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Abstract
The number of daily credit card transactions is inexorably growing: the e-commerce
market expansion and the recent constraints for the Covid-19 pandemic have sig-
nificantly increased the use of electronic payments. The ability to precisely detect
fraudulent transactions is increasingly important, and machine learning models are
now a key component of the detection process. Standard machine learning techniques
are widely employed, but inadequate for the evolving nature of customers behav-
ior entailing continuous changes in the underlying data distribution. his problem is
often tackled by discarding past knowledge, despite its potential relevance in the case
of recurrent concepts. Appropriate exploitation of historical knowledge is necessary:
we propose a learning strategy that relies on diversity-based ensemble learning and
allows to preserve past concepts and reuse them for a faster adaptation to changes.
In our experiments, we adopt several state-of-the-art diversity measures and we per-
form comparisons with various other learning approaches. We assess the effectiveness
of our proposed learning strategy on extracts of two real datasets from two European
countries, containingmore than 30Mand 50M transactions, provided by our industrial
partner, Worldline, a leading company in the field.
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1 Introduction

The use of credit cards is constantly growing. This is fertile ground for fraudsters, with
new technologies providing new methods to carry out frauds. For instance, the recent
COVID-19 pandemic permanently changed customers habits (Accenture 2020) favor-
ing electronic payments. Prompt detection of fraudulent behavior does not only prevent
an economic loss, but also preserves clients’ trust in the company. The enormous
amount of transactions provides profitable data, and the usage of machine learning for
fraud detection is crucial to extract hidden knowledge and improve fraud detection
accuracy. Standard machine learning algorithms are effective only when their requi-
sites are met (Batista et al. 2000). The fraud detection problem is challenging for its
characteristic of not meeting several of the standard learning algorithms requisites:
data is heavily unbalanced (Dal Pozzolo et al. 2013) (i.e. genuine transactions out-
number frauds) and subject to concept drift (Gama et al. 2004) (i.e. data distribution
changes over time); the two classes might overlap (i.e. no clear fraud/genuine distinc-
tion) and customers might report frauds several days after their perpetuation, leading
to a verification latency (Dal Pozzolo et al. 2017) (i.e. delay in availability of labeled
transactions).

Additionally, it is possible that recurrent concepts appear in data: customers might
have seasonal behavior, or the market might possibly follow a periodic pattern. We
propose a learning strategy that takes advantage of possible recurrent concepts, with-
out losing in terms of adaptability to changes in the underlying distribution. This is
achieved by using an ensemble (Zhou 2009) as an historical memory of models, mak-
ing several past concepts ready-to-use in case of re-appearance. To achieve that, we
employ Diversity criteria (Kuncheva 2004; Sun et al. 2018) to choose which models
need to be preserved. We also propose a weighting strategy specifically thought for
the fraud detection problem.

Our study aims at answering the following questions:

– Does the use of diversity criteria improve the performance of an ensemble-based
transactions classifier?

– How do different diversity measures impact the final performance?
– Is a diversity-based ensemble effective in a real scenario with possible concept
drift?

The main contributions of this paper are:

1. We assess the impact of diversity-based and time-based ensemble techniques in
fraud detection

2. We compare five state-of-the-art diversity measures
3. We analyze ensemble-based and non-ensemble-based approaches
4. We propose a weighted diversity-based ensemble learning strategy

This study can be considered complementary to our previous work on diversity and
transfer learning (Lebichot et al. 2020), whose focus was on Neural Networks (NN)
and Deep Neural Networks (DNN). Here we consider exclusively Random Forests
(RF) for the following reasons: (1) they have shown to overperform other models
in previous studies on fraud detection (Dal Pozzolo 2015) (2) they are beneficial to
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establish feature importance, which is highly valued by investigators to understand
the causes behind labeling a transaction (3) they provide a natural ensemble that can
be easily exploited to tackle problems such as imbalance, by providing each decision
tree with a balanced subset of the original data (explained in Sect. 5.3).

This paper is organized as follows: Sect. 2 introduces the context of our study to
give the necessary background for understanding the problem formulation in Sect. 3.
Our proposed learning strategy can be found in Sect. 4 while Sect. 5 is dedicated to its
experimental assessment. The conclusions of this work can be found in Sect. 6.

2 Background and related work

In this section we outline all the required knowledge to properly contextualize the
problem of credit card fraud detection. We start by briefly describing the structure
of a real-life fraud detection system in Sect. 2.1, inspired by the one used by our
industrial partner. We then present in Sect. 2.2 a brief outline of how the problem of
fraud detection has been studied in the literature. In Sect. 2.3 we focus on credit card
transactions data and we illustrate its challenges: unbalancedness, streaming nature,
and variability. Finally, we introduce some methods used to tackle the above issues,
by focusing in Sect. 2.4 on the concept of Diversity, main components of our Proposed
Learning Strategy (Sect. 4).

2.1 Fraud detection system

A real-life Fraud Detection System typically employs five levels of control: (1) the
terminal, (2) the transaction blocking rules, (3) the scoring rules, (4) the data driven
model and (5) the investigators. (1) The terminal performs standard security checks
on all transactions requests, as the correctness of the PIN code, the card status, cur-
rent balance, etc. (Van Vlasselaer et al. 2015). (2) The transaction blocking rules
are confidential conditional statements to stop clear fraudulent transactions (e.g. “IF
blacklisted website THEN deny transaction”). (3) The scoring rules are confidential
conditional statements to score potential fraudulent transactions (e.g. “IF amount >>

average THEN fraud score = 0.8”). (4) The data driven model adopts a statistical
model, trained on past labeled data, to estimate the probability of each transaction
being a fraud. This is the layer that this works aims at improving. (5) The investigators
are experienced professionals that design layers (2) and (3) rules. Additionally, they
check the riskiest transactions from level (4) to return a true label for each of them:
the former are referred as alerts and the latter as feedbacks. An extended description
of a Fraud Detection System can be found in (Dal Pozzolo et al. 2017).

2.2 Fraud detection literature

Despite the limitations related to the availability of data for privacy reasons, credit card
fraud detection has always interested machine learning literature for its challenging
nature and its relevant impact. Supervised learning methods (Brause et al. 1999; Chan
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et al. 1999) and unsupervised methods (Bolton et al. 2001; Phua et al. 2010) have
been proposed, with the former gaining more popularity than the latter. In supervised
learning, fraud detection is achieved by training a classifier on labeled transactions
and using it to classify authorized transactions. Several classification algorithms have
been used in fraud detection, from Logistic Regression (Jha et al. 2012) to Support
Vector Machines (Whitrow et al. 2009), from Decision Trees (Dal Pozzolo et al.
2014b) to Neural Networks (Dorronsoro et al. 1997). Random Forest achieved the best
performance in different cases (Bhattacharyya et al. 2011; Dal Pozzolo et al. 2015a;
Dal Pozzolo et al. 2014a). Unsupervised learning approaches the problem by detecting
transactions that differ from themajority, for instance bymeans of PeerGroupAnalysis
(Weston et al. 2008), and other clustering algorithms (Phua et al. 2010). Combinations
of supervised and unsupervised learning have also been proposed (Carcillo et al. 2019;
Veeramachaneni et al. 2016). Strategies have been also proposed to re-use already
existing knowledge by means of domain adaptation techniques (Lebichot et al. 2019).

The statistical literature also addresses fraud detection (Bolton and Hand 2002).
From traditional statistical methods such as linear discriminant analysis (Hand 1981)
to more complex models such as Neural Networks (Webb 2003); from rule-based
methods (Clark and Niblett 1989) to tree-based algorithms (Breiman et al. 2017),
statistics has always been the core of the fraud detection literature. Other statistical
techniques often considered include, for instance, outlier detection (Hodge and Austin
2004), sampling (Domingo et al. 2002) and graph mining (Washio and Motoda 2003).
A comprehensive survey can be found here (Phua et al. 2010).

More recently, authors in Cerioli et al. (2018) propose a Fraud Detection System
based on the Newcomb–Benford law for significant digits, trying to establish condi-
tions for the validity of the law in the field of international trade data. Rousseeuw et al.
(2019) propose a Robust Time SeriesMonitoring approach based on outlier-detection,
and propose a double wedge plot as an effective visualization tool. Cerasa and Cerioli
(2017) study the problem of merging homogeneous groups of pre-classified observa-
tions from a robust perspective motivated by the anti-fraud analysis of international
trade data, running simulations under different contamination scenarios. Graph-based
approaches have also shown good potential in the fraud detection literature: a system-
atic literature review can be found in Pourhabibi et al. (2020).

2.3 Specific challenges of fraud detection

Transactions data is characterized by several aspects that make the fraud detection
problem challenging, the most important are: the data unbalancedness, the delayed
labels availability, and its evolving nature. A detailed description of the challenges in
the fraud detection problem can be found in Alazizi et al. (2019), where the authors
assess their results on data from our industrial partner.

Fraud detection data is heavily unbalanced, meaning that the number of frauds
is exceptionally small compared to the genuine transactions. Formally, in a binary
classification task f : R

n → {0, 1}, with input X ∈ R
n and output Y ∈ {0, 1}, a

training set of size N can be defined as follows:
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TN = {(x1, y1) , . . . , (xN , yN )} (1)

and it is unbalanced when the number of positive cases N+ is small (resp. big) com-
pared to the number of negative cases N−. Notice that N+ + N− = N .

Specifically, the number of frauds can be less than 1 transaction per 1000 (Juszczak
et al. 2008), making the distribution highly skewed towards the majority class. Most
machine learning algorithms are notmeant toworkwith an unbalanced dataset (Batista
et al. 2000): their tendency is in fact to favor, in predictions, the most frequent class.
Standardmethods for dealingwith unbalanced data areUndersampling (He andGarcia
2009) and Oversampling (Drummond and Holte 2003). They respectively reduce the
majority class or size up the minority class to compensate for the imbalance. Several
variations exist, here we name SMOTE (Chawla et al. 2002), ADASYN (Haibo et al.
2016), and EasyEnsemble (Liu et al. 2008). Recent literature (Ba 2019; Mullick et al.
2019) has shown the usage of Generative Adversarial Networks to create realistic
frauds for rebalancing the two classes.

When a fraud occurs, it might take several days for a cardholder to realize it and
dispute the transaction.Hence, it is unrealistic to know the true nature of a fraudwithout
considering a verification latency. A small fraction of transactions receives its true
label: feedbacks provided by the investigators over the riskiest transactions represent
the most recent supervised information available to the Fraud Detection System. The
verification latency is a serious drawback in data availability, being recent data the
most representative of the current data distribution. This issue is often not considered
in the literature (e.g. (Bolton et al. 2001; Brause et al. 1999)) and tests are performed
with the real labels available one day after the transaction took place. Recent works
(Dal Pozzolo 2015; Dal Pozzolo et al. 2017; Lebichot et al. 2016) have demonstrated
the importance of considering the set of feedbacks and the set of available transactions
separately. This is presented formally in Sect. 3.

A key assumption in the adoption of standard classification algorithms is that the
underlying distribution of data does not change over time. When the learning task
occurs in an evolving environment, this assumption is typically not met: this problem
is defined as Dataset Shift, (Quionero-Candela et al. 2009) or Concept Drift (Gama
et al. 2014a; Widmer and Kubat 1996; Schlimmer and Granger 1986). The goal of a
traditional classification problem is to estimate P(y | x), that can be written, from
Bayes law, as follows:

P(y | x) = P(x | y)P(y)

P(x)
(2)

Concept Drift might hence be formally defined asPt (x, y) �= Pt+1(x, y) and the joint
distribution of a sample (x,y) can be written as follows:

P(x, y) = P(y | x)P(x) = P(x | y)P(y) (3)

From (2) and (3) we can identify its possible sources: it can be caused by a change
in P(y | x),P(x | y), or P(y). Notice that a change in P(x) does not affect y and
is not relevant. If Pt (y) �= Pt+1(y), a miscalibration of classifiers can happen, for
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instance if the number of frauds suddenly increases. If Pt (x | y) �= Pt+1(x | y), the
distribution within the classes changes, but the class boundary remains the same. An
example can be the discover of a new fraud technique. IfPt (y | x) �= Pt+1(y | x), the
class boundary changes, leading to biased classifiers, e.g. with the change of customer
habits. The problem has been widely studied by the literature (Gama et al. 2004,
2014b; Holte et al. 1989), and the proposed approaches can be classified in two broad
categories (Alippi et al. 2013): Active Adaptation (Gama et al. 2004) and Passive
Adaptation (Žliobaite 2010). Identifying the presence of Concept Drift, for instance
by a drop in performance, is the key component of Active Adaptation methods, while
Passive Adaptation relies on a continuous update of the model, regardless of whether
Concept Drift is present or not, favoring more recent data. When faced with Concept
Drift adaptation, the literature often deals with the problem ofCatastrophic Forgetting
(Kirkpatrick et al. 2017), which is the abrupt loss of previously learned information
upon learning new information. However, the problem of catastrophic forgetting is
more related to Neural Network based learners and is not treated in this work, focusing
on Decision Tree-based learners.

2.4 Diversity

Working with an ensemble of models might have different disadvantages, based on
how the individuals are managed. Preserving several models is expensive in terms of
memory and computation and if the criteria to select which model to store is based on
recentness,wemight endupwith needless redundancy.Moreover,when a concept from
the past would reappear in the future, none of the stored models would be suitable, for
their training-set being only originated from recent data. Promoting diversity to select
which model to store would avoid having redundant knowledge and allow flexibility
in case of recurrence of past knowledge. Diversity among an ensemble of classifiers
is considered a key component in the learning process (Cunningham and Carney
2000). However, no general formal definition of diversity exist. Several measures of
similarity among binary classifiers have been used in the literature to compute diversity
(see Sect. 4.1). A study about the impact of diversity measures on the accuracy of an
ensemble of classifiers can be found in (Kuncheva 2004). A recent interesting approach
has proposed a novel framework to tackle concept drift by means of diversity: DTEL
(Sun et al. 2018) proposes to maintain a fixed buffer and store models that maximize
a diversity measure, and additionally to adapt members of the ensemble to recent data
by means of transfer learning.

3 Problem formulation

In order to clearly understand the proposed approach and the development of the
experiments, a clear formulation of the fraud problem is necessary. It is important
to emphasize the simplifying nature of the following problem formulation: real-life
Fraud Detection Systems are complex and rich in details, we extract the essential
aspects for the learning procedure.
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The i th authorized transaction is identified by a couple (xi , yi ), where xi ∈ Rn

is the feature vector (eg. transaction amount, date, etc) and yi ∈ {0, 1} represents
its class, 0 standing for genuine and 1 for fraudulent. The streaming nature of data
is simplified by considering new data arriving once a day in chunks or batches. We
denote the batch arrived on day t by Bt . The size of the batch s = |Bt | denotes the
number of transactions in a specific batch. We can define a batch as follows

Bt = {
(x j , y j ), (x j+1, y j+1)..., (x j+s−1, y j+s−1)

}
(4)

A classifier Kt |δ is created when a new batch of data becomes available. Kt |δ is
trained with the δ most recent batches available at day t . For instance, K10|3 will
use for its training the most recent 3 chunks of data available at day 10, respectively
B7,B8,B9. Equivalently we can use the following notation:

Kt |δ = TRAIN ({Bt−1, . . . ,Bt−δ}) (5)

The fraud detection problems is hence formulated as a binary classification problem
where a classifier Kt |δ associates to each features vector xi ∈ Rn a label yi ∈ {0, 1}.
We denote the probability for xi to be a fraud according to Kt |δ , also known as the
posterior of Kt |δ with the following:

PKt |δ (1 | xi ) (6)

Furthermore, after a classifier Kt |δ has processed s = |Bt | transactions from batch
Bt , it produces s values of PKt |δ (1 | xi ) that can be ranked according to their risk
of being fraud, r (xi ) ∈ {1, . . . , s}. The transaction with highest probability of being
a fraud will rank first, and the last one will rank sth . Thereby, the risk function r
maps each transaction to its ranking. We extract the k-most risky transactions—called
alerts—as follows:

At = {xi ∈ Bt | r (xi ) ≤ k} (7)

It is important to remark that real life risk-functions might not be limited to the
probability of a transaction being a fraud: e.g. if the amount of the concerned trans-
action is particularly low, the risk could be reduced, even with a high probability of
being a fraud.

In real life Fraud Detection Systems, because of the time and cost constraints of
verification, the set At is considered the only set of transactions that can be sent to
investigators to check. Investigators provide feedbacks about the cards involved in the
At transactions.A feedback is a couple (xi , yi )providing the correct classification label
back to the Fraud Detection Systems. The number of feedbacks can be larger than the
size of At , because if a transaction is fraudulent, all the transactions belonging to the
same card—even outside of At—are typically considered fraudulent. The feedbacks
set can be modeled as follows:

Ft = {(xi , yi ) | xi ∈ cards (At )} (8)
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where cards (At ) denotes the set of cards having one or more transactions in At . Ft is
the only source of correct classification labels for recent data. In fact, we can assume
that a η-days period of time called verification latency has to pass before knowing
true nature of a transaction. Customers could report frauds several days after they took
place and and all unreported transactions are considered genuine only after η days,
with η often considered constant to simplify computations. This implies that between
day t and t − η labels are not available, except from transactions contained in Ft .
Despite their reduced size w.r.t. the original batch size, feedbacks play an important
role in the prediction accuracy being the most recent data available.

4 Proposed learning strategy

We start by describing the necessary components of our proposed learning strategy,
namely an ensemble of classifiers, the effect of considering a verification latency, and
the criterion for selecting the ensemble members.

A classifier can be used directly to process authorized transactions from consequent
days (t + 1), (t + 2), ..., or can be used together with other classifiers in an Ensemble.
An ensemble of size n is a collection of n classifiers and is identified by the following
notation:

E = {Kt1|δ1 ,Kt2|δ2 , ...,Ktn |δn
}

(9)

If an ensemble E is used for prediction, the probability of xi to be a fraud described
in (6) becomes:

PE (1 | xi ) =
{

w0PKt1|δ1 (1 | xi ) + w1PKt2 |δ2 (1 | xi ) + ... + wnPKtn |δn (1 | xi )
∑

i wi

}

(10)

where {w0, w1, ..., wn} are theweights associated with each classifier in the ensemble.
Considering the verification latency η and the feedbacks F described in (8), the

literature (Dal Pozzolo 2015; Dal Pozzolo et al. 2017) suggests the importance to
treat those labeled transactions separately, adding another layer of complexity to the
detection problem. Despite the importance of feedback samples, our work aims only
at assessing the impact of diversity, hence we ignore them. However, in order not to
stray from reality, we consider the most recent batches of data as a gap set that is not
available (Fig. 1). We can conclude that in reality a classifierKt |δ can only access fully
labeled batches prior to day t − η:

Kt |δ = TRAIN
({
Bt−η−1 . . . ,Bt−η−δ

})
(11)

It is important to remark that an ensemble E can contain classifiers trained using
completely different sets of batches. In particular, the ensemble members selection is
a key point of an effective learning procedure. Generally, to get a good ensemble, its
members should disagree on some input (Krogh and Vedelsby 1995). We can assume
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Fig. 1 Real-life FDS scenario, with current day at t . Between day t − 1 and t − η only feedbacks from
investigators are available: they require specific treatment (Dal Pozzolo 2015) and are ignored here. Hence
our Train set (of size δ) covers days [t − η − δ, t − η − 1]; the Gap set (of size η) days [t − η to t − 1]
and our Test set (of size 1) day [t]

that from a set C of c classifiers it is possible to select the members for the ensemble
E of s classifiers (with s < c), by means of a criterion that leads to a good ensemble.
We denote by SEL() the function that performs this selection by choosing between all
the possible s-sized subsets of C. Being E = SEL(C), we have:

E = SEL(
{Kt1|δ1, . . . ,Kts |δs , . . . ,Ktc|δc

}
) = (

{
Kt̄1|δ̄1, . . . ,Kt̄s |δ̄s

}
) (12)

The following focuses on how to craft an optimal selection criteria SEL(C). To
address Concept Drift, it is crucial to keep the classifiers continuously updated, by
including the most recent knowledge and discarding past information. This can be
achieved in two strategies:

– by using a single classifier trained on most recent data (I)
– by using an ensemble of recent classifiers (II)

The aforementioned strategies focus on discarding past information. However, his-
torical knowledge is not always obsolete. Periodic patterns tend to appear in customers’
behavior (e.g. during Christmas holidays). Recurring concepts suggest the need to
exploit historical knowledge rather than discarding it. The exploitation must be done
carefully: past data can be beneficial in the presence of recurring concepts but detri-
mental in its absence. For example, if the distribution of data has changed over time,
keeping past data in the train-set of a classifier negatively affects its performance. A
variation of strategy (II) can be formulated by using the ensemble as a memory of rel-
evant knowledge rather than recent knowledge. In particular, the presence of several
different concepts, despite their distance in time, could lead to an easier adaptation to
their recurrence in the future. Additionally, recent classifiers can be similar and their
ensemble redundant. This suggests the use of a Diversity measure to choose the can-
didates classifiers for the ensemble: similar classifiers are discarded, leaving room for
diverse ones, that potentially encompass different concepts. Each classifier is weighed
based on its most recent performance, using fraud-detection specific metrics.

Our proposed learning strategy, detailed in Algorithm 1, implements the proposed
variation of strategy (II). A new candidate classifier Kt |δ is created every day and
trained on the most recent δ labeled batches available. Kt |δ is then included in an
ensemble E only if the diversity in the ensemble increases by replacing one of its
members with Kt |δ . In this way, we benefit from the most diverse ensemble at each
day, which is then used to process new transactions by means of weighted average
prediction of its members. With a new classifier trained every day and a diversity
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criterion, we aim at not keeping redundant knowledge, to ideally have an ensemble
that stores diverse past concepts.

The rationale behind the proposed learning strategy is to seek balance in the
stability-plasticity dilemma (Mermillod et al. 2013): we would like our classifier to be
highly flexible and adaptable to changes, but at the same time, we do not want it to be
easily affected by noise or short term changes. Additionally, it is reasonable to assume
the existence of recurrent patterns in transactions data, suggesting the importance of
not discarding relevant past knowledge.

Algorithm 1 Proposed Learning Strategy

procedure
t ← t0
while true do

for each classifier Ki ∈ Et−1 do
Pt [i] ← weighted prediction using Ki � prediction

Kt |δ ← new classifier, TRAIN
({
Bt−η−1, . . . ,Bt−η−δ

}) � training

if Et−1 is not full then � ensemble update
Et ← Et−1

⋃ {Kt |δ
}

else
E ′
t ← Et−1

⋃ {Kt |δ
}

Kt |δ ← argmaxK Div
(E ′

t\ {K}) � diversity computation

Et ← E ′
t − {Kt |δ

}

for each classifier Ki ∈ Et do
Wt [i] ← compute weights for Ki � weights computation

t ← t + 1

4.1 Implementation of the proposed learning strategy

As mentioned in Sect. 3, an accurate weighing of the ensemble members is crucial to
avoid past knowledge to drastically reduce the accuracy of the final prediction. Given
a performance metricMt ∈ [0, 1] computed over the last labeled batch Bt available,
we implement the weight of each classifier Ki for prediction at time step t + η + 1 as
follows:

weightit = 1

(1 − Mt ) + ε
(13)

where ε is a small positive value to prevent the denominator from being 0. We set
ε = 0.1, which implies that a good classifier (Mt ∼ 1) has weightit ∼ 10 and a bad
classifier (Mt ∼ 0), has weightit ∼ 1.

We compute diversity starting from five pairwise similarity and dissimilarity mea-
sures between classifiers: Yule’s Q statistic (Yule 1900), Correlation Coefficient
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(Benesty et al. 2009), Disagreement measure (Ho 1998), Double Fault measure (Giac-
into and Roli 2001), Interrated Agreement measure (Fleiss et al. 1981). The choice
of those criteria is motivated by their popularity as similarity measures in the litera-
ture (Kuncheva 2004). Starting from a similarity measures S(Ki ,K j ) between two
classifiers Ki and K j , diversity of the ensemble E at time t is measured as follows:

div(Et ) = 1 − 1
∑

1≤i �= j≤s 1

∑

1≤i �= j≤s

|S(Ki ,K j )| (14)

where s = |Et | is the size of the ensemble. The weighting mechanism in (13) and
the computation of diversity as in (14) are inspired from (Sun et al. 2018), but our
work diverges from their idea for the following reasons: (a) they adopt only one
diversity measure, the Yule’s Q statistics (15) (Yule 1900), because it is one of the
most popular diversity measures in the literature, with no additional justification; (b)
they use a weighting metric based on the Mean Squared Error (MSE), while our
weighting metric is specific for fraud detection, because it employs Precision Top-K
(see Sect. 5.1) which is often adopted in this case study; and (c) they include directly
a transfer learning module, without assessing the impact of the diversity ensemble
exclusively.

In this work we consider multiple diversity measures, multiple-batches train-set
and other major differences due to the fraud detection framework (eg. the existance
of a gap-set). The mentioned diversity criteria are defined as follows, where Nab is
the number of examples for which the classification result is a by fi and b by f j , 1
represents a correct classification and 0 represents a misclassification:

– Yule’s Q statistic (Yule 1900):

Q
(
fi , f j

) = N 11N 00 − N 01N 10

N 11N 00 + N 01N 10 (15)

The intuition behind Yule’s Q is that it computes the ratio between the difference
and the sum of concordant and discordant classifications. If there is only discordant
pairs, the value is going to be -1, implying strong disagreement (perfect negative
correlation). If there is only concordant pairs the value is going to be +1, mean-
ing perfect positive correlation. If the numbers of agreements and disagreements
coincide, the statistic is going to be 0, implying that the two classifiers are not
associated.

– Correlation coefficient (Benesty et al. 2009):

ρi,k = N 11N 00 − N 01N 10
√(

N 11 + N 10
) (

N 01 + N 00
) (

N 11 + N 01
) (

N 10 + N 00
) (16)

The meaning of the Correlation Coefficient is very similar to the Yule’s Q statistics
one. It can be proven, in fact, that they have the same sign and that |ρ| ≤ |Q|. The
only difference is the denominator, that multiplies the four following scenarios:
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number of times the first classifier is correct, no matter the second one; number of
times the first classifier is incorrect, no matter the second one, number of times the
second classifier is correct, no matter the first one; and number of time the second
classifier is incorrect, no matter the first one.

– Disagreement measure (Ho 1998):

Disi,k = N 01 + N 10

N 11 + N 10 + N 01 + N 00 (17)

As the name suggests, the disagreement measure represents the ratio of disagree-
ments over the total number of observations. For clarity, the disagreement is when
one classifier is correct and the other classifier is wrong on one observation, or
viceversa. This ratio will get to 1 if the two classifier disagree on all possible
observations and to 0 if they agree on all of them.

– Double Fault measure (Giacinto and Roli 2001):

DFi,k = N 00

N 11 + N 10 + N 01 + N 00 (18)

Again a ratio over all possible observations, but this time only of the observations
that were wrongly predicted by both the classifiers. This value goes to 0 if all the
observations are correctly classified by at least one of the two classifiers. It goes
to 1 if all the observations are wrongly classified by both at the same time.

– Interrated Agreement measure (Fleiss et al. 1981):

κp = 2
(
N 11N 00 − N 01N 10

)

(
N 11 + N 10

) (
N 01 + N 00

) + (
N 11 + N 01

) (
N 10 + N 00

) (19)

Thismeasure an additional variation of theYule’sQ and theCorrelation coefficient.
More weight is given to the numerator, while the denominator sums the pairwise
product of the four scenarios mentioned for the Correlation coefficient.

All previous measures decrease when diversity increases, except for the Disagreement
measure, for which (14) becomes:

div(Et ) = 1
∑

1≤i �= j≤s 1

∑

1≤i �= j≤s

Disi,k (20)

5 Experiments

Our experiments are organized as follows: we first describe the metrics used to assess
the performance of a transactions classifier in Sect. 5.1; followed by a description of
our datasets in Sect. 5.2. Then, in Sect. 5.5 we outline our experimental settings and
we present our results in Sect. 5.6. A discussion about the obtained results is held in
Sect. 5.7.

123



The role of diversity and ensemble learning...

5.1 Metrics

In order to assess the performance of a classifier Kη
t |δ (or an ensemble E), we adopt

the two metrics Precision and Recall, defined as follows:

Precision = TP

TP + FP
,Recall = TP

TP + FN
(21)

where TP, or True Positive, indicates the number of correctly classified frauds; FP,
or False Positive, indicates the number of wrongly classified frauds and FN, or False
Negative, indicates the wrongly classified genuine transactions. Furthermore, a com-
mon metric in the fraud detection literature is the Precision Top k (Pk). It measures
the ability of the classifier to correctly detect the k-most risky transactions:

Pk = TPk
k

(22)

where TPk indicates the number of True Positive in the k-most risky transactions
(higher predicted probability of being a fraud). The aforementioned metrics depend
on the classification threshold γ > 0, since a transaction is classified as fraudulent if
PKt |δ (xi ) > γ . In our case, a transaction is classified as fraudulent if its probability of
belonging to the fraud class is greater than 0.50. Thereby, the value of γ considered in
the following experiments for the Pk is γ = 0.5. Another popular measure that takes
into account all possible threshold values is theAreaUnder the Precision Recall Curve
(prauc): the values of Precision and Recall are plotted for each possible γ ∈ [0, 1]
and the area under the resulting curve is measured. Another interesting technique
is presented in (Siblini et al. 2020): the calibration of standard metrics. In fact, the
number of fraud to detect varies for each test day, affecting metrics as the prauc. A
Calibrated Area Under the Precision Recall Curve (cprauc), invariant to the fraud
prior π , can be obtained by fixing a reference ratio π0 and weighing the count of TP
and FP in order to calibrate them to the value that they would have if π was equal to
π0, as follows:

Precc = TP

TP + π(1−π0)
π0(1−π)

FP
= 1

1 + π(1−π0)
π0(1−π)

FP
TP

(23)

Once a fraud is discovered, the corresponding credit card is blocked, hence considering
multiple transactions from the same card in the metrics measurement can lead to an
overestimation of performance.Grouping by Card, considering only the highest fraud
score between different transactions from the same card, is a good practice.

5.2 Our datasets

In the following, we use extracts from two large labeled datasets of e-commerce
transactions from two European nations, that have been provided by our industrial
partner. The name of the two countries cannot be disclosed: thereby, we will denote
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Table 1 Detailed description of the used datasets

Id Start End # Days # Inst. Feat. Fraud %

Country1 02/04/18 30/09/18 181 54809284 25 0.200

Country2 02/04/18 30/09/18 181 30042535 25 0.288

them as Country1 and Country2. Those transactions took place from 02/04/2018 to
30/09/2018, and they sum up to around 50M for Country1 and 30M for Country2. In
the considered scenario, the percentage of fraud is exceptionally low, from 0.2% to
0.3%, leading to a very unbalanced learning problem.

The original dataset provided by our partner contained 43 features, categorical and
numerical, binary and non-binary, discrete and continuous. This dataset is already
clean: it does not contain missing values, transactions are labeled, and normalization
of the continuous features has been performed. Some features are the results of feature
engineering, to extract meaningful aspects of each transactions, but we cannot disclose
how.

In order to be coherent with our previous work on the same datasets (Lebichot et al.
2020), we select a subset of 25 meaningful numerical features. Despite the fact that we
cannot reveal the true nature of the features,we can say that somedescribe the accounts,
some describe the users, and some describe their behavior. Two of those features
are binary, including the target column, while the remaining ones are continuous. A
detailed description of the used datasets can be found in Table 1.

In particular it is possible to classify the input features according to the Recency,
Frequency, Monetary (RFM) principle (Wei et al. 2010). Relevant examples of appli-
cation of the RFM principle in the credit card anti-fraud domain can be found in
(Baesens 2014; Baesens et al. 2015).

The classification is as follows:

– Recency: 4 features are describing the recent events, in termsof average,minimum,
maximum, etc.

– Frequency: 5 features are counting the number of transactions occurred in the
latest unit of time, with non-disclosable details.

– Monetary: 8 features fall in this category, they describe the intensity of the trans-
action and other non-disclosable monetary risk measurements.

– Others: the remaining input features do not belong in any of the previous cate-
gories, and they are mostly describing the client.

It is important to remark that, for the training, all features that uniquely identify a
cardmust be removed, so that the learningmodel should not take advantage of them. In
fact, this would lead to overestimating performance since in real-life a card is blocked
after a first fraud is detected.

Synthetic data To address reproducibility, an artificial dataset is also adopted. It is
obtained by utilizing a transaction data simulator of legitimate and fraudulent trans-
actions, publicly available at (Le Borgne et al. 2022).
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The referenced resource offers a generated dataset of 1754155 transactions and 23
features. Its fraud generation mechanism has been modified to ensure a strong and
recurrent concept drift, as follows:

– transactions from the first week of each month are labeled as fraudulent if their
amount is between 40 and 50 euros

– transactions from the second week of each month are labeled as fraudulent if their
amount is between 50 and 70 euros

– transactions from the third week of each month are labeled as fraudulent if their
amount is between 70 and 90 euros

– transactions from the fourth week of each month are labeled as fraudulent if their
amount is between 90 and 100 euros

5.3 Dealing with unbalancedness

Toaddress the problemof unbalancedness,we adopt aBalancedRandomForest,which
randomly under-samples each boostrap sample to balance it, training each tree with a
balanced subsample of the original dataset. It is possible to apply other techniques to
address the unbalancedness, and several experiments have been carried out in the past
(Dal Pozzolo et al. 2015b), including ADASYN. Easy-ensemble techniques, based on
the idea of using different balanced subsamples, have been showing optimal results,
and it is very similar to what we have done with the Balanced RF. However, the goal
of the paper is not to solve the unbalanced problem, but rather to provide an overlook
of the impact of diversity measures and ensemble techniques.

5.4 Model selection

We have mentioned in Sect. 1 that in this work we adopt Random Forest as a model.
Specifically, a Balanced Random Forest of 10 trees, where each tree learns from a dif-
ferent balanced subsample of the original dataset. We justify the choice of a Random
Forest model with its performance in past fraud detection work (Dal Pozzolo et al.
2014a), but also for the advantage in providing an easy access to feature importance,
easing the work of investigators in understanding the reason behind one specific clas-
sification. The Random Forest model is also easily adapted to work with unbalanced
data (Sect. 5.3). However, this does not imply that simpler models might not be inef-
fective: recent literature (Baesens et al. 2021) suggests that the performance might
depend more on data engineering than complex models. The proposed framework is
model-independent, and can be naturally used with other models.

5.5 Experimental settings

In our experiments,we consider a constant verification latency ofη days, and according
to previous works (Dal Pozzolo et al. 2017), we set η = 7, being one week considered
a valid verification latency size from a practitioner perspective. We also consider a
constant size of the training window δ = 30 and in the following we write Kx |30
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simply as Kx . This choice comes from past work (Dal Pozzolo et al. 2014a) and it
usually provides sufficient fraudulent transactions for an effective learning.We choose
to set the size of our ensemble E , s = 7, chosen as a reasonable value from the results
in (Sun et al. 2018), where a similar ensemble is adopted. We test our approaches on
batches from B67 to B126 of our dataset. We consider batches from B60 to B66 as the
gap-set (Fig. 1) due to the verification latency η. Hence, our first trainset for testing on
batch B67 will cover the batches {B59, . . . ,B30}. We assess the impact of the proposed
learning strategy in a gradual way, with increasing complexity. We start from a simple
batch learning, where a single model is used and no update is performed; we add
an update mechanism, based on re-training a single model every single day shifting
the trainset, in a sliding window manner. Additionally, we introduce the ensemble
by storing multiple models and averaging their predictions, using as model selection
criteria time, diversity, and randomness. We test all the diversity measures described
in Sect. 4.1. Finally, for the ensemble-based approaches we also propose a weighted
version, detailed in the following.

Namely, we implement the following approaches, whose variations are summarized
in Table 2:

– Static: a single model is created once and no update is performed. The classifier
evolves as follows:

K67 = TRAIN ({B59,B58, . . . ,B30})
K68 = K67

. . .

(24)

– SlidingWindow: a singlemodel is created every day, using amoving set of batches.
The classifier evolves as follows:

K67 = TRAIN ({B59,B58, . . . ,B30})
K68 = TRAIN ({B60,B59, . . . ,B31})

. . .

(25)

– Recent Ensemble: the latest 7 sliding window models are stored in an ensemble
and their average is used for predictions as PE (xi ) = 1

7

∑7
j=1 PE[ j] (xi ). The

ensemble evolves as follows:

E67 = {K67,K66, ...,K61}
E68 = {K68,K67, ...,K62}

. . .

(26)

An additional weighted version is proposed to favor recent models, the only dif-
ference is PE (xi ) = ∑7

j=1 w jPE[ j] (xi ) where w j is simply j .
– Random Ensemble: after an initialization phase where the latest 7 sliding window
models are stored in an ensemble, new models are added to the ensemble and
one member is randomly removed at each iteration. Predictions are computed as
PE (xi ) = 1

7

∑7
j=1 PE[ j] (xi ). The ensemble evolves as follows:
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Table 2 A summary of all tested approaches

Full name Identifier Type Update criterion Weights

Static static Single None None

Sliding Window slidingwin Single Time None

Recent Ensemble rec_ens Ensemble Time None

Recent Weighted Ensemble w_rec_ens Ensemble Time Time

Random Ensemble random_ens Ensemble Random None

Diverse Q Ensemble divQ_ens Ensemble Yule’s Q None

Diverse RO Ensemble divRO_ens Ensemble Correlation coeff. None

Diverse DIS Ensemble divDIS_ens Ensemble Disagreement None

Diverse DF Ensemble divDF_ens Ensemble Double Fault None

Diverse IA Ensemble divIA_ens Ensemble Interr. Agreement None

Diverse Weighted Q Ensemble w_divQ_ens Ensemble Yule’s Q Pk100

Diverse Weighted RO Ensemble w_divRO_ens Ensemble Correlation coeff. Pk100

Diverse Weighted DIS Ensemble w_divDIS_ens Ensemble Disagreement Pk100

Diverse Weighted DF Ensemble w_divDF_ens Ensemble Double Fault Pk100

Diverse Weighted IA Ensemble w_divIA_ens Ensemble Interr. Agreement Pk100

E67 = {K67,K66, ...,K61}
E68 = (E67 ∪ {K68}) \E[ j], j is random

. . .

(27)

– Diverse Ensemble: after an initialization phase where the latest 7 sliding window
models are stored in an ensemble, new models are added to the ensemble and one
member is removed by maximizing a diversity measure computed on unseen data.
Predictions are computed as PE (xi ) = 1

7

∑7
j=1 PE[ j] (xi ). The ensemble evolves

as follows:

E67 = {K67,K66, ...,K61}
E68 = (E67 ∪ {K68}) \E[ j], j maximises diversity

. . .

(28)

An additional weighted version is proposed to favor performing models, the only
difference is PE (xi ) = ∑7

j=1 w jPE[ j] (xi ) where w j is computed as in (13),
using M =pk100.

5.6 Results

We present here the metrics mentioned in Sect. 5.1: Precision Top 100 (pk100) and
Calibrated Area Under the Precision Recall Curve with card grouping (cprauc_c).
We present the collected metrics for both countries in Table 3: we show mean and
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Table 3 Fraud detection performance when using 30 days of transactions as the train-set, with an ensemble
of size 7 and a verification latency of 7 days (s = 7, η = 7, δ = 30)

Country1 Country2

pk100 cprauc_c pk100 cprauc_c

Static Mean 0.106 0.159 0.252 0.101

Std 0.047 0.075 0.207 0.049

Slidingwin Mean 0.144 0.177 0.244 0.092

Std 0.061 0.049 0.169 0.024

rec_ens Mean 0.307 0.280 0.513 0.180

Std 0.091 0.082 0.287 0.059

w_rec_ens Mean 0.309 0.278 0.513 0.178

Std 0.093 0.080 0.284 0.059

divQ_ens Mean 0.309 0.265 0.516 0.178

Std 0.079 0.093 0.273 0.058

divRO_ens Mean 0.304 0.265 0.511 0.177

Std 0.084 0.093 0.270 0.056

divDIS_ens Mean 0.304 0.266 0.505 0.176

Std 0.081 0.095 0.266 0.055

divDF_ens Mean 0.311 0.281 0.525 0.181

Std 0.086 0.083 0.285 0.057

divIA_ens Mean 0.307 0.260 0.509 0.179

Std 0.090 0.098 0.273 0.057

w_divQ_ens Mean 0.307 0.267 0.517 0.178

Std 0.078 0.094 0.274 0.058

w_divRO_ens Mean 0.306 0.267 0.503 0.177

Std 0.083 0.096 0.266 0.055

w_divDIS_ens Mean 0.303 0.266 0.520 0.179

Std 0.080 0.094 0.279 0.057

w_divDF_ens Mean 0.308 0.281 0.526 0.181

Std 0.083 0.084 0.287 0.058

w_divIA_ens Mean 0.305 0.261 0.527 0.182

Std 0.082 0.098 0.284 0.059

random_ens Mean 0.311 0.275 0.517 0.178

Std 0.089 0.086 0.280 0.058

The top-5 scoring approaches for each metric are in bold. It is possible to see that some approaches (e.g.
divDF_ens) belong to the top-5 for all metrics presented

standard deviation computed over the test days. The top-5 approaches for each metric
are in bold. To assess the statistical significance of our results we perform Fried-
man/Nemenyi tests (α = 0.05) as recommended by (Demšar 2006) and we reject the
null hypothesis that all classifiers achieve the same performance. The results of the
statistical tests are presented by means of a Critical Diversity plot. Fig. 2 shows the
Critical Diversity plot to compare the various diversity measures, while Fig. 3 presents
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Fig. 2 Friedman/Nemenyi test for models comparison (the lower, the better)—diversity measures compar-
ison for cprauc_card metric. Country1 above, Country2 below. Approaches connected with a bold line are
statistically equivalent

Fig. 3 Friedman/Nemenyi test for models comparison (the lower, the better)—approaches comparison
for cprauc_card metric. Country1 above, Country2 below. Approaches connected with a bold line are
statistically equivalent

the Critical Diversity plot comparing the best diversity measure from Fig. 2 with other
approaches. To visually compare the most performing approaches, we plot the evo-
lution of one of the metrics (pk100) over time in Fig. 4. The evolution of the metric
pk100 over time obtained on the artificial dataset described in Sect. 5.2 can be found
in Fig. 5
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Fig. 4 Evolution of the pk100 metric for the top scoring approaches over the test days (the higher, the
better). Country1 above, Country2 below

Fig. 5 Evolution of the pk100 metric for a selection of approaches over the test days of the artificial dataset
described in Sect. 5.2
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5.7 Discussion

On the basis of the above experiments these are the main considerations:

– Figure 2 shows that using different diversity measures can affect the performance
of the ensemble. In particular, we see that there is a significant difference between
the best diversity measures and the worst ones. This suggests special care when
choosing the diversitymeasure. Double Faultmeasure appears to be the best choice
for both countries, while the other diversity measures obtain different rankings.
Double Fault (18) (Giacinto and Roli 2001) computes the fraction of times when
a pair of classifier is wrong, i.e. both classifiers wrongly predict a class. We can
speculate that, being the fraud detection problem a complex task (see Sect. 1), a
measure proportional to the mistakes of both classifiers can help to differentiate
them. The different rankings obtained by the other diversity measure suggest that
an ideal diversity measure might depend on the data distribution.

– Comparing the Double Fault diversity-based approach with the other approaches
summarized in Table 1, it is quickly noticeable that ensemble-based models over-
perform single models (Fig. 3) even when the approach is quite similar, as it
is for rec_ens and slidingwin (the former is an ensemble variant of the
latter). In this case, weighting to favor the most recent model in the ensemble
appears detrimental rather than beneficial: this-together with the slidingwin
bad performance—confirms the value of historical knowledge and discourage an
exclusive focus on recent data. However, rec_ens has shown to win—although
not significantly (Fig. 3)—over the diversity-based approach for Country1. This is
a valid example of the stability-plasticity dilemma: exclusive usage of recent data
is not optimal, but recent data does play a crucial role in the performance of the
model.

– From the statistical tests in Fig. 3, the ensemble approaches do not show any signif-
icant difference among them. This can be grasped also by looking at the evolution
of the metrics over time (Fig. 4): lines are almost overlapping for most days, but
they present interesting peaks. For example in Country2 (Fig. 3, below), around
Day 30 and fromDay40 to 50, thew_divDF_ens line is above therec_ens line
with a non-negligible difference (∼ 0.2), showing a possible improved adaptation
by exploiting historical knowledge.

– Additionally, in Fig. 3 it is interesting to notice the behavior of the random_ens
approach: it performs much better than expected. This can be motivated by the
fact that adding randomness can be considered as a way of increasing diversity: if
we update randomly a uniform ensemble, we will be likely decreasing its unifor-
mity. The final ensemble benefits from randomness as it will potentially contain
unrelated models after several iterations.

– The results on the artificial dataset in Fig. 5 confirm that in presence of a recurrent
concept drift the diversity-based ensemble approach is significantly overperform-
ing all the other approaches.

Further experiments, not reported here, have shown no significant difference
between weighted versions of diversity-based ensemble and non-weighted ones, and
often the same diversity measure has prevailed in both its weighted and non-weighted
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variants over the other diversity measures. This suggests that which diversity mea-
sure is used to select the stored classifiers might be more important than the way the
classifiers are combined.

6 Conclusion

In this work, we propose the use of a diversity-based ensemble approach to improve
the performance of a credit card transactions classifier for fraud detection. The intu-
ition behind this approach is that the evolving nature of transactions would favor the
presence of recurring concepts, whose associated knowledge is strictly connected to
the past. Having amemory of past knowledge as an ensemble ofmodels could ease con-
cept drift adaptation especially when a past concept re-appears. We compared several
individual and ensemble approaches over an extensive real-life dataset, by adopting
diversity-based, time-based and random measures to choose between the ensemble
candidates. Our goal was to understand (1) if diversity is a valid criterion to build
the ensemble, (2) what is the impact of different diversity measures and, (3) if our
proposed learning strategy is effective. The results have shown that (1) diversity is a
valid criterion, but it is not significantly better than other criteria like recentness, (2)
varying diversity measure does impact the results and the best diversity measure, for
us the Double Fault measure (18), is probably problem-dependent and (3) our pro-
posed learning strategy ends up in the set of the top scoring approaches, although not
uniquely, confirming its effectiveness. Further work will study the impact of varying
parameters, and will assess the role of Diversity by taking into account the alert-
feedback interaction (Dal Pozzolo et al. 2017). Additionally, it will extend the set of
diversity measures considered, including non-pairwise measures.
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