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Dimensionality reduction is an important issue for numerous applications including biomedical images analysis and living system
analysis. Neighbor embedding, those representing the global and local structure as well as dealing with multiple manifolds,
such as the elastic embedding techniques, can go beyond traditional dimensionality reduction methods and find better optima.
Nevertheless, existing neighbor embedding algorithms can not be directly applied in classification as suffering from several
problems: (1) high computational complexity, (2) nonparametric mappings, and (3) lack of class labels information. We propose
a supervised neighbor embedding called discriminative elastic embedding (DEE) which integrates linear projection matrix
and class labels into the final objective function. In addition, we present the Laplacian search direction for fast convergence.
DEE is evaluated in three aspects: embedding visualization, training efficiency, and classification performance. Experimental
results on several benchmark databases present that the proposed DEE exhibits a supervised dimensionality reduction approach
which not only has strong pattern revealing capability, but also brings computational advantages over standard gradient based
methods.

1. Introduction

The classification of high-dimensional data, such as bio-
logical characteristic sequences, high-definite images, and
gene expressions, remains a difficult task [1]. The main
challenges that these high-dimensional data pose include
inferior outcome performance, tremendous storage require-
ments, and high computational complexity. Dimensionality
reduction (DR) [2], as the core research topic in subspace
learning community, is the well-acknowledged solution for
this curse of dimensionality problem. For the classifica-
tion tasks, the goal of DR focuses on constructing a low-
dimensional representation of data in order to achieve better
discrimination and accelerate the subsequent processing. In
this realm, very straightforward algorithms are dominated,
as the computational complexity of advanced DR techniques
proposed is too high.

Fisher discriminant analysis (FDA) [3] and its variants
[4, 5], which incorporate the class labels information and
aim at the preservation of classification accuracy in the

embedded subspace, are the mostly adopted DR techniques.
FDA amplifies the between-class scatter and simultaneously
shrinks the within-class scatter in subspace for the purpose
of desirable separability. Recently, LFDA [6], MMDA [7],
DCV [8], andMMPA [9]markedly improve the performance
of FDA by solving different kinds of existing thorny issues.
LFDA adds the locality preservation property to the Fisher
criterion, which preserves the multimodal structure. MMDA
presents a novel criterion that straightly maximizes the
minimum pairwise distances of the whole classes for better
between-class separability. DCV circumvents the “small sam-
ple size” problem by using two different methods, the within-
class scattermatrix and theGram-Schmidt orthogonalization
procedure, to obtain the discriminative common vectors.
MMPA takes into account both intraclass and interclass
geometries and also possesses the orthogonality property for
the projection matrix. Broadly speaking, all these methods
have a unique solution computed by a generalized eigensolver
and exhibit acceptable performance on most data, but they
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may be suboptimal for the data with nonuniform density or
multiple manifolds.

To deal with more complex structural data, especially
in biomedical applications [10–12], a batch of novel DR
techniques [13–19] based on stochastic neighbor embedding
(SNE) [13] absorbs a lot of interest. In contrast with the
FDA-type techniques, those consider only the original high-
dimensional space for constructing the objective function.
SNE matches similarities which are achieved both from
the high-dimensional and low-dimensional spaces. Further-
more, 𝑡-SNE [14] extends SNE with symmetric similarities
and by using student’s 𝑡-distribution in low-dimensional
space. Symmetric SNE [15] explains why the heavy-tailed
distribution and the symmetric similarity form in 𝑡-SNE
lead to better performance. NeRV [16] uses the “dual”
Kullback-Leibler (KL) divergence for well-content DR results
in information retrieval perspective. Lee et al. [17] adopted a
scaled version of the generalized Jensen-Shannon divergence
that better preserves small K-ary neighborhoods. Bunte et
al. [18] analyzed the visualization performance of SNE with
arbitrary divergences and claimed that KL divergence is the
most acceptable. In terms of visualization results, all these
techniques outperformmost of the past techniques. However,
the reasons of this well behavior remain obscure. Lee and
Verleysen [20] investigated the role played by the specific
similarities and identified that appropriate normalization
with property of shift invariance is the main cause of the
admirable performance. However, Carreira-Perpiñán [21]
revealed the fundamental relation between SNE and the
Laplacian eigenmaps [22] method and proposed a new DR
method, the elastic embedding (EE), that can be seen as
learning both the coordinates and the affinities between data
points without the shift invariance property.

EE is more efficient and robust than SNE, 𝑡-SNE, and
NeRV. Even so, it cannot be directly applied in classification
tasks because of the unideal discrimination ability, the out-
of-sample problem, and the high computational complex-
ity in some large-scale classification tasks [23, 24]. Many
researchers have been dedicated to solve these drawbacks.
Venna et al. [16] proposed supervised NeRV with better
discrimination capability by complex locally linear functions.
Bunte et al. [25] presented a general framework for a variety
of nonparametric DR techniques and then extended them to
parametric mapping by means of optimization. Gisbrecht et
al. [26] used only a fraction of whole samples for training
the DR model in interactive settings. Yang et al. [27] and
Maaten [28] simultaneously adopted the Barnes-Hut tree and
proposed a generic approximated optimization technique
which reduces the neighbor embedding optimization cost
from 𝑂(𝑁2) to 𝑂(𝑁 log𝑁).

Inspired by these works, we proposed a linear super-
vised DR technique called discriminative EE (DEE) for
classification. To be specific, the linear projection matrix
is introduced to solve the out-of-sample problem similarly
as in [29]. The class labels information is involved in the
construction of objective function as MMPA. We search for
a reasonable direction in the iterative processing to solve
our model by gradient-based method. The remainder of this

paper is structured as follows. Section 2 provides a brief view
of related works. Section 3 describes the objective function
and the search direction of our proposed DEE. Section 4
gathers the experimental results. Finally, Section 5 draws the
conclusions and sketches some future works.

2. Fundamental Contributions

Even though there were numerous previously studied algo-
rithms in the context of embedding high-dimensional data
for visualization or classification, we focus here only on a
few approaches that were recently proposed and that we will
use to compare our evaluations against them. The involved
techniques include the elastic embedding (EE), the discrimi-
native stochastic neighbor embedding (DSNE) [30], and the
min-max projection analysis (MMPA). Let x
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∈ 𝑅
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matrix of all samples, where 𝑁 is samples size and 𝐶 is the
classes size. The nonlinear embedding approaches proceed
to look for the subspace matrix Y𝑑×𝑁, whose column vectors
y
𝑖
∈ 𝑅
𝑑 are coordinates of pixel maps, where d is the subspace

dimension. On the other hand, the goal of the usual linear
embedding techniques is to learn a projection matrix A𝑑×𝐷,
which is further used to compute the embedding coordinate
Y = AX.

2.1.The Elastic Embedding. The elastic embedding (EE) tech-
nique, which is nonlinear and unsupervised, is an extension
of SNE-type algorithm. The objective function of EE is
defined as
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= 0. The left (+) term in (1), called

as attractive term, preserves local distances as the Laplacian
eigenmaps [22]. The right (−) term in (1), called as repulsive
term, preserves global distances in a plainer way more than
the traditional SNE algorithm. 𝜆 is a tunable parameter for
trading off both the attractive and the repulsive terms.

The gradient of 𝐸(Y) in (1) is then computed as

𝐺 (Y) = 𝜕𝐸
𝜕Y
= 4Y (L+ − 𝜆L̃−) , (2)

where the authors defined the affinities

�̃�
−

𝑛𝑚
= 𝜔
−

𝑛𝑚
exp (−y𝑛 − y𝑚



2

) (3)

and the graph Laplacians L = D − W in the common way.
D = diag(∑𝑁

𝑛=1
𝜔
𝑛𝑚
) is the degree matrix. After the gradient

is obtained, EE uses the fixed-point (FP) diagonal iteration
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scheme to achieve global and fast convergence. First, the
gradient is split as

∇𝐸 = 4Y (D+ + (L+ − 𝜆L̃− −D+)) = 0; (4)

then, a search direction is derived asY(D+−L+−𝜆L−)(D+)−1−
Y.

Both the objective function and the gradient for EE are
intuitively clearer and less nonlinear than other SNE-type
algorithms since EE avoids the cumbrous log-sum term.
Moreover, the FP strategy results in fewer local optima.
However, EE is still nonlinear, so the embedding for the
out-of-sample input is inefficient. Furthermore, EE neglects
the use of the class labels, which makes EE suboptimal for
classification.

2.2. Discriminative Stochastic Neighbor Embedding. The dis-
criminative stochastic neighbor embedding (DSNE) tech-
nique, which is linear and supervised, is an extension of 𝑡-
SNE algorithm. For each input data x
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and each potential
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within the same class or not, the probability 𝑝
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where 𝜎 is a regularization parameter which is set manually.
For the embedded samples Y = AX, a heavy-tailed Student’s
𝑡-distribution with one degree of freedom for neighbors is
made, so that the induced embedded probability 𝑞
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The aim of DSNE is to place close together intraclass samples
and place far apart interclass samples. This is achieved by
minimizing the objective function, which is the sum of KL
divergences between𝑝

𝑖𝑗
and 𝑞
𝑖𝑗
with consideration of the class

labels
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The gradient of 𝐸(A) in (7) can be obtained as

𝜕𝐸

𝜕A
= 4A {X (Lintra + Linter)X𝑇} , (8)

where Lintra and Linter are the Laplacianmatrices for intraclass
samples and interclass samples, respectively. DSNE intro-
duces explicit projection matrix and labels information to
make it suitable for classification tasks. However, the cum-
bersome log-sum term and the tedious conjugate gradient
training method make DSNE converge slowly.

2.3. Min-Max Projection Analysis. The min-max projection
analysis (MMPA) is another recently proposed linear super-
vised dimension reduction technique. MMPA combines the
main advantages of block optimization and whole alignment
strategy [31]. It also incorporates a desirable property from
marginal Fisher analysis [32], that is, pulling together the
far apart within class neighbors as close as possible, as well
as placing away the neighbors having different labels as far
as possible. The combination of these properties leads to a
technique that is qualified for online input stream data and
has desirable discrimination capability.The projectionmatrix
A derived from MMPA is a result of solving the following
objective function:

A = arg min
A∈𝑅𝑑×𝐷

tr(AXL
intraX𝑇A𝑇

AXLinterX𝑇A𝑇
) . (9)

By resolving the generalized eigenvalue problem in (9),
MMPA gets a closed form solution without any iteration
process, which is closely related to the classical dimension
reduction algorithms such as DCV and LFDA. All these
techniques present efficient computation cost. However, they
always present crowding problem that leads to cluttered
subspace visualization.

3. Discriminative Elastic Embedding

In this section, we depict the DEE technique that focuses
on exploring an explicit mapping, presenting a large disjoint
interclass region and achieving a faster convergence. We
begin with an introduction of the embedding formulation.

3.1. Formulation. As mentioned in Section 2, the eigenmap-
type algorithms such asMMPAadopt simple affinity function
for constructing direct generalization eigenvalue problems,
which is sensitive to noise and results in crowded embedded
subspace. DSNE can go beyond the spectral techniques and
find better optima, exhibiting large gaps between different
classes as well as dealing with multiple manifolds. However,
the optimization of DSNE is costly and apt to local optima. In
addition, our understanding of these SNE-type algorithms is
limited to an intuitive interpretation of their cost function.
EE furthers our understanding by deriving the explicit
relation between SNE and Laplacian eigenmaps. Moreover,
EE adopts the simpler unnormalizedmodel formore efficient
and robust optimization. The objective function of EE is
formed by a local distance term and a global distance term
to represent better global and local embedding structure.
However, the purpose of this paper is to enlarge the disjoint
region for the different classes. We resolve this problem by
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introducing the class labels to both the attractive affinity
weights and the repulsive affinity weights similar to MMPA:
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In addition, we adopt the explicit projectionmatrixA tomake
EE linear and avoid the out-of-sample problem.That is, in (1),
we replace y as Ax to make it become
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Equation (12) is chosen here as our objective function. We
call the model as discriminative elastic embedding (DEE). In
next sections, wewill present the optimization strategy for the
optimal projection matrix A.

3.2. The Fixed-Point Search Direction. The cost function in
(12) characterizes the desired embedding: objects of intra-
class samples are encouraged to embed nearby, but objects
of interclass samples are encouraged to embed far away.
However, this equation is nonconvex, and there is no closed-
form solution. Some gradient basedmethods such as gradient
descent, conjugate gradients, and multiplicative updates [33]
are used for the existing SNE-type algorithms. These are
all reported as very slow and with tiny steps. The fixed-
point iteration strategy used in EE works much better, so we
introduce this FP method into our DEE technique in this
section. The gradient of DEE is obtained as
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equation of the gradient (13), we can split 𝜕𝐸/𝜕A into two
parts as

𝜕𝐸

𝜕A
= 4AX (D+ + L −D+)X𝑇 = 0, (14)

whereD+ is symmetric, positive, and definite and (L−D+) is
symmetric. Then, we can get the FP iteration scheme A ←

AX(D+ − L)X𝑇(XD+X𝑇)−1, which further implies the FP
search direction ΔFP = AX(D+ − L)X𝑇(XD+X𝑇)−1 − A. The
objective function 𝐸 will be decreased and converged to a
stationary point along with the FP direction by a line search
A ← A + 𝛼ΔFP satisfying the Wolfe conditions for 𝛼 > 0
[34]. The main cost of each FP iteration is dominated by the
gradient equation (13) which is 𝑂(2𝑑𝐷𝑁 + 𝑑𝑁2).

3.3. The Laplacian Search Direction. Our goal in this section
is to present a search direction that can lead to fast and global
convergence. There are two common ways for achieving this
objective. One is to speed up the computation in the gradient
based iteration scheme. The other is to achieve the optimal
objective value with as a few iterations as possible. The intu-
itivemethod for speeding up the computation is to reduce the
samples size. This obvious approach of subsampling always
produces inferior results. In [27, 28], the authors simul-
taneously adopted the Barns-Hut tree to approximate the
SNE-type gradients, which leads to substantial computational
advantages over existing neighbor embedding techniques.
However, this Barns-Hut tree strategy requires sufficient
training samples for maintaining preferable performance.
Moreover, the Barns-Hut tree based neighbor embedding
methods can only be applied for embedding data in two or
three dimensions subject to the tree size. In conclusion, we
turn to explore the best search direction for less iteration.

From the numerical optimization theory [34], we repeat
the line search method as

A
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where Δ
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is the chosen search directions, g
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is the gradient

of the objective function, H
𝑘
is a positive definite matrix

ensuring the descent direction Δ𝑇
𝑘
g
𝑘
< 0, and 𝛼

𝑘
> 0 satisfies

theWolfe conditions. Our purpose here is to select a desirable
matrixH

𝑘
ranges from I to the Hessian matrix obtained as

𝜕
2
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= 4 (XLX𝑇) ⊗ I

𝑑
+ 4 (I
𝐷
⊗ A) 𝜕XLX

𝑇

𝜕A
, (16)

where I
𝑑
is the 𝑑 × 𝑑 identity matrix. WhenH

𝑘
is selected as

the identity matrix I, the optimization is refined as gradient
descent, which is very slow for convergence. At the other
extreme,when theHessian is used, the optimization is termed
as Newton’smethod, which consumes toomuch computation
each iteration. Our intuitive principle is to employ as much
Hessian info as possible that leads to an efficient solution of
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the Δ
𝑘
linear equation (15) (e.g., sparse and constantH

𝑘
). We

further split (16) as
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(17)

Since L− is closely related to the variable A, the second part
and the third part of (17) need recomputation each iteration.
The first part is constant and it only needs be computed
once in the first iteration. Moreover, since the entries in W+
are symmetric and nonnegative from (10), the term XL+X𝑇
is symmetric, positive, and semidefinite, and we can add a
small 𝜇I to it for achieving a positive definite matrix. In
conclusion, the attractiveHessian 4(XL+X𝑇)I

𝑑
constructs our

final search direction which is the desirable compromise of
fast convergence and efficient calculation. Since this direction
is mainly related to the attractive Laplacian L+, we call it as
the Laplacian direction (LD). Note that to avoid the direct
calculation of H

𝑘
Δ
𝑘
= −g
𝑘
which costs 𝑂(𝑁3 × 𝐷) we can

firstly achieve the Cholesky factor R of H
𝑘
and then use

two backsolves R𝑇(RΔ
𝑘
) = −g

𝑘
for the Laplacian direction

Δ
𝑘
. The cost of Cholesky decomposition is in 𝑂(𝐷3/3)

and it needs only to be computed once. The cost of two
backsolves is in 𝑂(𝐷2𝑑). We find the Laplacian direction
works surprisingly well with more less iteration times.

4. Experiments and Results
We evaluate the performance of the proposed algorithm in
this section. First, four methods are compared for DEE:
gradient descent (GD), used in SNE; conjugate gradients
(CG), used in 𝑡-SNE; fixed-point (FP), used in EE; and the
Laplacian direction (LD), presented in this paper. Afterwards,
we demonstrate the effectiveness of DEE in clustering visu-
alization compared with some classical algorithms such as
𝑡-SNE, DSNE, and EE. Finally, we present the experimental
results on image classification. Four datasets are used for
evaluation: the COIL20 images database, the ORL faces
database, the Yale faces database, and the USPS handwritten
digits database.

4.1. Datasets. The COIL20 database contains 20 objects. The
images of each object were taken 5 degrees apart as the object
is rotated on a turntable and each object has 72 images. The
size of each image is 40 × 40 pixels, with 256 grey levels per
pixel. The ORL face database consists of a total of 400 face
images from 40 people (10 samples per person). For every
subject, the images were taken at different times, varying
the lighting, facial expressions (open/closed eyes, smiling/not
smiling), and facial details (glassed/not glassed). All the
images were taken against a dark homogeneous background
with the subjects in an upright, front position (with tolerance
for some side movements). The Yale database consists of
165 face images of 15 individuals. There are 11 images per
subject, one per different facial expression or configuration:
center-light, with glasses, happy, left-light, no glasses, normal,
right-light, sad, sleepy, surprised, and wink.We preprocessed

these original images by aligning transformation and scaling
transformation so that the two eyes were aligned at the
same position. Then, the facial areas were cropped into the
resulting images. In our experiments, each image in ORL
and Yale database was manually cropped and resized to 32 ×
32 pixels. USPS handwritten digits dataset includes 10 digit
characters and 1100 samples in total. The data format is of
16 × 16 pixels. Figure 1 shows some example images from the
four datasets.

4.2. The Evaluation of Different Training Methods. Many
different training methods have been applied for solving the
SNE-type embedding algorithms. We have implemented the
following four methods for optimizing DEE model to be
compared with the Laplacian direction method described in
Section 3: gradient descent (GD), originally used for SNE;
conjugate gradient (CG), originally used for 𝑡-SNE; and fixed-
point iteration, originally used for symmetric SNE and EE.
There are several parameter values that require the user
to set for all the three implemented methods. Commonly,
there is little clue on which parameter values are the most
appropriate. This is the main reason why LD method, which
has no parameters to be set, is our preferred choice. We
set most of the parameters to be the same as [13, 14, 21].
The maximum iterations were set 1000 constantly and the
ultimate convergence condition was set to be 1𝑒 − 3. For
the first three datasets, COIL20, ORL, and Yale, we used all
the samples as the input data. And for avoiding clutter, we
randomly selected sixty samples for every class as the input
data for the USPS handwritten digits dataset.

The visualization results are shown in Figures 2, 3,
4, and 5, where all the input data are projected into 2D
space. The different colors stand for diverse classes. Figure 6
demonstrates the learning curves as a function of progressive
iterations. It also states the elapsed time in seconds for a
singlemodel construction. FromFigures 2–5, we can see that,
with different training methods, DEE is useful for clustering
diverse class data. However, the LD method is clearly more
competitive than the other three methods. In Figures 2 and
5, the colored coordinates show that DEE with LD method
accurately separates the underlying disjoint structure present
in diverse class. However, the other three methods have more
overlaps incurred between different classes. In Figures 3 and
4, although all the four methods exhibit clearly the disjoint
factors between diverse classes, the within class coordinates
for FP, CG, and GD are more scattered, which is suboptimal
for classification. From Figure 6, it is clear that DEE with LD
method can achieve more precise objective values with less
iteration times. In decreasing efficiency, the four methods
should be roughly ordered as LD > FP > CG and GD.
The CG method needs the most iteration times to meet the
convergence condition. However, the objective value of CG is
a little more precise than GD’s value. This also explains why
the clustering results for CG are slightly more accurate than
GD’s in Figures 2–5. Mostly, FP is more efficient than CG
and GD, and it costs less time for completing a DEE model
construction. Nevertheless, the runtime in every iteration
loop for FP is more than CG and GD. So the construction
time for FP is slower than GD in the COIL20 dataset, where
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(a) COIL20 (b) ORL

(c) Yale (d) USPS

Figure 1: Some example images from four datasets: (a) COIL20, (b) ORL, (c) Yale, and (d) USPS.

these two methods spend close iteration times. LD not only
achieves the most precise objective values, but also requires
the least runtime. Take ORL dataset as example; LD needs
only 13 iterations to obtain the optimal objective value, but
FP needs about 390 iterations for the same convergence
condition. So, LD costs about 1 second to construct the DEE
model, which is about 38 times faster than FP, the second
efficient method in the order. This result adheres to the
theoretical analysis in Section 2 that the spectral direction is
more useful for rapid convergence.

4.3. Evaluation of Different Embedding Algorithms. The DEE
model with LD strategy was proved to be the most effec-
tive and efficient method in the preceding evaluation. To
begin the classification performance analysis of the proposed
approach, we secondly compare it with other embedding
algorithms for assessing its capability of avoiding overlaps
with different classes. We carried out comparisons to DSNE,
EE, and 𝑡-SNE in 2D embedding space. The visualization
results are illustrated in Figures 7, 8, 9, and 10. What is
clear from these figures is that DEE and DSNE are more

capable of separating data apart from different classes than
EE and 𝑡-SNE. Note that EE and 𝑡-SNE both neglect the
class labels for model construction. This demonstrates that
the class labels ought to be a far more significant factor
for enhancing classification performance. Furthermore, from
Figures 7 and 9, we can see that DSNE not only has more
interclass overlaps, but also has more intraclass scatters than
DEE. This is due to two main factors. First, the traditional
SNE-type embedding algorithms such as 𝑡-SNE or DSNE
use normalization probabilities, which is cumbersome and
unnecessary. However, DEE abandons the normalization
term but focuses on the important and explicit relation
between nonlinear and spectral methods, which makes DEE
more robust to various types of data. Second, DEE uses the
spectral direction for optimization, which is efficient and
has no parameters to tune. Although DSNE uses conjugate
gradientmethod for optimization, there aremany parameters
that need to be manually adjusted, which is difficult and time
consuming. Besides, the conjugate gradient method is apt to
fall into local optimum, which leads to cluttered subspace
coordinates.
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DEE LD DEE FP

DEE CG DEE GD

Figure 2: The clustering visualization for COIL20 data set with different training methods.

DEE LD DEE FP

DEE CG DEE GD

Figure 3: The clustering visualization for ORL data set with different training methods.
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DEE LD DEE FP

DEE CG DEE GD

Figure 4: The clustering visualization for Yale data set with different training methods.

DEE LD DEE FP

DEE CG DEE GD

Figure 5: The clustering visualization for USPS data set with different training methods.
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Figure 6: The objective values update versus progressive iterations with different training algorithms.

4.4. The Evaluation of Classification Performance. In [19, 30],
some comparison studies of SNE-type embedding algorithms
and spectral methods were demonstrated for image data
and hyperspectral data, respectively. Those demonstrations
showed that, while SNE-type embedding algorithms do
improve the classification performance, the requirement of
even more concise subspace dimension remains a challenge.
From the experimental results in Section 4.3, we know that
the class labels are important to the classification perfor-
mance. Here we compare DEE with three other super-
vised dimensionality reduction techniques, DSNE, DCV, and
MMPA. DCV andMMPA are two recently proposed spectral
methods. DCVhas no special parameters needed to be tuned.
For MMPA, we set the parametric pair 𝜀

𝑤
and 𝜀
𝑏
to be the

average intraclass and interclass Euclidean distances, respec-
tively. For DSNE, we follow the parametric set as in [30].
To illustrate the classification performance in the projected
spaces, a nearest neighbor classifier is used to produce the

decision results. For COIL20 dataset, we randomly selected 15
samples for each object as the training samples. For ORL and
Yale datasets, we uniformly provided 50% training samples.
In USPS, 25 samples in each class were used for input data.
All the rest data were used as testing samples. Figure 11 shows
the recognition rate versus progressive subspace dimension
for DEE, DSNE, DCV, and MMPA in four different datasets.
All the results in Figure 11 were come into being with ten
replications. From this illustration, we can see that the max-
imum subspace dimension of DCV is limited to C-1, due to
the rank of the difference matrix.This limitationmakes DCV
perform poorly in some datasets. Besides, DCV demands
more null space information in intraclass scatter matrix for
better recognition rate. So, in USPS dataset, the optimal
accuracy for DCV is only 83%, which is the worst compared
with other three algorithms. Without this restriction, the
other three algorithms are free for the choice of subspace
dimension. However, since the conjugate gradient method
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DEE DSNE

EE tSNE

Figure 7: The clustering visualization for COIL20 data set with different embedding algorithms.

DEE DSNE

EE tSNE

Figure 8: The clustering visualization for ORL data set with different embedding algorithms.

is unstable and suboptimal, DSNE only gets a little better
recognition rate than DCV, and its accuracy curve is more
fluctuant. The best recognition rate of MMPA and DEE is
very close. By comparison, the recognition rate curve of
DEE is smoother than MMPA’s. This reduces the complexity

of choosing a proper subspace dimension value in a wide
range for the users. Furthermore, DEE reaches the higher
recognition rate with lower subspace dimension value, which
complies with the essence of dimensionality reduction. In
other words, DEE is capable of using as little as possible
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DEE DSNE

EE tSNE

Figure 9: The clustering visualization for Yale data set with different embedding algorithms.

DEE DSNE

EE tSNE

Figure 10: The clustering visualization for USPS data set with different embedding algorithms.
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Figure 11: Recognition rate versus subspace dimension on different datasets.

subspace dimensions for representing the original feature
space.

5. Conclusions

A new embedding algorithm based on EE is proposed
in this paper. The algorithm can be used for clustering
visualization and classification. Our experimental illustra-
tions were focused on image data embedding; however, this
algorithm can also be extended to dimension reduction of
other data without any adjustment. DEE, as a supervised
embedding algorithm, is capable of pulling together the
intraclass examples as well as pushing away the interclass
examples.This “pull-push” property makes DEE qualified for
discrimination tasks. The main disadvantage of all the SNE-
type algorithms is that their optimization is a nonconvex issue
requiring relatively slow iterative process. We introduced the
Laplacian search direction to improve this gradient based
optimization strategy. Empirically, the solutions solved by

Laplacian direction are faster and more effective than the
existing optimization methods. The experimental results in
this paper on four image datasets show that DEE out-
performs existing state-of-the-art algorithms for clustering
visualization and classification. With fewest computation
cost and more concise subspace dimension, DEE shows
better embedded structure and reaches highest recognition
rate.

In future work, we plan to speed up the computation
cost in every iteration loop for LD strategy, which brings
“big data” within reach of visualization and classification. We
will also investigate the scalable optimization of all SNE-type
algorithms, from which we can establish the uniform SNE
based embedding framework.
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