from depression had a 

58% higher risk of developing obesity [16]. There is 

growing evidence that adipocytokine and lipokine levels 

are up- or down-regulated in the progression of 

depression [10, 11, 17]. Furthermore, a large body of 

evidence suggests that modulating adipocytokine and 

lipokine levels in models of depression attenuates or 

promotes depressive-like behaviors [18–20]. Currently, 

the pathogenesis of depression is not completely clear. 

There are many hypotheses for depression, such as the 

monoamine neurotransmitter hypotheses, neurotrophic 

factor hypotheses (mainly brain-derived neurotrophic 

factor (BDNF) expression and functional down-

regulation), neurocircuitry hypotheses, neuroendocrine 

hypotheses, neuroinflammation hypotheses, gut 

microbiota hypotheses, neuroplasticity hypotheses, 

hypothalamic-pituitary-adrenal (HPA) axis hypothesis, 

etc. [21–26]. 

 

Among them, neuroendocrine hypotheses, inflammation, 

gut microbiota, neuroplasticity and abnormal HPA axis 

function are currently the most popular directions for 

investigating the pathogenesis of depression. It has been 

established nowadays that dysregulation of the innate 

and adaptive immune system happens in patients with 

depression and that inflammatory processes are highly 

correlated with the pathophysiology of depression [27]. 

Studies have suggested that a sustained, low-grade 

inflammatory response is a potentially modifiable risk 

factor for obesity [28, 29]. In addition, there is 

increasing evidence that the microbial community of the 

entire gastrointestinal tract (gut microbiota) is related to 

depressive disorders [30]. Multiple lines of evidence 

suggest that the gut microbiota is participating in the 

progression of obesity and related co-morbidities  

[30–36]. The neuroplasticity hypothesis, suggesting that 

the antidepressant effect can be regulated by modulating 

synaptic plasticity in hippocampal neurons and thus 

affecting structural plasticity in neural networks, is also 
the hypothesis applied in the study of the rapid 

antidepressant effect of ketamine [21, 37]. High-fat diet 

(HFD) feeding is currently a common method for 

establishing obese animal models [38, 39]. Studies have 

suggested that HFD leads to persistent elevations in 

cytokines and chemokines that can cause region-specific 

neuroplasticity, thereby promoting mood deficits and 

increased body weight [4]. Neuroendocrine studies have 

suggested that the HPA axis is relevant to the 

pathophysiology of depression, and studies have 

confirmed the overactivity of the HPA axis in patients 

with major depressive disorder (MDD) [40]. Research 

shows that the HPA axis may influence the body weight 

of stressed individuals by regulating cortisol [41]. Taken 

together, this review offers a well-rounded description of 

the mechanisms underlying the development of obesity 

and depression to better understand the interrelationship 

between the two conditions and to provide more 

effective treatment approaches. 
 

Shared biological mechanisms of depression and 

obesity 
 

There is ample reason to assume that depression  

and obesity are interrelated via a vicious, mutually 

strengthening cycle of negative physiological 

adaptations. In this section, we review the mechanisms 

underlying the co-pathogenesis of obesity and 

depression, mainly around the inflammation, gut 

microbiota, gut-brain axis (GBA)/microbiota-gut-brain 

axis (microbiota-GBA), neuroplasticity and HPA axis 

abnormalities (Figures 1, 2). 
 

The potential role of inflammation in depression 

and obesity 
 

Overactivation of the immune system is caused by 

several factors, such as difficult life situations, stress 

from society, and poor lifestyle habits (smoking, lack of 

exercise, HFD), all of which cause an increased 

inflammatory response and thus promote depressive 

symptoms [42]. Elevated levels of inflammatory 

markers such as IL-1β, IL-6, IL-2, TNF-α, CRP and 

PGE2 were found in patients with depression [43–47]. 

The cytokine hypothesis suggests that in depression, the 

number of pro-inflammatory cytokines such as IL-6, IL-

1β and TNF-α is increased, while the number of anti-

inflammatory cytokines such as IL-10 and TGF-β is 

decreased, tilting the overall immune response toward 

inflammation [48, 49]. 

 

The increase in macroglia peripheral nervous system 

and central nervous system (CNS) cytokines is coupled 

with the activation of microglia, the brain’s 

immunocompetent cells. This, in turn, has been linked 

to changes in synaptic plasticity, neurogenesis and 

emotional behavior [50]. A variety of key inflammatory 

markers also have been implicated in the risk of adverse 

outcomes of obesity and obesity-related diseases [48]. 
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Figure 1. Overview of the mechanisms underlying the co-pathogenesis of depression and obesity: based on adipokines and 
lipokines. In the body, there are many kinds of adipocytes and different adipocytes can selectively release related adipokines and lipokines. 
Abnormal secretion of adipokines and lipokines plays a crucial role in obesity and depression and may be related to increased inflammatory 
response, gut microbiota disturbance, neuroplasticity, dysfunction of HPA as well as GBA/microbiota-GBA disturbance. Note: HPA axis, 
hypothalamic-pituitary-adrenal axis; GBA, gut-brain-axis; PAI-1, Plasminogen activator inhibitor type 1; MCP-1, Monocyte chemoattractant 
protein-1; RBP4, Retinol Binding Protein 4; FABP4, fatty acid-binding protein 4; IL-6, Interleukin 6; Nrg4, Neuregulin 4; FAHFAs, fatty acid 
esters of hydroxy fatty acids; 12,13-diHOME, 12,13-dihydroxy-(9Z)-octadecenoic acid. 
 

 
 

Figure 2. Summary map of common biological mechanisms of depression and obesity. Note: IL-6, Interleukin-6; IL-1β, 

Interleukin-1β; TNF-α, Tumor necrosis factor-α; CCL2, C-C motif chemokine ligand 2; CRP, C-reactive protein; PGE2, prostaglandin E2; IL-10, 
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Interleukin-10; TGF-β, transforming growth factor-beta; ARC, arcuate nucleus of the hypothalamus; POMC, pro-opiomelanocortin; AGRP, 
agonist peptide-related peptide; NLRP3, NOD-like receptor family pyrin domain containing 3; BDNF. brain derived neurotrophic factor; Iba-
1, ionized calcium binding adapter molecule-1; GFAP, glial fibrillary acidic protein; SCFAs, short-chain fatty acids; LTP long-term 
potentiation, LTD, long-term depression; mPFC, medial prefrontal cortex; mTOR,mechanistic target of rapamycin; AMPK, AMP-activated 
protein kinase; TrkB, tyrosine kinase receptor B; PI3K, phosphatidylinositol 3-kinase; AKT, protein kinase B; MEK, MAPK/extracellular signal-
regulated kinase; MAPK, mitogen-activated protein kinases; ERK, extracellular signal-regulated kinase; CRH, corticotropin-releasing 
hormone; AVP, arginine vasopressin; ACTH, adrenocorticotropic hormone; NEGR1, neuronal growth regulator 1; CADM2, Cell adhesion 
molecule 2; PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; PARK2, E3 ubiquitin-protein ligase parkin; FTO, Fat mass and 
obesity-associated gene; GABA, gamma-aminobutyric acid; MC4R, melanocortin 4 receptor; dBNST, bed nucleus of the stria terminus. 
 

Adipocytes in abdominal, muscle and liver fat produce 

pro-inflammatory and chemotactic compounds such as 

IL-6, IL-1β, TNF-α and C-C motif chemokine ligand 2 

(CCL2), as well as inflammatory hormones such as 

adiponectin and leptin [51, 52]. Overweight and obese 

individuals have adipocytes and macrophages in their 

adipose tissue that cause the secretion of cytokines and 

chemokines which can cross the blood-brain barrier 

(BBB) as well as stimulate neuroinflammation [53, 54]. 

 

Neuroinflammation triggered by obesity has recently 

been demonstrated to influence multiple brain structures 

like the hippocampus, cortex, brainstem or amygdala, in 

addition to being linked to an elevated incidence of 

central disorders including depression as well as impaired 

cognitive function [55]. Chronic overnutrition and 

obesity can lead to chronic low-level inflammation across 

the body, a state of chronic inflammation known as 

“meta-inflammation” mediated by macrophages located 

in the colon, liver, muscle as well as adipose tissue [56]. 

HFD is associated with the production of cytokines by 

non-neuronal cells in the hypothalamus that activate 

diverse inflammatory mediators in the arcuate nucleus of 

the hypothalamus (ARC), a primary region of the 

hypothalamus that regulates pro-opiomelanocortin 

(POMC) and agonist peptide-related peptide (AGRP) 

neurons, the primary neurons that sense and integrate 

peripheral metabolic signals and respond accordingly 

[57, 58]. Therefore, it is important to discuss the role of 

neuronal and non-neuronal cells in HFD-induced 

hypothalamic inflammation. The vagus nerve is linked to 

the visceral organs and the CNS, and the vagal afferent 

nerve conveys hunger signals to the hypothalamus via the 

gastric-derived orexigenic peptide ghrelin [59]. Studies 

have shown that intake of HFD triggers inflammatory 

responses in the gut, nodal ganglia and hypothalamus 

within a short period vagal afferent nerves can transmit 

inflammatory signals of gut origin to the hypothalamus 

through the nodose ganglion, while ghrelin can prevent 

inflammation induced by HFD [58, 59]. Ingestion of 

HFD leads to a lack of integrity of the gut barrier, 

causing the transfer of macromolecules, such as 

microbial or pathogen-associated molecular patterns 

(e.g., lipopolysaccharides) entering the systemic 

circulation [60]. Nucleotide-binding oligomerization 

domain–like receptor family pyrin domain-containing 3. 

(NLRP3) inflammatory vesicles are an essential 

component of the innate immune system, mediating 

caspase-1 activation and secretion of the pro-

inflammatory cytokine IL-1β/IL-18 in response to 

microbial infection as well as cellular injury [61, 62]. Li 

et al. showed that microglia NLRP3 inflammatory 

vesicles induce neurotoxic astrocyte function by 

activating the neuroinflammatory caspase-1 pathway as 

a response to chronic stress [63]. Vandanmagsar et al. 

showed that NLRP3 inflammatory vesicles sense danger 

signals associated with obesity and lead to obesity-

induced inflammation and insulin resistance [51]. The 

study by Schachter et al. suggests that reducing obesity-

related neuroinflammation may have beneficial effects on 

depression [30]. Li et al. revealed that HFD-induced 

diabetes and obesity-related neuroinflammation activated 

the transcription factor CCAAT/enhancer binding protein 

beta (C/EBPβ) in hippocampal neurons and that this 

factor suppressed BDNF expression and caused 

depression-like behavior in male mice [64]. This suggests 

that inflammation-activated neuronal C/EBPβ can 

contribute to HFD-induced depression by decreasing 

BDNF expression [53]. 

 

BDNF is mainly produced by microglia and astrocytes 

and has neuroprotective as well as anti-inflammatory 

effects [65, 66]. Obesity creates an environment of 

chronic inflammation that leads to negative physiological 

and neurological outcomes such as diabetes, 

cardiovascular disease, and depression. Although the 

entire body is involved in metabolic homeostasis, the 

neuroimmune system has recently emerged as a key 

regulator of metabolism [67]. Lam et al. found that 12 

weeks of HFD feeding not only led to obesity in mice but 

also to depression-like behaviors and that astrocyte 

activation, which is closely associated with depression, 

was also evident in the ventral hippocampus [68]. Four 

weeks of pioglitazone treatment attenuated HFD-induced 

glucose metabolic dysfunction, upregulated ventral 

hippocampal GFAP (glial fibrillary acidic protein), 

reduced the total process length and number of branching 

sites of hippocampus CA1 GFAP-immunoreactive 

astrocytes in the ventral hippocampus, and attenuated the 

depressive phenotype, suggesting that pioglitazone may 

be a promising therapeutic agent for metabolic disorders 

and related depression [68]. Microglia are resident 
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immune cells in the brain that respond directly and 

indirectly to dietary fat, and the environment in which 

microglia develop helps them to respond later in life [67]. 

Numerous studies have shown that chronic peripheral 

inflammatory states reduce adult hippocampal 

neurogenesis [69–71]. Peripherally released pro-

inflammatory cytokines are implicated in communicating 

between the peripheral immune system and the brain via 

the activation of microglia in the brain [71]. Activated 

microglia may reduce neurogenesis by inhibiting the 

proliferation of neural stem cells, increasing apoptosis of 

neural progenitors, and decreasing the survival of newly 

developing neurons as well as their integration into 

existing neural circuits [69]. Stress-induced microglia 

activation and neuroinflammation play a vital role in the 

pathogenesis of depression [72, 73]. However, obese 

patients with chronic low-grade inflammation are at 

increased risk of developing depression [74]. Peroxisome 

proliferator-activated receptor gamma (PPARγ) is a 

nuclear transcription factor that moderates microglia 

polarization and neuroinflammation [72]. Qin et al. 

showed that chronic unpredictable mild stress (CUMS) 

was able to induce severe depression-like behavior, 

neuroinflammation and reduced PPARγ expression in 

leptin-deficient (ob/ob) mice compared to wild-

type/C57BL/6J mice, suggesting that PPARγ mediates an 

activated phenotype of microglia, which may be related 

to the susceptibility of stressed ob/ob mice to develop 

depression [72]. 
 

The potential role of gut microbiota in 

depression and obesity 
 

The degree of diversity and balance of gut microbiota 

strains is an essential indicator of the overall health 

status of the organism [75]. Depression and obesity have 

a high comorbidity in individuals, which may be due to 

sharing similar risk factors, including disruption of the 

gut microbiota. The gut microbiota is composed of over 

100 trillion microorganisms, including a minimum of 

1000 various species of bacteria, and plays a crucial role 

in the physiological and pathophysiological processes 

that occur in the body [76, 77]. The gut microbiota 

evolved together with the host and is an indivisible part 

of the body. Gut microbes are diverse and affect many 

processes, including immunity, metabolism as well as 

the CNS. Microbiota-GBA has emerged as a new 

candidate for depression [78, 79]. It has been shown that 

patients with depression, which includes those in 

remission, have a various gut microbiota composition 

than healthy controls [80]. Animal models of depression 

have shown changed gut microbiota compared to 

controls [81]. In a further meta-analysis, disturbances in 
the gut were found to be correlated with a decrease in 

certain anti-inflammatory butyrate-producing bacteria as 

well as an increased number of pro-inflammatory 

bacteria in patients with depression and other psychiatric 

disorders [82]. The fat mass and obesity associated gene 

(FTO) [83], an RNA demethylase [84, 85], is 

downregulated in the hippocampus of patients with 

MDD and in mouse models of depression [86]. 

Suppression of Fto expression in the mouse 

hippocampus results in depression-like behaviour in 

adult mice, whereas overexpression of FTO expression 

rescues the depression-like phenotype, suggesting that 

FTO is a modulator of depression-like behavioural 

mechanisms in mice [86]. Sun et al. showed that Fto 

deletion resulted in decreased body weight, reduced 

anxiety and depression-like behavior, and reduced 

sensitivity to stressful stimuli in Fto+/- mice [36]. In 

terms of intestinal flora, Fto-deficient mice were 

characterized by specific anti-inflammatory bacteria, 

importantly, the behavioral changes in Fto+/- mice were 

mediated by changes in the gut microbiota [36]. The 

results on the role of FTO in depression-obesity 

comorbidity are inconclusive, and further research is 

needed to deepen knowledge of the genetic basis of this 

comorbidity [87]. 

 

It has been shown that dysregulation of the gut 

microbiota in mice is associated with several 

neurobiological traits of depression, such as mild chronic 

inflammation, abnormal activity of the HPA axis, and 

reduced adult neurogenesis [88, 89] Recent studies 

suggest that chronic inflammation resulting from a HFD 

may exert a central role in the induction of neuro-

inflammation and depression [30]. Remarkably, the gut 

microbiota mediates some of the effects of HFD on 

human physiology and influences host mood and 

behavior. Pathogens, stressors, and predisposing factors 

can all contribute to excessive or protracted inflam-

matory responses (moderators include childhood trauma 

and obesity). The ensuing illness behaviors (such as 

pain, and sleep disturbance), depressive symptoms, and 

unhealthy lifestyle choices (such as a poor diet and 

sedentary lifestyle) may function as mediation pathways 

that result in unregulated inflammation and depression. 

Stress, nutrition, depression, and adverse childhood 

experiences can all affect the gut microbiome and 

increase intestinal permeability, which is another route 

to elevated inflammatory responses [42]. Studies have 

shown that fruits, vegetables and edible legumes contain 

high levels of phytochemicals that have anti-

inflammatory effects [90, 91]. Camu Camu (CC) has 

significant antioxidant and anti-inflammatory potential 

[92]. Treatment of high-fat/high-sucrose (HFHS)-fed 

mice that are treated with CC prevent weight  

gain, reduce fat accumulation, attenuate metabolic 

inflammation and endotoxemia, and mice treated with 
CC exhibit enhanced glucose tolerance as well as insulin 

sensitivity [93]. Consuming fruits and vegetables rich in 

polyphenols may improve cognitive and emotional 
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health by reducing oxidative stress and inflammation 

[94]. To investigate the effect of the gut microbiota on 

stress-induced depressive behavior, Chevalier et al. 

adopted an unpredictable chronic mild stress (UCMS) 

mouse model of depression as well as fecal microbiota 

transfer (FMT) from stress donors to naïve mice [95]. 

Results revealed that microbiota transfer conveyed 

behavioral symptoms of depression and reduced adult 

neurogenesis in recipient mice [95]. In addition, the 

metabolomic analysis demonstrated that FMT mice 

underwent changed fatty acid metabolism characterized 

by a deficiency of lipid precursors of endocannabinoid 

(eCB), which led to the compromised activity of the eCB 

system of the brain [95]. The eCB system plays its 

pleiotropic role via multiple neuronal processes. eCB 

system regulates adult neurogenesis through CB1 

receptors expressed by neural progenitor cells [96]. 

CB1-deficient mice exhibit damage neural progenitor 

cell proliferation, self-renewal as well as neurosphere 

production, while CB1 receptor agonists enhance 

neurogenesis [97, 98]. 

 

A randomised controlled trial study by Ren et al. showed 

that an almond-based low carbohydrate diet (LCD) 

improved depression and glucose metabolism in patients 

with type 2 diabetes by modulating gut microbiota and 

glucagon-like peptide-1 (GLP-1) [99]. Almond-based 

LCD significantly reversed depressive-like behaviour 

and glycosylated haemoglobin, while significantly 

increasing the number of short-chain fatty acid (SCFA)-

producing bacteria Roseburia, Ruminococcus and 

Eubacterium. This suggests that the role of almond-

based LCD in improving depression in type 2 diabetic 

patients may be related to its stimulation of the growth 

of SCFA-producing bacteria, increased SCFA 

production and activation of the free fatty acid 2 (FFA2) 

receptor (known as GPR43), and further maintenance of 

GLP-1 secretion. 

 

Brain-gut axis plays important role in depression and 

obesity. The gut microbiota has been proven to interact 

with various organs, including the brain. Gut microbiota 

and its metabolites may act directly or indirectly on the 

brain via vagal stimulation to regulate metabolism, 

obesity, body homeostasis and energy balance as well as 

central appetite and food reward signals, which play a 

vital role in obesity [100]. There is a growing body of 

data suggesting that the gut microbiota coordinating 

multiple bodily functions is closely linked to the immune, 

metabolic and nervous systems and that dysbiosis of the 

gut dysbiosis disrupts the homeostasis between these 

systems [101]. The GBA is a bidirectional connection 

between the gut microbiota and the brain [100]. GBA 
influences physiological function and behavior through 

three different pathways (neural pathways, endocrine 

pathways, and immune pathways) [100, 102]. The neural 

pathway mainly consists of the enteric nervous system 

and the vagus nerve; the endocrine pathway mainly 

affects the neuroendocrine system of the brain, especially 

the HPA axis as well as the immune pathway [100, 102]. 

In particular, the signals from a brain influence the motor, 

sensory and secretory patterns of the gastro-intestinal 

tract, regulate inflammatory processes and influence the 

structure of the gut microbiota, and in turn, visceral 

information from gastro-intestinal features can affect 

brain function [103]. For example, neuroendocrine 

hormones (e.g., corticosterone) alter intestinal 

permeability, barrier function, and communicate with 

immune cells regarding cytokine secretion, and immune 

cells release cytokines important in the host responses to 

inflammation and infection [104]. Some alterations in the 

gut microbiota can modulate host metabolic pathways 

and dietary behavior through GBA, leading to obesity 

[105]. Recently, the role of the microbiota as an 

important factor in regulating gut-brain signaling has 

emerged and the concept of the microbiota-GBA has 

been established [105]. The GBA is proposed as the 

focus of new scientific and clinical research on its 

possible sites of systemic therapeutic interventions for 

depression and obesity [106]. 
 

The potential role of neuroplasticity in 

depression and obesity 
 

Neuroplasticity is characterized as the potential of the 

brain to undergo neurobiological changes in responding 

to external stimuli [107]. It is currently accepted that the 

mammalian brain shows continuous plasticity at all 

stages of life. The plasticity of neurons enables the CNS 

to learn newly acquired skills and to engage in ongoing 

learning and memory. In addition, neuronal plasticity 

allows the reorganization of neuronal networks in 

response to environmental stimuli as well as recovery 

after lesions [108]. Neuronal plasticity can be achieved 

through neurogenesis, apoptosis, synapse-dependent 

activity, as well as reorganization of neuronal networks 

[109]. Stress and depression are usually correlated, and 

studies have shown that chronic stressful events 

commonly accelerate depressive episodes in vulnerable 

individuals. Advanced brain functions are proposed to 

require synaptic frequency decoding, and changes in 

synaptic activation frequency may cause an increase or 

decrease in the long-term efficiency of these synapses, 

which may lead to long-term potentiation (LTP) or long-

term depression (LTD) [110]. Hwang et al. showed that 

the intensity of synaptic plasticity (LTP and LTD) at 

Schaffer lateral branch-CA1 synapses in hippocampal 

isolated slices of obese male mice was lower compared to 

sex-specific controls [111]. This suggests that, like mice 
in the depression model, HFD-obese mice also affect 

hippocampal synaptic plasticity. In neuroscience 

research, depressive-like behaviors and chronic stress 
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have been related to damage to neuroplasticity, like 

neuronal atrophy as well as synaptic loss in the medial 

prefrontal cortex (mPFC) and hippocampus [112]. 

Neuroplasticity as a downstream mechanism of the effect 

of novel fast-acting antidepressants such as ketamine has 

stimulated great interest in the mechanisms of neuro-

plasticity [113]. Among them, α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor (AMPAR) 

activation, BDNF and mammalian/mechanistic target of 

rapamycin (mTOR)-mediated signaling, synaptic protein 

expression and synaptogenesis are framed with a focus 

on neuroplasticity to explain the potent and sustained 

depression treatment effects of these compounds [113]. 

 

The hypothesis of neuroplasticity in depression suggests 

that downstream effects of antidepressants, such as 

increased neurogenesis, contribute to improved cognition 

and mood [21]. BDNF is a growth factor that modulates 

neurite growth, functional neuronal connections, synapse 

formation, as well as synaptic plasticity in the CNS [114]. 

BNDF signaling was proved to be required for the 

antidepressant effect of ketamine [115]. Activation of the 

high-affinity BDNF receptor, tropomyosin receptor 

kinase B (TrkB), is essential for antidepressant-related 

behaviors [114]. Numerous reports using depression-like 

behaviors or different animal models manipulating  

the expression of BDNF or its receptor TrkB suggest  

that BDNF/TrkB participates in the pathophysiology  

of depression as well as the mechanism of action of 

antidepressant treatments [114, 116]. Enhanced 

translation and/or release of BDNF and activation of the 

BDNF receptor target TrkB may lead to further activation 

of downstream pathways essential in synaptic plasticity. 

BDNF-mediated activation of the TrkB receptor activates 

the PI3K/Akt signaling pathway and downstream 

activation of the MEK-MAPK/Erk signaling pathway 

[115]. Both pathways promote protein translation by 

activating the mechanistic target of rapamycin complex 1 

(mTORC1) [117]. The acute activation of mTOR and 

protein translation may trigger sustained changes in 

synaptic plasticity leading to long-term effects of 

ketamine. Preclinical studies have shown that sodium-

glucose co-transporter 2 inhibitors (SGLT2i) improve 

cognitive dysfunction, reduce oxidative stress, and 

neuroinflammation, and improve neuronal plasticity and 

mitochondrial brain pathways in obese and type 2 

diabetes mellitus (T2DM) mice [118]. The mTOR serves 

as a trophic sensor with critical homeostatic functions in 

modulating energy metabolism, supporting neuronal 

growth as well as plasticity [115]. In addition, SGLT2i 

restored mTOR to its activated physiological state and 

prevented the onset or progression of neurodegenerative 

diseases [118]. 
 

Neuroplasticity due to chronic sugar intake has been 

shown to reduce impulse control and thus resistance to 

high-fat/high-sugar foods, leading to an obesity 

epidemic [119]. Akhaphong et al. showed that placental 

mTORC1 is the mechanistic connection between 

placental function and the programming of obesity as 

well as insulin resistance in adult offspring [115]. A 

study by Li et al. found that 8 weeks of HFD-feeding 

was effective in inducing metabolic disorders, including 

obesity as well as hyperlipidemia, in mice. Interestingly, 

the mice also exhibited depressive and anxious 

behaviors [120]. Li et al. concluded that HFD-feeding 

inhibited AMPK phosphorylation and induced mTOR 

phosphorylation [120]. After 28 days of treatment with 

the mTOR inhibitor rapamycin, autophagy and BDNF 

levels were elevated [120]. This suggests that 

improvement of lipid metabolism or enhancement of 

autophagy via the AMPK/mTOR pathway may be a 

potential candidate target for the therapy of obesity and 

depression. 
 

The potential role of HPA axis dysregulation in 

depression and obesity 
 

The HPA axis, which consists of the hypothalamus, 

pituitary and adrenal glands, modulates the production 

of glucocorticoids and is associated with the 

pathophysiology of psychiatric disorders [40]. During 

stress conditions, the HPA axis promotes transient 

physiological adaptations that usually resolve after the 

stress stimulus is not present. Both psychological and 

physiological stresses activate the HPA axis, which 

stimulates the release of corticotrophin-releasing factor 

(CRF) and arginine vasopressin (AVP) from the 

hypothalamic paraventricular nucleus (PVN), and the 

HPA axis is an essential component of the stress 

response system [40, 121]. AVP activates the locus 

ceruleus-norepinephrine neuromodulatory system, 

triggering a “fight or flight” response (regulated by the 

epinephrine and the norepinephrine), while CRH acting 

on the pituitary gland, which in response secretes 

adrenocorticotropic hormone (ACTH) into the 

bloodstream [40]. Once ACTH arrives in the adrenal 

glands, it initiates the release of cortisol or 

corticosterone, an anti-inflammatory hormone, and 

mediates the physiological behavioral response to stress 

[40]. In normal conditions, negative feedback from 

cortisol on CRH and ACTH ensures HPA homeostasis 

via the activation of glucocorticoid receptors (GRs) as 

well as mineralocorticoid receptors (MRs) [40]. CRF 

and AVP both induce the secretion of ACTH from the 

anterior pituitary gland, which increases the release of 

ACTH, causing an elevated level of circulating 

glucocorticoid (GC) and inhibiting the secretion of CRF 

and AVP from the hypothalamus, forming a reverse 
feedback circuit [122]. Chronic stress is known to 

overstimulate the HPA axis and the regulation of 

corticosterone secretion, which is associated with 
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abdominal obesity [123, 124]. Studies have shown that 

increased physical activity can normalize corticosterone 

secretion and thus have a positive impact on physical 

and mental health. A randomized controlled trial by 

Lasselin et al. found that immune and behavioral 

responses to lipopolysaccharide (LPS) differed little 

between obese and normal-weight subjects, but that 

cortisol responses to LPS were significantly attenuated 

in obese individuals and that higher body fat percentage 

was associated with lower cortisol responses to LPS 

[125]. This suggests that young and healthy obese 

individuals do not have increased behavioral sensitivity 

to cytokines, but have diminished cortisol responses to 

immune challenge. 

 

Over the last decades, several hypothalamic axis 

abnormalities associated with stress overreaction have 

been identified in patients with depression. These 

include alterations such as excessive CRF secretion in 

the paraventricular nucleus of the hypothalamus, 

impairment of negative feedback in the HPA axis, 

enlarged adrenal glands, hypercortisolism, and reduced 

inhibition of cortisol by dexamethasone [126]. 

Neuroendocrine studies have demonstrated HPA axis 

hyperactivity in patients with MDD. Changes in the 

HPA axis in depressed patients have been consistently 

reported, with approximately 30% of depressed patients 

having higher cortisol levels [127]. It has been shown 

that over 40-60% of depressed patients experience 

hypercortisolemia. Increased stress-induced GC 

secretion may enhance mood and motivation [128]. 

Microbiota-induced hyperactivity of the HPA axis and 

inflammation have also been implicated in causing 

depression [129]. Pro-inflammatory cytokines exert the 

potential to activate the HPA axis, and patients with 

depression also have a hyperactive HPA axis. 

Furthermore, HPA axis dysfunction decreases BDNF 

expression, inhibits 5-HT synthesis, reduces Glu 

receptor expression, and even disrupts neuroplasticity as 

well as neural circuits [122, 130]. Related studies 

suggest that an excess of pro-inflammatory cytokines 

inhibits the negative feedback of the HPA axis, growing 

the permeability of the BBB, reducing 5-HT synthesis, 

interfering with the glutamatergic system, and ultimately 

leading to depression [131, 132]. More than half of 

depressed patients display negative feedback 

dysfunction of the HPA axis, including chronic increases 

in circulating GC and ACTH [133]. Chronic stress and 

stress hormones such as glucocorticoids trigger 

metabolic changes, including obesity and diabetes. 

 

A growing body of research suggests that chronic stress-

related stimulation of the HPA axis and the causing 
excess glucocorticoid exposure may exert a fundamental 

role in the development of visceral obesity [134]. FGF21 

is a longevity factor that coordinates the interaction 

between energy metabolism and stress response  

[135, 136]. FGF21 is a general stress factor that not only 

alters energy metabolism but also activates multiple 

rescue processes directly or indirectly by stimulating the 

secretion of lipocalin and hormones in the HPA axis 

through the AMPK signaling pathway and several other 

pathways [137]. Recent studies have shown that FGF21 

therapy can relieve many metabolic diseases, such as 

obesity, type 2 diabetes as well as some cardiovascular 

diseases. FGF21 can control stress response and 

metabolism by regulating the function of the 

somatotropic axis and HPA pathway [135]. Werdermann 

et al. showed that obese animals show an overactive 

HPA axis, leading to adrenal hyperplasia [137]. 
 

The potential role of the neural cell nucleus and 

neural circuit in depression and obesity 
 

Although neuroplasticity is important for depression 

and obesity co-morbidity, there is growing evidence that 

it is significant to explore the neural mechanisms of 

depression and obesity co-morbidity at the level of the 

neural cell nucleus as well as the neural circuit [138]. 

Xia et al. suggest that melanocortin 4 receptor (MC4R) 

neurons, located in the bed nucleus of the stria terminus 

(dBNST), are involved in psychiatric-related body 

weight regulation by receiving α5-containing GABAA 

receptor and serotonergic GABAergic projections from 

hypothalamic AgRP neurons [138]. Overall, targeting 

GABAAR-α5 and 5HT3R within MC4RdBNST neurons 

contributed to rescuing HFD-induced anxiety and 

depression, thereby reducing body weight by 

simultaneously reducing HFD cravings and enhancing a 

healthy low-fat diet in mice [138]. In addition, studies 

have shown that mixtures of zonisamide-granisetron 

cocktail restore mental normalcy and promote weight 

loss by targeting the GABAAR-α5 and 5HT3R 

pathways, respectively, by altering food preferences 

toward a healthy low-fat diet [138]. 

 

Recent studies by Hallihan et al. have found that 

affective neural circuits and inflammatory markers are 

associated with symptoms of depression and anxiety in 

comorbidities of obesity [139]. They used the current 

feasibility study using functional neuroimaging and 

biospecimen data to identify whether changes in 

inflammatory markers, fecal short-chain fatty acids, as 

well as neural circuit-based targets predicted depression 

and anxiety outcomes in comorbid obese participants, 

and preliminary correlation analyses showed significant 

correlated changes in three inflammatory markers (IL-

1RA, IL-6, and TNF-α) and five neural targets (negative 

influence circuit, positive influence circuit, and default 
mode circuit) at 2 months [139]. Further, they found that 

changes in IL-1RA and TNF-α at 2 months, as well as 

changes in three neural targets (negative influence circuit 
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and positive influence circuit), correlated with changes 

in depression and anxiety symptoms at 6 months [139]. 

Perinatal exposure to maternal obesity, metabolic 

disorders (including diabetes and hypertension), and 

unhealthy maternal diets have long-term effects on the 

behavior and physiology of offspring [123]. Evidence 

from epidemiological studies suggests that maternal 

obesity and metabolic comorbidities increase the risk of 

attention deficit hyperactivity disorder (ADHD), autism 

spectrum disorder (ASD), depression, schizophrenia, 

eating disorders (food addiction, anorexia nervosa, as 

well as bulimia nervosa), and cognitive impairment in 

offspring [140]. In addition, during pregnancy, 

inflammation in the offspring’s brain impairs the 

development of neural pathways critical to behavioral 

regulation, such as the serotonergic, dopaminergic, and 

melanocortinergic systems [123]. 

 

The potential role of genetic association in 

depression and obesity 
 

Mendelian randomisation (MR) studies have shown that 

obesity and the development of depression are causally 

related [141]. To provide a better comprehension of the 

relationship between obesity and depression, Speed et al. 

conducted a MR study of the relationship between 

adiposity, non-adiposity, height and depression, using 

results from the UK Biobank (n = 332,000) and the 

Psychiatric Genomics Consortium (n = 480,000) 

genome-wide association studies [141]. The results of 

the study found that both adiposity and height (short 

stature) were causal risk factors for depression, whereas 

non-adiposity was not [141]. In addition, they note that 

reducing fat mass will reduce the risk of depression. 

O’Loughlin et al. performed a two-sample MR using 

genetic summary statistics (15771 cases and 178777 

controls) from the recent Genome-Wide Association 

Study (GWAS) of depression in East Asian ancestry. 

i.e., single nucleotide polymorphisms (SNPs) associated 

with BMI and SNPs associated with waist height ratio 

(WHR) were selected as genetic instrumental variables 

and inverse variance weighting (IVW) method to 

estimate the causal relationship between BMI and WHR 

and depression [142]. This GWAS data provides the first 

MR evidence that high obesity is associated with a lower 

risk of depression in a population of East Asian ancestry 

living in East Asia. Liao et al. performed genome-wide 

genotyping of 106,604 unrelated individuals from a 

Taiwanese biobank to derive polygenic risk scores for 

BMI and MDD to assess their effects on obesity-

associated traits [143]. This study showed that MDD 

polygenic risk score (PRS) was positively associated 

with waistline, hipline, waist-hip ratio, body fat 
percentage, BMI, overweight (BMI ≥ 25), and obesity 

(BMI ≥ 30) [143]. The results of the meta-analysis of 

interactions suggest a genetic mechanism for the 

increased risk of obesity in patients with depression 

[144]. Rivera et al. showed that depression enhanced the 

effect of FTO variants on BMI, with a 2.2 increase in 

BMI per rs9939609 risk allele (A) in depressed patients 

compared to mentally healthy controls [144]. This 

suggests that alterations in key biological processes 

associated with depression may interact with FTO risk 

alleles to increase BMI or obesity risk. 

 

In a cross-trait meta-analysis, Amare et al. identified 14 

genetic loci (including NEGR1, CADM2, PMAIP1, and 

PARK2) linked to obesity and response to treatment 

with Selective serotonin reuptake inhibitors (SSRIs) 

[145]. Weight gain is a side effect of antidepressants 

and antipsychotics that can cause many comorbidities 

and reduce life expectancy [146]. The majority of 

included studies demonstrated a 5% weight gain in 

individuals treated with antidepressants; however, 

Quetiapine, Haloperidol, Trifluoperazine, Risperidone, 

Aripiprazole, Olanzapine, and Clozapine resulted 

in≥7% weight gain from baseline [146]. Some 

antidepressants, such as Mirtazapine, show significant 

levels of weight gain, while others, such as Bupropion, 

show weight loss effects [147]. Therefore, controlling 

undesired weight effects is an important consideration 

in the selection of antidepressants. 
 

Major adipocytokines and lipokines as well as 

current relevance to obesity and depression 
 

Studies have established that adipose tissue is a dynamic 

organ that performs several vital physiological 

processes. It consists of many cell types: e.g., adipocytes, 

pericytes, preadipocytes, vascular endothelial cells, 

macrophages and fibroblasts [148]. However, the major 

cells present in the adipose tissue are the mature 

adipocytes. Three types of adipocytes are found in 

mammals and are usually classified according to their 

color appearance: white, brown and beige/brite/brown 

adipocytes [149, 150]. White adipocytes are primarily 

involved in energy storage and mobilization, while 

brown adipocytes are chiefly involved in nonshivering 

thermogenesis [149]. Adipose tissue and adipocytes 

store the energy, produce adipokines and lipokines to 

regulate the energy supply and are crucial players in the 

endocrine system. Adipokines and lipokines act on the 

target tissues to regulate energy supply, lipid metabolism 

and immune response [151]. Adipokines are derived 

mainly from adipocytes, even though some members are 

synthesized by other types of cells as well [152]. These 

adipocytokines resemble classical cytokines and have 

pleiotropic functions that influence biological processes 

throughout the entire organism [152]. It has long been 

suggested that adipocytokines have a profound 

protective role in the pathogenesis of diabetes and 

cardiovascular disease [153]. In recent years, it has been 
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found that adipocytokines also act as an effective 

modulator of depressive and anxiety-like states, but the 

mechanism of action of adipocytokines in modulating 

depressive and anxiety-like behavior is still unclear. 

Recently, more and more adipocytokines have been 

recognized, such as leptin, adiponectin, plasminogen 

Activator I (PAI-1)/visfatin, MCP-1, RBP4, pre-B-cell 

colony enhancing factor, resistin, apelin, chemerin, 

aprotinin, vaspin, and others [152]. Leptin and 

adiponectin are by far the most thoroughly studied 

adipocytokines. Numerous studies have demonstrated 

that leptin and adiponectin regulate brain cell 

proliferation, survival as well as synaptic plasticity via 

regulation of cellular metabolism and suppression of 

inflammatory responses [154, 155]. Since leptin and 

adiponectin play an essential role in brain diseases, these 

two adipocytokines have been described in detail. In 

addition, in Table 1, we summarize the representative 

adipocytokines and their current relevance to obesity and 

depression. 

 

In the past, studies on the adipose secretome have 

mainly focused on polypeptide adipokines. Adipose-

derived blood-borne lipids (“lipokines”) are a distinct 

endocrine factor that has been relatively hotly studied in 

recent years [156]. Lipokines are fatty acids that 

influence lipid metabolism and behave like hormones 

[157]. Interestingly, one of the systemic areas with 

active lipid metabolism in adipose tissue, which releases 

diverse lipids into the bloodstream to interact with 

distant organs [156]. Lipids are also closely related to 

intracellular fatty acid metabolic pathways and can 

transfer the intracellular energy of adipocytes to other 

non-adipose tissues. Unexpectedly, alterations in lipid 

metabolism might also be connected to the emergence of 

mental disorders like depression. It has been proposed 

that increased adipose tissue is linked to chronic 

inflammation and pro-inflammatory factors that inhibit 

lipokines production and that chronic inflammation 

associated with visceral obesity inhibits lipockines 

production and perpetuates inflammation [158]. There is 

no doubt that inflammatory dysregulation plays an 

instrumental role in the pathogenesis of depression, and 

lipokines may also influence depression via this 

pathway. Lipokines, mainly including lysophosphatidic 

acid (LPA) and monounsaturated palmitoleic acid. LPA 

can interact with the central nervous system and also 

have endocrine impacts on systemic tissues. In the 

serum, palmitoleic acid is one of the most prevalent fatty 

acids. Its circulating levels change according to 

metabolic conditions. Besides, 12,13-dihydroxy-9Z-

octadecenoic acid (12,13-diHOME) is the best-studied 

lipokines secreted by brown fat, produced by the 
dihydroxylation of linoleic acid. FAHFAs (fatty acid 

esters of hydroxy fatty acids) are also lipokine. FAHFAs 

are secreted by adipocytes into plasma, and in the 

organism, FAHFA levels in adipose tissue and plasma 

are associated with insulin sensitivity and a decline in 

insulin-resistant states. In Table 2, we summarize the 

representative lipokines and their current relevance to 

obesity and depression. 

 

The biology of leptin and its relationship to 

obesity and depression 
 

To date, leptin is by far the finest instance of a 

successfully moving from discovery to clinical 

application [9]. The role of leptin in neuroendocrine has 

been extensively studied. In 1994, Friedman’s team 

cloned for the first time a hormone-like substance, 

leptin, secreted by adipocytes and found that it has 

appetite control and weight reduction effects [159]. The 

endocrine hormone leptin exerts a pivotal role in 

modulating food intake and body weight through the 

action of the hypothalamus [160]. Leptin, a key 

adipose-derived hormone that regulates eating behavior 

and body weight, is associated not only with obesity but 

also with depression. Intraperitoneal injection of leptin 

into C57BL/6J mice reduced depressive-like behavior in 

the forced swimming test as well as the tail suspension 

test [161]. Relevant studies have suggested that leptin 

levels are higher in patients with moderate to severe 

depression than in those with mild depression or mild to 

no depression, and that body mass index (BMI) is 

higher in patients with moderate to severe depression 

than in those with mild or mild depression [20]. And 

after adjusting for multiple factors such as age, gender, 

and race, leptin levels remained a key predictor of 

depression [162]. This suggests that leptin may mediate 

the progression of depression in obese individuals or be 

a common mechanism causing depression and obesity. 
 

Studies have indicated that the neuroprotective effects of 

leptin may be related to the leptin/JAK2/STAT3/PGC-

1signaling pathway or the leptin-mediated PI3K/Akt/ 

mTOR signaling pathway [163, 164]. Obesity damages 

leptin-induced regulation of BDNF expression and 

synaptogenesis, which is thought to be related to the 

onset of depression. Ginsenoside Rb1 is a major bio-

active ingredient of ginseng, and Wu et al. showed that 

chronic treatment with ginsenoside Rb1 improved 

central leptin sensitivity, the leptin-JAK2 -STAT3 

signaling pathway, as well as the regulation of leptin-

induced BDNF expression in the prefrontal cortex of 

obese mice induced by a HFD [165]. This suggests that 

supplementation of Rb1 may be a useful way to treat 

obesity-related psychiatric disorders. Leptin has been 

proven to affect hippocampal synaptic plasticity [166, 

167]. Synaptic plasticity is the most functionally 

critical form of neuroplasticity, and it exerts an 

essential role in the neuropathogenesis of several 

psychiatric disorders.  
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Table 1. Major adipocytokines and current relevance to obesity and depression. 

NO. 
Major 

adipocytokine 
Source Functions  Relevant to obesity Relevant to depression References 

1 Leptin 
white adipocytes, 

brown adipocytes 

regulate energy balance, 

body weight, metabolism 

and endocrine function 

reduced appetite; elevated 

energy expenditure; 

decreased heat loss; 

reduced insulin secretion, 

increased by fat mass 

leptin levels are higher in 

patients with moderate to 

severe depression than in 

those with mild 

depression 

[20, 162, 168] 

2 Adiponectin 

mature white 

adipocytes, brown 

adipocytes 

enhance insulin 

sensitivity, decreased 

inflammation 

decreased by obesity, 

increased insulin 

sensitivity, decreased 

gluconeogenesis, increased 

fatty acid catabolism,  

adiponectin works 

through AdipoR1 

receptors on 5-HT 

neurons to mediate 

depression-related 

behaviors in a sex-

dependent manner, 

decreased by oxidative 

stress, decreased by 

endoplasmic reticulum 

stress 

[10, 169] 

3 PAI-1 

hepatocytes, 

endothelial cells, 

platelets, adipocytes, 

and cardiac myocytes 

(in vitro) 

the main physiological 

inhibitor of plasminogen 

activators/plasmin 

system; 50-kilodalton 

glycoprotein of the serine 

protease inhibitor family; 

inhibition of the tissue- 

and urokinase-type 

plasminogen activator 

PAI-1 is frequently 

elevated in obesity 

elevated/ decreased 

plasma PAI-1 levels in 

depressed patients; PAI-1 

knockout mice are a 

model of resistance to 

antidepressants such as 

SSRIs 

[18, 170–173] 

4 MCP-1 

endothelium, 

fibroblasts, 

macrophages, 

monocytes, vascular 

endothelial cells, 

smooth muscle cells, 

astrocytes and 

microglia 

strong monocyte 

chemotactic active 

molecule 

MCP-1 plays an essential 

role in obesity-associated 

monocyte/macrophage 

infiltration 

decreased serum MCP-1 

levels in MDD patients 
[174, 175] 

5 RBP4 

white and brown 

adipocytes, liver, 

adipose tissue 

RBP4 is a protein in the 

lipocalin family and a 

specific carrier protein of 

vitamin A in the blood 

RBP4 related to systemic 

insulin resistance, 

dyslipidemia and obesity  

serum RBP4 levels were 

substantially lower in 

MDD patients than in 

controls 

[11, 176] 

6 PBEF/ visfatin 

high levels in visceral 

fat, bone marrow, 

liver tissue and muscle 

cells, but also a 

variety of other 

tissues, including the 

placenta, kidney, heart 

and lung. 

a pro-inflammatory 

cytokine that has 

functions related to 

cellular metabolism, 

inflammation and 

immune regulation. 

 

visfatin reduces apoptosis 

and necrotic cell death in 

the CA1 region of the 

hippocampus of 

ischemia/reperfusion 

stroke rats, contributing 

to a neuroprotective 

effect 

[177–181] 

7 Resistin 

white and brown 

adipocytes, 

macrophages 

presents as 

trimer/hexamer in 

plasma, and targets 

specific receptors TLR4 

or Adenylyl CAP1, 

triggering various 

intracellular signal 

transduction pathways to 

induce vascular 

inflammation, lipid 

accumulation, and plaque 

vulnerability 

in rodents, resistin is 

increased in high-fat/high-

carbohydrate-fed, obese 

states  

lower serum resistin 

levels in MDD patients 

compared to healthy 

controls 

[182–184] 

8 
Apelin 

(APLN) 

adipose tissue also 

secreted from various 

tissues in the 

cardiovascular, 

digestive, urinary, and 

follicle development, 

regulating glucose and 

lipid metabolism, 

modulating insulin 

secretion, cardiovascular 

mediate glucose and lipid 

metabolism, regulate 

insulin secretion, plasma 

apelin concentrations are 

increased in obesity 

Apelin-13 reverses 

depression-like behavior 

in CSDS rats model, 

decreased depressive 

behavior in sucrose 

[185–188] 
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CNS function, blood pressure, 

angiogenesis, drinking 

behavior 

preference and tail 

suspension tests 

9 Chemerin white adipose tissue 

regulate adipogenesis, 

insulin sensitivity, and 

immune response 

systemic levels of 

chemerin are increased in 

obesity 

decreased depressive 

behavior in forced swim 

and tail suspension tests, 

better learning and 

memory functions 

[189–191] 

10 

lipid 

chaperone 

FABP4 

highly expressed in 

white adipocytes, 

brown adipocytes, 

macrophages, 

endothelial cells, 

lipid chaperone protein, 

maintain glucose 

homeostasis and facilitate 

communication between 

energy storage systems 

and distant organs 

long-term involvement of 

FABP4 in obesity under 

conditions of 

immunometabolic stress, 

regulate metabolic and 

inflammatory pathways in 

response to fatty acids 

potential role in cell 

signaling, neuronal 

development and 

synaptic function 

[192, 193] 

11 IL-6 

white and brown 

adipocytes, 

macrophage, 

endothelial cells, 

immune cells 

IL-6 is produced rapidly 

and transiently in 

response to infection and 

tissue injury and 

promotes host defence by 

stimulating the acute 

phase response, 

hematopoiesis and 

immune response 

acutely elevated IL-6 

levels aid in fasting or 

exercise-induced fat 

mobilization, IL-6-

dependent induction of 

leptin and free fatty acid 

release from adipocytes 

patients with MDD have 

high levels of various 

pro-inflammatory 

cytokines, such as IL-6 

[194–196] 

12 Nrg4 

activated thermogenic 

adipose tissue, brown 

adipocytes, 

hepatocytes 

modulate glucose and 

lipid metabolism and 

energy balance 

Nrg4 is substantially 

down-regulated in mouse 

and human obesity 

play a role in neural 

development and 

function, Nrg4 is a major 

novel regulator of 

dendritic arborizations in 

the developing cerebral 

cortex 

[197, 198] 

13 Omentin 

omental adipose 

tissue, macrophage, 

endothelial cells, the 

stromal-vascular 

fraction of visceral 

adipose tissue 

regulate insulin 

sensitivity, alter 

inflammatory states 

prolonged insulin-glucose 

infusion in healthy 

individuals induces a 

significantly reduced 

plasma omentin-1 

concentration, serum 

omentin-1 concentrations 

were significantly lower in 

overweight and obese 

subjects than in lean 

individuals 

omentin protects against 

the decrease in cell 

viability induced by the 

pro-inflammatory 

cytokine TNF-α, omentin 

promotes the growth and 

survival of NSCs in vitro 

by activating the Akt 

signaling pathway 

[199, 200] 

14 Adipsin 
white adipocytes, 

brown adipocytes 

reduced inflammation by 

chemotaxis, decreased 

inflammation by 

clearance of dead cells 

 

decreased by insulin, 

adipsin serum 

concentrations are strongly 

related to obesity, adipsin 

is downregulated in 

obesity 

mood disorders have 

lower adipsin levels 
[8, 201, 202] 

15 Vaspin 

white and brown 

adipocytes, 

preadipocytes, visceral 

and subcutaneous 

adipose tissues 

play a crucial role in 

osteogenesis, 

steroidogenesis, the 

formation of blood 

vessels, and food intake, 

vaspin action on cell 

apoptosis and 

proliferation, serine 

protease inhibitor, 

improves hyperglycemia 

vaspin levels are higher in 

obese subjects, vaspin 

mRNA expression was 

increased in human 

adipose tissue, vaspin may 

be a target for the 

treatment of insulin 

resistance and 

inflammation associated 

with obesity, decreased 

food intake 

elevated vaspin serum 

concentrations are 

associated with impaired 

health levels and leptin 

serum concentrations 

[9, 199, 203, 204] 

Note: AdipoR1, adiponectin receptor 1; 5-HT, 5-hydroxytryptamine or serotonin; PAI-1, Plasminogen activator inhibitor type 
1; SSRIs, selective serotonin reuptake inhibitors; MCP-1, Monocyte chemoattractant protein-1; MDD, major depressive 
disorder; RBP4, Retinol Binding Protein 4; PBEF, Pre-B cell colony enhancing factor; TLR4, Toll-Like Receptor 4; CAP1, Cyclase-
Associated Protein 1; APLN, Apelin; CNS, central nervous system; CSDS, chronic social defeat stress; FABP4, fatty acid-binding 
protein 4; IL-6, Interleukin 6; Nrg4, Neuregulin 4; TNF-α, tumor necrosis factor-alpha; NSCs, neural stem cells; AKT, serine-
threonine protein kinase. 
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Table 2. Major lipokines and current relevance to obesity and depression. 

NO. Major lipokines Source Functions  Relevant to obesity 
Relevant to 

depression 
References 

1 
Palmitoleic acid 

(Palmitoleate) 
white adipocytes 

decreased 

inflammation, 

decreased 

atherogenesis, 

increased glucose 

homeostasis, enhances 

whole-body insulin 

sensitivity 

PLA (16:1n-7) has 

hormone-like 

properties and 

improves several 

metabolic 

parameters that are 

damaged in obesity 

based on fatty acid 

analysis, the 

palmitoleic acid 

was remarkably 

altered in mice 

with depressive-

like behavior. 

[205–207] 

2 DNL FAHFAs white adipocytes 

increased by glucose 

metabolism, increased 

by DNL, increased 

glucose tolerance, 

increased insulin 

secretion 

dysregulation of 

DNL is often 

observed in a 

variety of metabolic 

abnormalities, 

including obesity 

expression of de 

novo fatty acid was 

enhanced in HFD 

mice with 

depression-like 

behavior 

[8, 207, 208] 

3 12,13-diHOME brown adipocytes 

increased by cold 

exposure, increased by 

exercise, increased 

skeletal muscle fatty 

acid oxidation, 

increased fatty acid 

transport 

increasing 12,13- 

diHOME levels 

may prevent and 

treat obesity and 

metabolic diseases 

unknown [8, 209] 

4 LPA 

LPA is found in 

virtually all 

biological fluids 

influences diverse 

cellular and organismal 

processes, including 

proliferation and 

growth, survival, 

development, 

chemotaxis, 

vasoregulation, and 

calcium dynamics 

ATX-LPA-LPA1-6 

signaling axis in the 

development of 

metabolic disorders, 

including obesity, 

insulin resistance, as 

well as damaged 

glucose homeostasis 

LPA management 

improves 

depression and 

anxiety, LPA 

treatment may 

regulate the 

activation of 

microglia, which 

plays a critical  

role in psychiatric 

disorders such as 

depression 

[210, 211] 

Note: DNL, de novo lipogenesis; FAHFAs, fatty acid esters of hydroxy fatty acids; 12,13-diHOME, 12,13-dihydroxy-(9Z)-
octadecenoic acid; LPA, lysophosphatidic acid; HFD, high-fat diet; ATX, autotaxin. 

 

Leptin regulates the efficacy of hippocampal trans-

mission synapses, including LTP and LTD [20]. LTP and 

LTD are two types of mechanisms that affect impaired 

cognitive and emotional function in MDD [167]. Under 

intense, sustained stimulation, increased neuronal firing 

enhances LTP by strengthening synapses, and LTD 

causes an activity-dependent decrease in neuronal 

synaptic efficacy and connectivity [167]. Leptin receptors 

are widely expressed in various regions of the brain, 

particularly the hippocampus, which is a crucial region 

for learning and memory formation as well as emotion 

regulation. Leptin can cross the BBB and bind to a 

specific leptin receptor (LepRb) [212]. LepRb deficiency 

also resulted in memory and cognitive impairment with 

altered hippocampal synaptic plasticity [213]. It was 

shown that especially in hippocampal structures, 

CA1/CA3 regions and dentate gyrus (DG) widely 

express LepRb mRNA. Several pieces of evidence 

suggest that leptin is a potent mediator of excitatory 

synaptic transmission at hippocampal CA1 synapses 

[213]. The binding of leptin to LepRb isoforms 

associated with the JAK2-STAT3 signaling pathway 

causes induction of SOCS3, which terminates JAK2 

activity via ubiquitin-mediated degradation of JAK2, 

thereby terminating the leptin signaling pathway. 

Enhancing or sustaining the activation of SOCS3, 

increases obesity-induced leptin concentrations in the 

blood, leading to leptin resistance. Liu et al. showed that 

LepRb knockdown-induced depression-like behavior was 

correlated with STAT3/SOCS3 signaling pathway [19]. 

LepRb may serve as a novel direction for depression 

treatment in the future. 
 

The biology of adiponectin and its relationship 

to obesity and depression 
 

To date, adiponectin is one of the most extensively 

studied adipokines [214]. Adiponectin, also called  
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30-kDa adipocyte complement-associated protein 

(Acrp30), is a type of hormone secreted by adipocytes 

[215]. The primary role of adiponectin in arcuate  

nucleus promelanocortin (POMC)-expressing neurons is 

excitatory, depolarizing neurons, reducing inhibitory 

synaptic inputs, as well as increasing their responsiveness 

[216]. The current study suggests that adiponectin 

directly mediates the cellular activity of arcuate POMC 

and neuropeptide Y/Agouti-related peptide (NPY/AgRP) 

neurons [216]. Adiponectin inhibits orexigenic NPY 

neurons under hypoglycemic conditions and activates 

orexigenic POMC neurons, thereby attenuating appetite 

and food intake under fasting or hypoglycemic conditions 

[166]. In cases of obesity, insulin resistance and  

type 2 diabetes, blood levels of adiponectin are reduced 

[215]. Moreover, intracerebroventricular injection of 

adiponectin -neutralizing antibodies can induce stressful 

depressive behavior [217]. Adiponectin receptors 

(AdipoRs) are widely present in the rodent brain, 

including the hypothalamus, brainstem, prefrontal cortex, 

as well as hippocampus [155, 217, 218]. While AdipoR1 

was highly expressed in the skeletal muscle, AdipoR2 

was strongly expressed in the liver [215]. AdipoRs are 

located on neurons that participated in metabolic 

regulation in the hypothalamus, including arcuate POMC 

and NPY/AgRP neurons [216]. Studies have shown that 

AdipoRs expression is regulated by adiponectin and 

dopamine signaling pathways [219]. Adiponectin can 

initiate Notch signaling in the hippocampus by 

upregulating ADAM10 and Notch1, which are two 

pivotal molecules in Notch signaling [220]. It has been 

shown that the removal of AdipoR1 from dopamine 

neurons could enhance neuronal and anxiogenic 

responses to suppress stress [219]. The effects of 

AdipoR1 on neuronal activity and behavior were found 

to be abolished in dopamine-neuron deficient AdipoR1 

mice with VTA infusion of lipocalin [219]. This finding 

suggests that adiponectin regulates VTA dopamine 

neuron activity and that AdipoR1 is essential for 

adipokine-induced inhibition of dopamine neurons 

directly. Activation of AdipoR1 and AdipoR2 stimulates 

the activity of AMPK and p38 mitogen-activated protein 

kinase (p38MAPK), and recently, the p38MAPK 

signaling pathway was found to regulate adiponectin-

induced phosphorylation of the glycogen synthase kinase 

3β (GSK-3β) Ser389 inhibitory site [221]. A large body 

of data suggests that active GSK-3β is associated with 

increased susceptibility to mood disorders. And 

inhibition of GSK-3β may be linked to the treatment 

effects of antidepressants [222]. Thus, adiponectin-

induced GSK-3β inhibition may be the basis for the 

mechanism of antidepressant action of adiponectin. Like 

LepRs, AdipoRs activate several overlapping signaling 
cascades, including Janus kinase 2/signal transducer  

and activator of transcription 3 (JAK2/STAT3), 

phosphatidylinositol-3-kinase (PI3K), insulin receptor 

substrate 1/2 (IRS1/2), forkhead box protein O1 

(FOXO1) and AMP-activated protein kinase (AMPK) 

[216, 223]. So far, studies of adiponectin receptors have 

primarily focused on most aspects of the AMPK 

signaling pathway regulating metabolism in peripheral 

tissues [224]. AdipoRs exert a crucial role in the 

regulation of glucose and fatty acid metabolism via 

initiating a few signaling cascades that overlap with 

LepRs [216]. Adiponectin and its adiponectin -receptor 

interactions are complex processes. In the future, the 

receptor subtypes and neuronal circuits responsible for 

the antidepressant-like effects of adiponectin will need to 

be identified. It was shown that adiponectin expression 

was reduced in adipose tissue and blood of obese mice, 

and circulating adiponectin levels were also decreased in 

obese patients, however, the expression of adiponectin 

receptors was increased [225–227]. Liu et al. showed that 

in a chronic social defeat stress (CSDS) model of 

depression, plasma levels of adiponectin were reduced, 

which was associated with a reduction in the duration of 

social interaction [217]. They suggest that reduced 

adiponectin levels lead to elevated susceptibility to social 

aversion, pleasure deficit and learned helplessness, as 

well as to impaired glucocorticoid-mediated negative 

feedback in the HPA axis [217]. In addition, adiponectin 

activates neurogenesis in the hippocampus, which may 

facilitate its antidepressant-like behavioral effects [221]. 
 

The biology of palmitoleic acid and its relation-

ship to obesity and depression 
 

Excessive fat accumulation in the body causes adipose 

tissue dysfunction. This impairment potentially results 

in elevated release and concentration of circulating free 

fatty acids, glycerol, hormones, as well as inflammatory 

cytokines [228]. All these modifications are linked to 

distinct health problems, such as dyslipidemia, 

hypertension as well as insulin resistance, collectively 

known as the “metabolic syndrome” [228]. The ratio of 

saturated fatty acids to monounsaturated fatty acids is 

essential in regulating biological membrane fluidity 

[229]. An imbalance in the ratio of these two may 

facilitate the development of several diseases, such as 

diabetes, and cardiovascular disease [229]. Stearoyl-

CoA desaturase (SCD) (Δ9 desaturase) and hexa-

decenoic fatty acids (16:1) are the major 

monounsaturated fatty acids present in cells and tissues 

[230, 231] Recently, monounsaturated hexadecenoic 

fatty acids have been becoming considered biomarkers 

of health and have vital functions in physiology and 

pathophysiology [231]. In recent years, palmitoleic acid 

(cis-9-hexadecenoic acid, 16:1n-7) and its positional 

isomers 16:1n-9 and 16:1n-10 have gained much 

attention for their anti-inflammatory properties [231]. 

PLA (16:1n-7) is the most abundant member of the 

monounsaturated fatty acids family and the best studied. 
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PLA (16:1n-7) was synthesized from palmitic acid in 

the presence of SCD-1 and fatty acid desaturase-2 

[231]. It can be ingested via the diet and synthesized 

endogenously from other fatty acids, carbohydrates as 

well as amino acids [232]. PLA (16:1n-7) is often 

described as a lipokine capable of regulating a variety 

of metabolic processes such as increasing insulin 

sensitivity in muscle, prevention of endoplasmic 

reticulum stress, β-cell proliferation, and lipogenic 

activity in white adipocytes [157]. Cao et al. showed 

that the release of this fatty acid from adipose tissue 

inhibited steatosis in the liver and modified insulin 

signaling in muscle [157]. Collectively, this study 

showed that PLA (16:1n-7) acts as an anti-inflammatory 

agent in the adipose tissue of mice and contributes to 

reducing the effects of obesity. This shows that PLA 

(16:1n-7) inhibits adipocyte cytokine expression, while 

palmitic acid does not inhibit adipocyte cytokine 

expression, suggesting that adipocytes are the primary 

target of PLA (16:1n-7) [157]. Lopes A et al. showed 

that PLA (16:1n-7) improves systemic insulin 

sensitivity and glucose uptake into adipose tissue by 

regulating GLUT-4 and AMPK phosphorylation in 

HFD-fed mice [233]. Another study also discovered that 

PLA (16:1n-7) treatment may prevent the enhancement 

of transcription factors CEBPα and PPARγ in 

subcutaneous adipocytes in the inguinal groin of HFD-

treated mice [234]. PLA (16:1n-7), described as a 

lipotropic hormone, may play diverse roles according to 

the organ and disease model under study [207]. 

According to fatty acid analysis, palmitoleic acid 

content was significantly altered in mice with 

depressive-like behavior. Moreover, the expression of 

acetyl coenzyme a carboxylase (ACC), SCD1, and fatty 

acid desaturase 1 and 2 (FADS1 and FADS2), which 

are involved in the fatty acid synthesis, fatty acid 

desaturation, and arachidonic acid synthesis, was 

enhanced in HFD mice with depressive-like behavior 

[207]. Thus, it is hypothesized that HFD-induced 

disturbances in lipid metabolism speed up the 

development of depression-like behaviors. Although 

beneficial effects of PLA have been observed in both in 

vivo and in vitro studies, there have not been sufficient 

human intervention studies to fully comprehend the 

physiological effects of palmitoleic acid [206]. Hence, 

more human-based studies are required to determine 

whether PLA has promising therapeutic potential. 
 

The biology of lysophosphatidic acid and its 

relationship to obesity and depression 
 

LPA, also called monoacyl-sn-glycero-3-phosphate, is a 

lysophospholipid with a glycerol phosphate head group 
and a fatty acid moiety. It is not a single chemical 

entity, but represents a class of biomolecules with 

different fatty acid chain lengths and saturations [235]. 

Autotaxin (ATX) is a secreted enzyme that hydrolyzes 

lysophosphatidylcholine to generate LPA. A growing 

number of studies suggest that the ATX-LPA axis is 

involved in obesity and its associated metabolic 

complications [236, 237]. LPA is a lipid mediator which 

is produced by adipocytes through specific G-protein-

coupled receptors and its synthesis is regulated in 

obesity. Rancoule et al. showed that reduced adipocyte 

LPA production was correlated with improved glucose 

tolerance in HFD-fed obese mice [238]. This suggests 

that LPA harms glucose homeostasis. 

 

Synaptic signaling is a plastic dynamic process crucial 

for information processing at the level of brain cells and 

neuronal networks and is critical for regulating neuronal 

excitability as well as brain information processing 

[239]. The LPA-triggered signaling pathway induces 

rapid and reversible inhibition of excitatory and 

inhibitory postsynaptic currents. In excitatory synapses, 

the LPA1/Gαi/o protein/phospholipase C/myosin light 

chain kinase cascade acts at presynaptic sites [239]. 

LPA can act as potential partial messengers, modulating 

synaptic strength to accommodate the prior activity of 

neurons [239]. LPA primarily mediates its action by 

activating six known G protein-coupled receptors 

(GPCRs), and the protein products are named LPA1 to 

LPA6 [240]. LPA is activating six LPA receptors 

(LPAR1-6) and modulates different cellular activities, 

i.e. cell proliferation, cytoprotection as well as wound 

healing. LPA receptors are classically seven-

transmembrane GPCRs activating heterotrimeric G 

proteins to signal transduction within the cell [235]. It is 

well documented that LPA and LPA receptor signaling 

pathways are required for the formation of mature 

synaptic connections, particularly glutamatergic 

synapses [241]. As one of the six characteristic G 

protein-coupled receptors (LPA1-6), the LPA1 receptor 

through which lysophosphatidic acid serves as an 

intracellular signaling molecule. Studies have shown 

that the deletion of LPA1 receptors causes anxiety as 

well as several behavioral and neurobiological changes 

that are closely related to depression [242]. Endogenous 

LPA signaling mediates activity-dependent inhibition 

primarily through LPA1 in an experimental model of 

synaptic plasticity [239]. 

 

In the hippocampus, genetic deletion of Lpar1 leads to 

more immature dendritic spines in CA1 pyramidal cells 

and reduces matrix metalloproteinase 9 (MMP-9), which 

has been proven to be engaged in regulating synaptic 

plasticity [243]. In zebrafish in vivo experiments, the 

Lpar3 gene exerts novel roles in regulating behaviors 

such as anxiety, social interactions, circadian rhythmic 
motor activity, and memory retention [244]. Gintonin, an 

exogenous LPA receptor ligand, was isolated from P. 

ginseng. Kim et al. suggested that gintonin-enriched 
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fraction may be associated with the relief of depression-

related symptoms induced by ginseng extract [245]. All 

this evidence suggests that LPA plays an essential role in 

both obesity and depression. 
 

Potential and future treatment of depression 

and obesity 
 

The multifaceted effects of adipokines and lipokines on 

neurological and brain health and the dysregulation of 

adipokine and lipokine secretion may contribute to the 

co-morbidity of obesity and depression [166]. Exploring 

the pathogenesis of obesity and depression from the 

perspective of multiple adipokines and lipokines has 

beneficial implications for the future treatment of obesity 

and depression. Adipokines and lipokines such as leptin, 

adiponectin, PLA, and LPA may be critical targets for the 

future treatment of obesity and depression. Clinical 

studies have shown that individuals with POMC or 

LepRb deficiency typically experience severe obesity, 

bulimia and comorbidities, which can severely impact the 

patient’s quality of life and depressive behavior [246]. 

 

Diet and obesity have been proven to have a direct 

effect on mood, and stress-related mental diseases might 

result in alterations in eating patterns that affect weight 

[247]. Recent studies suggest that dietary interventions 

and energy restriction may help prevent depression and 

anxiety, which would serve as complementary therapies 

[248]. Ganoderma lucidum is a medicinal mushroom 

commonly used to improve quality of life, promote 

health, as well as enhance vitality. Studies have shown 

that ethanolic extract of Ganoderma lucidum ethanol 

extract (EEGL) has significant effects on feeding 

behavioral parameters, depression-like symptoms and 

locomotor activity in Swiss mice, as reflected by a 

significant decrease in body weight gain and food 

intake, a dose-dependent increase in water intake, and a 

decrease in immobility time in the forced swim test 

(FST) and the tail suspension test (TST) in Swiss mice 

[249]. These findings suggest that EEGL can reduce 

body weight gain and produce antidepressant-like 

effects. 

 

Unhealthy eating patterns might be connected with an 

increased risk of depression or anxiety, while healthy 

eating patterns might reduce that risk. The first human 

study to show a link between diet and hippocampus 

volume mirrored findings from previous preclinical 

investigations in animal models, in which low nutritional 

food intake and excessive unhealthy food intake were 

independently linked with decreased left hippocampal 

volume, respectively [250]. Recent clinical studies have 

shown that diet can influence the physiological and 

immune functions of the body and has potential 

therapeutic strategies. The study found that 83% of 

participants who adhered to a ketogenic diet experienced 

significant reductions in fat mass and nearly 50% 

decreases in self-reported fatigue and depression scores 

over the study period [251]. 

 

Functional brain imaging research confirms that image 

and verbal cues associated with foods and beverages 

high in sugar produce higher preferences and higher 

emotional activation, making it harder for overweight 

people to resist eating unhealthy foods [252]. Several 

variables, including inflammation, oxidative stress, and 

insulin resistance, have been postulated to contribute to 

diet-induced brain damage, all of which can be affected 

by dietary consumption and are related to the onset of 

depression [48]. Maintaining a balanced diet with anti-

inflammatory properties may aid in the prevention of 

depressive symptoms, particularly in men, smokers, and 

those who are inactive [253]. 

 

In observational studies, adherence to a healthy diet, 

particularly a traditional Mediterranean diet or 

avoidance of a pro-inflammatory diet, appears to have a 

protective effect against depression [16]. A population-

based cohort study showed that people who adhered to a 

Mediterranean diet during midlife had a lower risk of 

depression later in life [16, 254]. Although the 

relationship between obesity and depression is known, 

there is little research on the clinical benefits of 

nutritional therapy for obese patients. A clinical study 

evaluating the effects of a traditional Brazilian diet 

(DieTBra) and extra virgin olive oil (EVOO) on anxiety 

and depressive symptoms in severely obese participants 

showed that both DieTBra and olive oil interventions 

were effective in reducing anxiety and depressive 

symptoms in severely obese adults and that these 

interventions could be combined with clinical protocols 

for the treatment of anxiety and depressive symptoms in 

severely obese patients [255]. 

 

Current evidence suggests that diet quality is a 

modifiable risk factor for affective disorders, however, 

further research is needed to investigate the impact of 

dietary patterns and weight loss on improving 

psychological symptoms. Rodriguez-Lozada et al. 

randomly assigned overweight and obese participants 

(n=305) to two low-calorie diets with different 

macronutrient distributions: a moderately high protein 

diet and a low-fat diet for 16 weeks to assess the 

effects of prescribed energy restriction on anxiety and 

depressive symptoms in overweight and obese 

participants, as well as some baseline potential 

predictive value of psychological characteristics for 

weight loss [256]. The nutritional intervention 
demonstrated beneficial effects of weight loss on trait 

anxiety scores in women, depression scores in all 

populations, and especially in women and subjects 
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following a low-fat diet. In addition, weight loss can 

be predicted by anxiety status at baseline, which 

occurs primarily in women and those on a low-fat diet, 

and this trial suggests that weight loss triggers 

improvements in psychological traits, while anxiety 

symptoms predict those volunteers who benefit most 

from a balanced calorie restriction intervention, which 

would help to personalize precise nutrition [256]. In 

addition, a randomized clinical trial study by Hariri et 

al. demonstrated the beneficial effects of sumac (Rhus 

coriaria L.) supplementation with a calorie-restricted 

diet on anthropometric indices, oxidative stress, and 

inflammation in overweight or obese women with 

depression [257]. 

 

Probiotics have been demonstrated to have anti-

depressant responses and anti-inflammatory effects. 

Borges et al. conducted a systematic review and meta-

analysis of overweight or obese patients to determine 

the effects of prebiotics on blood biomarkers of obesity, 

depression, and anxiety (including ACTH, cortisol, 

leptin, ghrelin, thyroid stimulating hormone (TSH), 

parathyroid hormone (PTH), vitamin D, and BDNF) 

[258]. Prebiotics were found to possibly facilitate the 

regulation of blood concentrations of ghrelin and CRP 

in overweight or obese individuals. A double-blind, 

randomized, placebo-controlled trial was conducted in 

obese men (n = 45) and women (n = 60), consisting of a 

12-week weight loss period based on moderate energy 

restriction and a 12-week weight maintenance period 

[259]. Each subject consumed two capsules per day of 

either a placebo or probiotic supplement Lactobacillus 

rhamnosus CGMCC1.3724 (LPR) [259]. During both 

phases of the program, LPR supplementation increased 

weight loss in women, which was associated with an 

increased desire to eat on an empty stomach. In 

addition, the LPR female group showed a more 

pronounced decrease in food cravings as well as a 

decrease in Beck Depression Scale scores [259]. 

Significant benefits of LPR on fasting satiety and 

cognitive restraint were also observed in men [259]. 

These clinical observations support the hypothesis that 

the gut-brain axis may influence appetite control and 

related behaviors in obesity management. Hulkkonen et 

al. studied the efficacy of probiotics and/or fish oil in 

improving prenatal and postnatal depression and anxiety 

symptoms and found that diet quality was negatively 

associated with depressive symptoms in early 

pregnancy and 6 months postpartum and with anxiety 

symptoms in early pregnancy [260]. 

 

Probiotics, prebiotics, and mushroom extracts may be 

used to simultaneously prevent and treat obesity and 

depression, and further research is required to optimally 

use these substances in humans [30]. Furthermore, the 

using dietary interventions may demonstrate to be an 

appealing and cost-effective alternative or adjunctive 

treatment for the clinical management of these 

 

 
 

Figure 3. Map of potential and possible future treatment options for depression and obesity comorbidity. LTP, long-term 

potentiation; LTD, long-term depression; HPA axis, hypothalamo-pituitary-adrenal axis. 
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conditions. Prospective investigations of the connection 

between diet and mental health ought to use clearer 

definitions to define diet and include or control for 

significant confounding factors. Regulation of gut 

microbiota might be a new strategy for the treatment  

of both neuroinflammation and depression [30]. 

Biochemical markers are positively associated with the 

development and severity of obesity, depression as well as 

anxiety, and are regulated by changes in the composition 

of the gut microbiota [258]. The gut microbiota is a 

potentially important regulating pathway between diet and 

brain health. Altered gut microbiota may be a therapeutic 

strategy for depression and obesity. FMT is currently the 

most effective gut microbiota intervention [261]. FMT 

may be a promising therapeutic choice for neurological 

disorders, however, the available evidence remains sparse, 

with a limited number of human studies conducted or 

ongoing, and for some diseases, only animal trials have 

been conducted. To further elucidate the role of FMT  

in neurological disorders, large-scale double-blind 

randomized controlled trials are required [261]. 

 

With the growing insight into the mechanisms underlying 

the complex interactions between diet and gut microbiota 

and their effects on depression, specific dietary patterns 

that aid in the prevention of anxiety and mood disorders 

may be identified [248]. Furthermore, preclinical studies 

have shown that exercise can improve various types of 

behaviors, such as depression and anxiety [262–264]. 

Morgan et al. showed that aerobic exercise had 

significant beneficial effects on depression-like, anxiety-

like and cognitive-like behaviors during the healthy  

adult lifespan of C57BL/6 mice [265]. A combined 

treatment for both obesity and depression improves 

weight and mood risk factors more than treatment for 

each disease alone [266]. In a randomized controlled trial 

of 63 overweight/obese participants, Pilates and aerobic 

training were found to improve depression, anxiety levels 

and quality of life in overweight and obese people [267]. 

Recent clinical studies have shown that virtual reality 

exercise programs have a positive impact on BMI, 

depression levels, exercise enjoyment and exercise 

immersion in overweight middle-aged women. This is an 

effective home exercise program for people undergoing 

obesity management [268]. Developing tailored 

treatments according to a personalized medical approach 

to the biology of obesity-depression co-morbidities may 

ultimately benefit the patients involved. In Figure 3, we 

summarized the potential and possible future treatment 

options for obesity and depression (Figure 3). 

 

OVERVIEW 
 

Acute/chronic inflammation, gut microbiota imbalance, 

gut-brain dysfunction, diminished neuroplasticity and 

HPA axis dysfunction are common mechanisms in the 

pathogenesis of depression, and several of these effects 

often co-occur in depression and also affect obesity at the 

same time. These factors would potentially provide a 

biologically based multi-level description of obesity and 

depression. The characterisation of the mechanisms of 

action of adipokines and lipokines and the identification 

of molecular targets of adipokines and lipokines will 

provide new ideas for this study of the co-morbidities of 

obesity and depression. Further study of adipokines and 

lipokines and their interaction with the brain may provide 

new therapeutic targets for the treatment of depression. 

Probiotics, herbal extracts and mushroom extracts may be 

used to prevent and treat the co-morbidities of obesity 

and depression. Modulation of the gut microbiota may be 

a novel strategy for the treatment of neuroinflammatory 

and depressive disorders. FMT may regain clinical 

attention as a therapy to restore gut flora for the clinical 

treatment of obesity and depression. The selection and 

development of treatments tailored to their biology, 

according to a personalised medicine approach, may 

ultimately benefit patients with depression and obesity. 
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