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Abstract

Background

Gln27Glu (rs1042714) polymorphism of the β2-adrenergic receptor (ADRB2) has been

association with cardiovascular functionality in healthy subjects. However, it is unknown

whether the presence of the ADRB2 Gln27Glu polymorphism influences neurovascular

responses during exercise in patients with acute coronary syndromes (ACS). We tested the

hypothesis that patients with ACS homozygous for the Gln allele would have increased mus-

cle sympathetic nerve activity (MSNA) responses and decreased forearm vascular conduc-

tance (FVC) responses during exercise compared with patients carrying the Glu allele

(Gln27Glu and Glu27Glu). In addition, exercise training would restore these responses in

Gln27Gln patients.

Methods and results

Thirty-days after an ischemic event, 61 patients with ACS without ventricular dysfunction

were divided into 2 groups: (1) Gln27Gln (n = 35, 53±1years) and (2) Gln27Glu+Glu27Glu

(n = 26, 52±2years). MSNA was directly measured using the microneurography technique,

blood pressure (BP) was measured with an automatic oscillometric device, and blood flow

was measured using venous occlusion plethysmography. MSNA, mean BP, and FVC were

evaluated at rest and during a 3-min handgrip exercise. The MSNA (P = 0.02) and mean BP

(P = 0.04) responses during exercise were higher in the Gln27Gln patients compared with

that in the Gln27Glu+Glu27Glu patients. No differences were found in FVC. Two months of

exercise training significantly decreased the MSNA levels at baseline (P = 0.001) and in

their response during exercise (P = 0.02) in Gln27Gln patients, but caused no changes in

Gln27Glu+Glu27Glu patients. Exercise training increased FVC responses in Gln27Glu

+Glu27Glu patients (P = 0.03), but not in Gln27Gln patients.
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Conclusion

The exaggerated MSNA and mean BP responses during exercise suggest an increased

cardiovascular risk in patients with ACS and Gln27Gln polymorphism. Exercise training

emerges as an important strategy for restoring this reflex control. Gln27Glu polymorphism

of ADRB2 influences exercise-induced vascular adaptation in patients with ACS.

Introduction

Acute coronary syndrome (ACS) is associated with autonomic and hemodynamic alterations

[1–3]. Patients with myocardial infarction have exaggerated muscle sympathetic nerve activity

(MSNA) levels and reduced forearm blood flow (FBF) responses during exercise compared

with healthy individuals [2].

Accumulated evidence shows that the β2-adrenergic receptor (ADRB2) plays an impor-

tant role in neurovascular regulation [4–6]. Intra-arterial infusion of ADRB2 agonist pro-

vokes a significant increase in FBF in humans [4,7]. More recently, it has been documented

that polymorphism in the NH2-terminus ADRB2 in codon 27 at position 79 caused by

exchange of the nitrogenous base guanine for cytosine, changing the amino acid glutamic

acid (Glu) for glutamin (Gln) [8–10] influences vascular responses during physiological

maneuvers. Individuals carrying Glu27Glu have augmented muscle vasodilation during

exercise and mental stress [11,12]. Similarly, increased responses to intra-arterial infusion of

isoproterenol have been reported in individuals carrying Glu27Glu [13]. In contrast, the

presence of Glu27Glu polymorphism of the ADRB2 attenuates agonist-induced vascular

responses [14].

Previous observational studies show that the frequency of the Gln27Gln genotype is

greater in patients with myocardial infarction than in healthy subjects [15,16]. In addition,

patients with ACS who carry the Gln allele have a higher overall mortality rate compared

with those who carry the Glu allele [17]. This poor prognosis is suggestive of worsening vas-

cular function in patients who carry the NH2-terminus ADRB2 polymorphism. In the pres-

ent study, we describe neurovascular control during exercise in patients with ACS who carry

the ADRB2 polymorphism.

Exercise training has been shown to cause remarkable neurovascular adaptations in

humans with cardiovascular disease. In patients after myocardial infarction, exercise training

reduces MSNA, which seems to be associated with improvement in arterial baroreflex control

[1]. These benefits of exercise training can be extended to patients with chronic heart failure.

This nonpharmacological strategy significantly reduces MSNA and muscle vasoconstriction in

patients suffering from systolic cardiac dysfunction [18–21]. The effects of exercise training

have also been reported during exercise [22]. However, the effects of exercise training on neu-

rovascular control in patients with ACS and the ADRB2 polymorphism are virtually unknown.

In the present study, we describe the neurovascular adaptation provoked by exercise training

in patients with ACS who are carriers of the ADRB2 polymorphism.

We tested the following hypotheses: (1) Patients with ACS homozygous for the Gln allele of

the ADRB2 polymorphism would have increased MSNA and decreased FBF responses during

exercise compared with patients carrying the Glu allele; and (2) exercise training would restore

neurovascular control during exercise in patients with ACS who carry the Gln allele.
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Materials and methods

Subjects

The study was approved by the Scientific Commission of the Heart Institute (InCor) of the

University of São Paulo Medical School (#SDC 2326/03/120) and by the Ethics Committee of

the Clinical Hospital of the University of São Paulo Medical School (#980/03). All participants

provided written informed consent before inclusion in the study, and some of the patients

were involved in a previous study [1]. One month after the ischemic event, 61 patients with

ACS without left ventricular dysfunction (ejection fraction� 45%) were included in the study.

Patients were genotyped for the ADRB2 Gln27Glu (rs1042714) polymorphism and then were

divided into 2 groups according to their genotypes: (1) Gln27Gln (n = 35) and (2) Gln27Glu

+ Glu27Glu (n = 26). Of these, 29 patients agreed to participate in an exercise training protocol

for a period of 8 weeks, but only 25 patients completed the experimental protocol (Gln27Gln,

n = 17; Gln27Glu + Glu27Glu, n = 08).

Genotyping protocol

Genomic DNA was extracted from leukocytes in samples of venous whole blood. Genotypes

were identified by “polymerase chain reaction” (PCR), as previously described [23]. The analy-

ses of amplifications of PCR of the segments the ADRB2 gene was performed by automatic

apparatus (Perkin Elmer Corporation, Foster City, CA, USA).

Cardiopulmonary exercise testing

Maximal exercise capacity was determined during a maximal progressive exercise test on a

cycle ergometer (Medifit 400 L, Medical Fitness Equipment, Maarn, The Netherlands), using a

ramp protocol with work rate increments of 5–10W every minute until exhaustion. Oxygen

uptake (VO2) and carbon dioxide production were determined by means of gas exchange on a

breath-by-breath basis in a computerized system (CAD/Net 2001, Medical Graphics Corpora-

tion, St. Paul, Minnesota, USA). Maximal exercise capacity was determined by the VO2 mea-

sured at peak of exercise (VO2 peak). Anaerobic threshold was identified at the breakpoint

between the increase in the carbon dioxide output and VO2 (V slope) or at the point in which

the ventilatory equivalent for oxygen and end-tidal oxygen partial pressure curves reached

their respective minimum values and began to rise. The respiratory compensation point was

determined to occur at the point at which the ventilatory equivalent for carbon dioxide ratio

inverts its trend toward an initial decrease and systematically increases and when end-tidal

carbon dioxide partial pressure reaches a maximum and begins to decrease [24–26].

Muscle sympathetic nerve activity

Muscle sympathetic nerve activity (MSNA) was measured directly from the peroneal nerve

using the microneurography technique, as previously described [27,28]. In brief, multiunit

postganglionic muscle sympathetic nerve recordings were made using a tungsten microelec-

trode (tip diameter 5 to 15 μm). Signals were amplified by a factor of 50,000 to 100,000 and

band-passed filtered (700 to 2,000 Hz). For recordings and analysis, nerve activity was rectified

and integrated (time constant: 0.1 s) to obtain a mean voltage display. MSNA was expressed as

burst frequency (bursts/min), and burst incidence (bursts/100 heart beats).

Forearm blood flow

Forearm blood flow (FBF) was measured by venous occlusion plethysmography as previously

described [11]. Sphygmomanometer cuffs were placed around the nondominant wrist and
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upper arm, and a mercury-filled silastic tube attached to a transducer was placed around the

forearm and connected to a plethysmograph (Hokanson, Bellevue, Washington, USA). FBF

(mL/min/100mL) was determined based on a minimum of 3–4 separate readings per minute.

Forearm vascular conductance (FVC) was calculated by dividing FBF by the mean blood pres-

sure times 100 and expressed in arbitrary units.

Handgrip exercise

After the maximal voluntary contraction was measured (average of 3 repetitions), the isomet-

ric handgrip exercise was performed at 30% of maximal voluntary contraction using a hand-

grip dynamometer.

Exercise training program

One month after an ischemic event, patients underwent supervised exercise training at the

Heart Institute (InCor) of the University of São Paulo Medical School. The 8-week training

program consisted of three 60-minute exercise sessions per week. Each exercise session con-

sisted of 5 minutes of stretching, 40 minutes of cycling on an ergometer bicycle, 10 minutes of

local strengthening, followed by 5 minutes of cool down with stretching exercises as previously

described [1]. The intensity of the exercise was established at a heart rate corresponding to the

anaerobic threshold obtained in the cardiopulmonary exercise test. The aerobic exercise was

monitored by ECG during all sessions.

Other measurements

Blood pressure (BP) was monitored noninvasively and intermittently from an automatic and

oscillometric cuff (Dixtal, DX 2710; Manaus, Brazil). Heart rate (HR) was monitored continu-

ously through lead II of the ECG.

Experimental protocol

After patient instrumentation and an adequate nerve recording was obtained, the evaluation

of MSNA, FBF, FVC, BP, and HR were performed during 3 minutes at rest and 3 minutes of

handgrip exercise at 30% of MVC. All evaluations were performed one month after the ische-

mic event, and, for those patients undergoing the exercise training program, the same evalua-

tions were repeated after 8 weeks of intervention. All variables were recorded on a computer

sampling frequency of 500 Hz and analyzed using Windaq software. All studies were per-

formed at approximately 8:00 AM, with the subjects lying supine in a quiet, air-conditioned

room (21˚C to 23˚C).

Statistical analysis

The data are presented as mean±SE. Kolmogorov-Smirnov test was used to assess the normal-

ity of distribution of each variable studied. Chi-square (χ2) test was used to compare categori-

cal data differences. Baseline physical and clinical characteristics and the responses (absolute

changes) between groups during isometric exercise were tested using the unpaired Student t-
test. Differences in the groups before and after exercise training were tested by 2-way ANOVA

for repeated measures. When a significant difference was found, Scheffé´s post-hoc compari-

son test was used. Probability values of P<0.05 were considered statistically significant.

Neurovascular control during exercise and ADBR2 Gln27Glu polymorphism
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Results

Baseline characteristics

Physical and clinical characteristics and medications used by patients are displayed in Table 1.

There were no significant differences in sex, age, weight, height, body mass index, and left ven-

tricular ejection fraction between groups. The Gln27Gln and Gln27Glu+Glu27Glu groups

were similar for the diagnosis of unstable angina and non-ST-segment elevation myocardial

infarction. Interestingly, the Gln27Gln group had several patients with ST-segment elevation

myocardial infarction significantly higher than that in the Gln27Glu+Glu27Glu group

(Table 1). The groups were similar regarding the number of ‘stents utilized’ and prescribed

medications.

Neurovascular responses to exercise

There were no significant differences between groups for baseline hemodynamic and neuro-

vascular measurements one month after the ischemic event (Table 2). The maximal voluntary

contraction was similar in both groups (P = 0.78). During the handgrip exercise at 30% of

maximal voluntary contraction, MSNA in bursts/min (Fig 1A), mean BP, heart rate (HR),

FBF, and FCV increased significantly in both groups (Table 2). Yet, MSNA in bursts/100HB

increased from baseline only in the Gln27Gln group (Table 2). However, the responses (delta)

of MSNA in bursts/min (P = 0.02, Fig 1B) and in bursts/100HB (P = 0.02) and mean BP

(P = 0.04) were higher in the Gln27Gln group compared with the Gln27Glu+Glu27Glu group

Table 1. Physical and clinical characteristics in patients with polymorphisms Gln27Gln and Gln27Glu+Glu27Glu one month after the ischemic

event.

Gln27Gln (n = 35) Gln27Glu+Glu27Glu (n = 26) P Value

Physical Characteristics

Sex, men (%) 26 (74) 19 (73) 0.92

Age, years 53±1 52±1 0.69

Weight, kg 76.6±2.2 80.5±3.0 0.29

Height, cm 1.67±0.02 1.69±0.02 0.43

BMI, kg/m2 27±1 28±1 0.45

LVEF, % 57±1 59±2 0.30

Clinical Characteristics, n(%)

Unstable Angina 4 (11) 4 (15) 0.65

NSTEMI 12 (34) 15 (58) 0.07

STEMI 19 (54) 7 (27) 0.03

Coronary angiography 35 (100) 26 (100) 1.00

1 stent 29 (83) 19 (73) 0.37

2 stents 2 (6) 2 (8) 0.71

3 stents 1 (3) 0 (0) 0.39

Medications, n(%)

β-adrenergic blocker 32 (91) 25 (96) 0.46

ACE/AT1 inhibitor 34 (97) 25 (96) 0.83

Antiplatelet therapy 35 (100) 26 (100) 1.00

Statin 30 (86) 24 (92) 0.42

Values are mean±SE. BMI, body mass index; LVEF, left ventricular ejection fraction; NSTEMI, non-ST-segment elevation myocardial infarction; STEMI,

ST-segment elevation myocardial infarction; ACE, angiotensin-converting enzyme; AT, angiotensin.

doi:10.1371/journal.pone.0173061.t001
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(Table 2). The HR, FBF, and FVC responses during exercise were similar in both groups

(Table 2).

Exercise training

After exercise training, baseline MSNA in burst frequency and in bursts/100HB decreased in

the Gln27Gln group (P = 0.01, Fig 2A and P = 0.001, Table 3, respectively) and tended to

decrease in the Gln27Glu+Glu27Glu group (P = 0.052, Fig 2B and P = 0.059, Table 3, respec-

tively). Baseline mean BP, HR, FBF, and FVC did not significantly change after exercise train-

ing in either group (Table 3).

Relative to the effect of exercise training during the handgrip exercise at 30% of maximal

voluntary contraction, the levels and the response (delta) of MSNA decreased in the Gln27Gln

group either in burst frequency (P = 0.004, Fig 2A and P = 0.04, Fig 2C, respectively) or bursts/

100HB (P<0.001 and P = 0.02, respectively, Table 3). In contrast, exercise training did not sig-

nificantly change the levels or the response (delta) of MSNA in burst frequency (Fig 2B and

2D, respectively) and in bursts/100HB (Table 3) in the Gln27Glu+Glu27Glu group.

Table 2. Hemodynamic and neurovascular characteristics at baseline and during the handgrip exercise in patients with polymorphisms Gln27Gln

and Gln27Glu+Glu27Glu one month after the ischemic event.

Gln27Gln (n = 35) Gln27Glu+Glu27Glu (n = 26)

Baseline 3 min ex Delta Baseline 3 min ex Delta

MBP (mmHg) 96±2 120±3* 24±2 101±2 119±2* 18±2†

HR (beats/min) 54±1 62±2* 8±1 54±2 62±1* 7±1

MSNA (bursts/100HB) 59±3 70±3* 11±2 64±3 68±4 4±2†

FBF (ml/min/100ml) 1.53±0.07 2.07±0.11* 0.54±0.08 1.64±0.11 2.16±0.13* 0.51±0.06

FVC (units) 1.63±0.07 1.78±0.10* 0.15±0.08 1.63±0.11 1.79±0.10* 0.16±0.07

Values are mean±SE. MBP, mean blood pressure; HR, heart rate; MSNA, muscle sympathetic nerve activity; FBF, forearm blood flow; FVC, forearm

vascular conductance.

*P<0.05 vs. baseline (2-way ANOVA for repeated measurements).
†P<0.05 vs. Gln27Gln (delta analysis, unpaired t-test).

doi:10.1371/journal.pone.0173061.t002

Fig 1. Muscle Sympathetic Nerve Activity (MSNA) at baseline and during handgrip exercise one month after the

ischemic event. MSNA in burst frequency (bursts/min) at baseline and during handgrip exercise (A), and the MSNA

response (Delta, B) in patients with polymorphisms Gln27Gln and Gln27Glu+Glu27Glu. Note that MSNA increased in both

groups during the handgrip exercise, but the MSNA response in the Gln27Gln group is significantly higher compared with

that in the Gln27Glu+Glu27Glu group. *P<0.05, difference vs. baseline; †P<0.05, difference vs. Gln27Gln.

doi:10.1371/journal.pone.0173061.g001

Neurovascular control during exercise and ADBR2 Gln27Glu polymorphism

PLOS ONE | DOI:10.1371/journal.pone.0173061 February 24, 2017 6 / 13



Fig 2. Muscle Sympathetic Nerve Activity (MSNA) pre- and postexercise training period. Individual data for MSNA in

burst frequency (bursts/min) at baseline and during the handgrip exercise and the MSNA response (Delta) in patients with

polymorphism Gln27Gln (n = 17, 2A and 2C, respectively) and Gln27Glu+Glu27Glu (n = 08, 2B and 2D, respectively), pre-

and postexercise training period. Note that the MSNA significantly decreased after the exercise training period at baseline

and during exercise in the Gln27Gln group. *P<0.05, vs. baseline; †P<0.05, vs. preintervention.

doi:10.1371/journal.pone.0173061.g002

Table 3. Hemodynamic and neurovascular characteristics at baseline and during handgrip exercise in patients with polymorphisms Gln27Gln

and Gln27Glu+Glu27Glu before and after the exercise training period.

Gln27Gln (n = 17) Gln27Glu+Glu27Glu (n = 08)

Baseline 3 min ex Delta Baseline 3 min ex Delta

MBP (mmHg) Pre 98±3 122±4* 24±3 100±3 119±3* 19±3

Post 98±2 120±3* 22±3 103±4 115±3*# 11±2†

HR (beats/min) Pre 53±1 60±2* 7±2 55±3 63±3* 7±2

Post 53±2 59±2* 7±1 53±3 58±2* 5±2

MSNA (bursts/100HB) Pre 62±4 74±4* 12±2 68±4 75±4* 7±3

Post 47±5# 53±4*# 5±2# 55±6 62±7* 7±3

FBF (ml/min/100ml) Pre 1.77±0.10 2.13±0.18* 0.37±0.08 1.64±0.10 2.24±0.17* 0.59±0.11

Post 1.70±0.13 2.19±0.17* 0.50±0.07 1.89±0.24 2.53±0.33* 0.64±0.15

FVC (units) Pre 1.78±0.10 1.73±0.13 -0.05±0.08 1.66±0.12 1.89±0.12* 0.23±0.09

Post 1.76±0.12 1.83±0.15 0.07±0.08 1.58±0.20 2.10±0.24* 0.53±0.19†

Values are mean±SE. MBP, mean blood pressure; HR, heart rate; MSNA, muscle sympathetic nerve activity; FBF, forearm blood flow; FVC, forearm

vascular conductance; Pre, preintervention period; Post, after exercise training period.
# P<0.05, within-group comparisons vs. preintervention (two-way ANOVA for repeated measurements).

*P<0.05, within-group comparisons vs. baseline.
†P<0.05, between-group comparisons (delta analysis, unpaired t-test).

doi:10.1371/journal.pone.0173061.t003
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The level and the response (delta) of mean BP during exercise did not significantly change

after exercise training in the Gln27Gln group (Table 3). However, in the Gln27Glu+Glu27Glu

group, the level of mean BP (P = 0.02) decreased, and the response (delta) showed a tendency

to decrease (P = 0.07) after exercise training (Table 3). HR, FBF, and FVC during exercise did

not significantly change after exercise training in either group (Table 3).

Further analysis between groups in the postexercise training period showed that the initial

difference in MSNA response during exercise in burst frequency and bursts/100HB were no

longer observed (Fig 3 and Table 3). In addition, in the postexercise training period, the mean

BP response during exercise was lower (delta, P = 0.01) and the FVC response was higher

(delta, P = 0.03) in the Gln27Glu+Glu27Glu group compared with that in the Gln27Gln group

(Table 3).

Discussion

The main findings of the present study are that (1) patients with ACS with the Gln27Gln

ADRB2 polymorphism have higher responses of MSNA and MBP during exercise compared

with patients with Gln27Glu+Glu27Glu polymorphisms; (2) an exercise-based cardiac

Fig 3. Muscle Sympathetic Nerve Activity (MSNA) response in the postexercise training period. MSNA

response (delta) in bursts/min in the postexercise training period in patients with the polymorphism Gln27Gln

(n = 17) and in the Gln27Glu+Glu27Glu group (n = 08). Note that MSNA response was similar in both groups

after the exercise training period.

doi:10.1371/journal.pone.0173061.g003
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rehabilitation program results in a decline of MSNA levels at baseline and in their response dur-

ing a handgrip exercise in patients with the Gln27Gln polymorphism towards the response of

patients with Gln27Glu+Glu27Glu polymorphisms; (3) exercise training increases muscle vaso-

dilatation and lowers mean BP responses during handgrip exercises in patients with Gln27Glu

+Glu27Glu polymorphisms, but not in patients with the ADRB2 Gln27Gln polymorphism.

Neurovascular responses during exercise

To the best of our knowledge, this is the first study evaluating the response of MSNA in

patients with ACS with the ADRB2 polymorphism. Interestingly, despite optimal medical

therapy, patients with the Gln27Gln polymorphism have an exaggerated response of MSNA

during exercise one month after an ischemic event compared with their counterparts with

the Gln27Glu+Glu27Glu polymorphisms. The sympathetic overactivation during exercise

observed in the patients with ACS with the Gln27Gln polymorphism apparently has hemody-

namic implications. Blood pressure responses during this physiological condition are higher

in these patients. Similar findings have been reported in healthy men who are carriers of the

Gln27 allele of the ADRB2. These individuals have higher levels of MSNA compared with sub-

jects homozygous for Glu27 [29]. In addition, this neurovascular marker may contribute to

the worse prognosis of patients with Gln27Gln genotype after myocardial infarction [17]. We

have previously reported that MSNA is an independent predictor of mortality in patients with

chronic heart failure [30].

The mechanism involved in the increased sympathetic nerve activity in Gln27Gln group

was out of the scope of our study. However, we can speculate that the desensitization and/or

downregulation of the β-adrenergic receptors contribute to this response [9,14,31]. The

impairment in functionality of β-adrenergic receptors caused by persistent receptor stimula-

tion due to augmented catecholamine levels leads to a redistribution of the recognition sites

for β-adrenergic receptors, decreasing their number in the plasmatic membrane (downregula-

tion) and increasing the internalization of these receptors in the cytosol (desensitization) [32–

35]. In fact, the time course for desensitization during the terbutaline infusion protocol was

slower in subjects homozygous for Glu27Glu compared with those homozygous for Gln27Gln

[14]. On the other hand, we cannot rule out the possibility that ADRB2 polymorphism may

affect its sensitivity to beta-blockers and in consequence, to influence MSNA at baseline and

during exercise. This issue was out of the scope of the present study. However, we observed

that the number of patients taking beta-blockers was similar between groups (Table 1).

Besides, further analysis showed that beta-blocker dosage was equal between groups

(Gln27Gln: 58±6 mg/day vs. Gln27Glu+Glu27Glu: 60±6 mg/day, P = 0.89). Thus, as previously

described, the levels of heart rate were similar between groups. In addition, our data shown

that the different responses of MSNA between Gln27Gln and Gln27Glu+Glu27Glu groups

were observed in both bursts per minute and in bursts corrected by heart beats. Nevertheless,

future investigations should focus on this issue.

In the present study, we observed a similar vasodilatory response between Gln27Gln and

Gln27Glu+Glu27Glu groups one month after an ischemic event. This is an intriguing finding,

because in a previous study, we found that healthy individuals Glu27Glu homozygous for

ADRB2 had higher vasodilatation during exercise and mental stress than individuals Gln27Gln

homozygous [11,12]. In addition, Dishy et al. [36] reported that healthy individuals who are

carriers of the Glu27Glu polymorphism had higher muscle vasodilatation in response to iso-

proterenol infusion. This controversy may be explained by the fact that we are dealing with

patients with ACS. In fact, we previously documented that patients after acute myocardial

infarction had blunted vasodilatory response during exercise [2], and other authors have

Neurovascular control during exercise and ADBR2 Gln27Glu polymorphism
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demonstrated that endothelium-dependent vasodilatory dysfunction is present in these

patients [37–39]. It is unlikely that the use of β-blockers explains the difference in muscle vaso-

dilatory responses between Gln27Gln and Gln27Glu+Glu27Glu groups, because 91% of Gln27

patients were using β-blockers, (54% selective and 37% nonselective, data not shown) versus

96% of Gln27Glu+Glu27Glu patients using β-blockers, (77% selective and 19% nonselective,

data not shown).

Effects of exercise training

Exercise training has been shown to provoke a remarkable reduction in resting MSNA levels

in patients with myocardial infarction [1]. Moreover, we have previously described that exer-

cise training decreased MSNA levels during exercise in chronic heart failure patients [22]. The

present study extends the knowledge that a genetic profile can influence this autonomic regu-

lation. Eight weeks of an exercise-based cardiac rehabilitation program caused a significant

reduction in MSNA levels at baseline and in their response during a handgrip exercise in

patients with the Gln27Gln polymorphism. There is no definitive explanation for this training

adaptation. However, someone could suggest that amelioration in arterial baroreflex control

and reduction of chemoreflex hypersensitivity contribute to the reduction in MSNA. It is also

possible that the MSNA response during exercise was mediated by an improvement in afferent

muscle reflex control, as recently demonstrated [40].

Another interesting finding in our study is the effect of exercise training on vascular func-

tion in patients with ACS and the ADRB2 polymorphism. In contrast to Gln27Gln patients,

exercise training significantly increased exercise FVC responses in patients with Gln27Glu

+Glu27Glu polymorphisms. This is important information. First, it may explain the heteroge-

neous response to exercise training across individuals with cardiovascular disease. Second, it

explains the better prognosis in patients carrying Gln27Glu+Glu27Glu polymorphisms. Our

study provides no information regarding the mechanisms underlying the vascular changes in

patients with Gln27Glu+Glu27Glu polymorphisms. However, it is consistent with the notion

of increased nitric oxide bioavailability and reduced oxidative stress in skeletal muscle consis-

tently shown in previous studies [41–43].

On the basis of our data, someone could argue that exercise training brings more benefits

in FBF and FVC increases during exercise in Gln27Glu+Glu27Glu group compared with

Gln27Gln group. In fact, we have documented that MSNA restrains the reflex muscle vasodila-

tation during exercise in patients with heart failure [44]. And, when the sympathetic activity

was blockade with intra-arterial infusion of phentolamine (alpha-adrenergic antagonist), the

increase in FBF and FVC was significantly improved [44]. Thus, we can speculate that in

Gln27Gln group the exacerbated MSNA response during exercise could restrain the ameliora-

tion in vasodilation in these patients during our experimental protocol. It is possible to suggest

that although Gln27Gln group match their sympathetic activity with the Gln27Glu+Glu27Glu

group at the end of exercise training protocol, they may require a more prolonged period of

exercise to improve vascular function and reduce oxidative stress. However, this hypothesis

needs to be tested.

Limitations

Our study has limitations. The frequency of patients with ACS homozygous for the Glu allele

in our sample was significantly reduced compared with that in patients homozygous for

Gln27Gln. In fact, in the Gln27Glu+Glu27Glu group, only 5 had the homozygous Glu27Glu

polymorphism. However, the present frequency of distribution of these ADRB2 polymor-

phisms is in line with that in other studies that demonstrated that the Gln27Gln polymorphism
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is more frequent in patients with myocardial infarction than in healthy control subjects

[15,16]. To increase the power of our study, we analyzed the presence of the Glu27 allele

including patients homozygous for Glu27Glu and heterozygous for Gln27Glu in the same

group in comparison with patients homozygous for the Gln27 allele.

Perspectives

The higher MSNA and mean BP responses during exercise are suggestive of high risk in

patients with ACS and the ADRB2 Gln27Gln polymorphism. Moreover, it brings about the

idea that patients with the Gln27Gln polymorphism deserve special attention in clinical prac-

tice. Finally, exercise training should be strongly recommended to these patients.
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