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Abstract

The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demon-

strates strong planning capabilities for generating robust yet flexible neuronal sequences.

Neurocomputational models however, often fails to control long range neural synchrony in

recurrent spiking networks due to spontaneous activity. As a novel framework based on the

free-energy principle, we propose to see the problem of spikes’ synchrony as an optimiza-

tion problem of the neurons sub-threshold activity for the generation of long neuronal chains.

Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic)

evaluates the quality of one input vector to move the recurrent neural network to a desired

activity; depending on the error made, this input vector is strengthened to hill-climb the gradi-

ent or elicited to search for another solution. This vector can be learned then by one associa-

tive memory as a model of the basal-ganglia to control the recurrent neural network.

Experiments on habit learning and on sequence retrieving demonstrate the capabilities of

the dual system to generate very long and precise spatio-temporal sequences, above two

hundred iterations. Its features are applied then to the sequential planning of arm move-

ments. In line with neurobiological theories, we discuss its relevance for modeling the cor-

tico-basal working memory to initiate flexible goal-directed neuronal chains of causation and

its relation to novel architectures such as Deep Networks, Neural Turing Machines and the

Free-Energy Principle.

Introduction

Hierarchical plans and tree structures are a hallmark for human language and cognition [1].

But how the brain does to construct and retrieve them dynamically? In the motor domain,

Wolpert and colleagues propose that the brain learns the causal structure in sensorimotor cir-

cuits (e.g., the hidden parameters of a sensorimotor task) to perform action sequences assem-

bled online based on contextual signals from the environment e.g. for coordinate transform or

embodied simulation [2, 3]. For this example, it is argued that the causal structure is encoded

directly within the neural representations of cognitive chunks or motor primitives that a work-

ing memory can access further to explore and construct off-the-shelf satisfying neuronal
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chains with respect to the context. This adaptivity in the adult brain and human behavior is

hypothesized to be constructed slowly during infant development as Piaget and the tenants of

the embodied approach of cognition proposed it [4]. This rises difficult questions on how to

learn low-level sensorimotor neuronal rules with causal reasoning capabilities? How to explore

the different alternatives in the perceptuo-motor space given a specific context? How to initiate

flexible yet goal-directed chains of causation (active causation) [5]?

One candidate mechanism for flexible neural coordination is synchrony. At the neural

level, experimental and modelling studies have shown that spiking recurrent neural networks

(RNN) can encode temporal relationships by strengthening the synaptic connections between

neurons. However, the control of the neurons’ spikes at the millisecond order to propagate

information is non-trivial: the spontaneous activity within the network rapidly perturbs the

neural dynamics and it is rather difficult then to maintain any stability for controlling long-

range synchrony. As a novel idea, we envision the coordination of the spikes’ trains as an opti-

mization problem and instead of controlling directly the firing time of the neurons (i.e., the

probability of the neuron to fire or not at a specific timing), we propose to control rather the

neurons’ sub-threshold activity (i.e., to find which input value can generate a spike at a speci-

fied time). Making an analogy with the butterfly effect in chaos theory, we propose that the

tiny control of the neurons’ sub-threshold activity can permit to drive at the mesoscopic scale

the spikes’ synchrony; [6–8].

For this, we propose to use an optimization technique (a reinforcement signal) to drive the

neurons’ sub-threshold activity toward a targeting goal; by looping this process several time,

we expect the emergence of long-range neural sequences from largely unstructured spiking

recurrent neural networks; see Fig 1a). This idea is in line with recent proposals in machine

learning, [9] and [10], that use also semi-structured recurrent network models for planning. In

comparison to them, we extend their results by adding a second structure along with the recur-

rent network, an associative map (AM), that will recursively and timely control it; see Fig 1b).

We will show that our coupled system can generate long temporal sequences of spikes in a

dynamic and robust way recursively. But more importantly, we will explain how this new

architecture is now belonging to a different class of algorithms that implements predictive cod-

ing [11]. We introduce our model as a neural mechanism based on Iterative Free-Energy Opti-
mization for Recurrent Neural Networks, which is the anagram of INFERNO. Moreover, this

architecture is supported by several proposals and observations that consider the functional

organization between the cortex with the sub-cortical regions (the basal ganglia); c.f. [12–18].

We relate our idea with the principle of Free-Energy minimization (FEM) proposed by

Friston [19]. The Free Energy (FE) theory has been proposed to describe a wide range of phe-

nomena such as goal directed behaviour, learning (including habit learning), decision making,

e.t.c. . . Importantly, this theory explains this wide range of phenomena considering the agent

embedded in a highly dynamical environment, under the only constraint that the agent has to

minimize its free energy. This is a highly encompassing theory which is theoretically well-

grounded and based on very general principles. For example, in this context, habit learning is

explained as an emergent property of Bayesian optimal behaviour (under Free Energy minimi-

zation requirements), by an increased precision of posterior beliefs about future outcomes.

That is, this theory provides a conceptualization and a mechanistic account of habit learning.

Free energy scores the evidence that a particular policy is being pursued [20, 21]. FEM

means to predict for each policy one expected state and to optimize the one that minimizes the

most future errors. Implementing FEM has therefore an impact on the architecture design for

any predictive systems as it imposes to have at least two systems coupled to each other, one

encoding sensory signals and the other predicting its activity. This later system can be consid-

ered optimal in Bayesian terms when it can find the hidden causes of the former system and
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reconstruct its data [22]. Stated like this, FEM relates to other models of cognition such as pre-

dictive coding [11, 23, 24], Bayesian population coding [19, 25, 26] or active inference [27–29].

These frameworks promote a hierarchical organization of coupled systems, based on feedback

error prediction.

At the brain level, this paradigm is argued to occur at all scales and with different mecha-

nisms, having always an afferent system (e.g., the sensory neurons or the encoder) and an

effector system (e.g., the motor neurons but not necessary or the decoder), with the later

Fig 1. Optimization technique used to control a recurrent spiking neural network. a) Model-free reinforcement signal controls the

input vector Isearch of RNN by comparing its output vector Vn at time t = n with respect to a goal vector V*: as E is diminishing, the descent

gradient stochastically converges to the optimal input vector Isearch = I* that generates V*. b) Model-based reinforcement signal, Isearch = I*
is learned by an associative map and reinjected for any specific V0.

doi:10.1371/journal.pone.0173684.g001
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anticipating the former. In a model of visual processing, Rao and Ballard proposed that the

visual cortex is organized hierarchically for encoding natural images based on feedback con-

nections that carry predictions of lower-level neural activities [23]. At the neuron’s level, if this

paradigm is also valid, this means that there exists some mechanisms that actively infer for a

neuron whether to spike or not with respect to expected incoming signals and corrective error

feedback.

INFERNO’s architecture exploits these ideas in spiking recurrent neural networks, having

two coupled systems, one inferring the state of the other and trying to ‘correct’ its data based

on feedback error. In this formulation, the supervising system (AM) attempts to learn a model

of the afferent network (RNN) in accordance to the evidence that a particular policy is being

pursued in order to control it for generating long sequences. INFERNO exploits noise (or FE)

in spiking neurons for exploring different policies in which the iterative minimizing of predic-

tion errors (or FEM) for one policy augments gradually its expectation. This may correspond

to different places in the brain for decision-making and perceptual inference [30]. Here, we

propose to link INFERNO to the cortico-basal system for habit formation and sequence

retrieving [31], see Fig 2.

In studies on habit formation, several researchers advocate for a dynamic role of the basal

ganglia (BG) when interacting with other areas [31, 32]. Although the role of the striatum is

commonly focused on the encoding and control of stimulus-response based on dopaminergic

reward, Yin and Knowlton in [31] see the BG as a generator of dynamics that selects and

amplifies certain dynamics while eliciting others. In their model, information flows from cor-

tex to the basal ganglia to thalamus and back to cortex, but each system is dynamic. INFERNO

may relate to these features of the cortico-basal system as it exploits noise as a generator for

diversity and error prediction minimization for goal-directed behavior.

In line with this, [16] proposes that the flexible processing of contextual situation done in

the neo-cortex (CX) is driven by a sub-cortical controller, the basal ganglia (BG), toward a tar-

geting goal provided by the prefrontal cortex (PFC). We will discuss about the relevance of our

model based on neurobiological considerations in the next section.

In order to demonstrate the capabilities of our model for recursivity and boot-strapping

capabilities, we will design several experimental setups for habit learning (top-down control)

and retrieval phases (bottom-up self-organization) of spiking neurons sequences, and its appli-

cation to sequential planning of arm movements. We will discuss then the relevance of our

model with respect to neurobiological data, its computational power for robotics and AI, neu-

romorphic hardware implementations, and its affiliation to certain computational principles

of the brain proposed by [21, 33–35].

Neurocomputational considerations and other models

The computational architecture that we have briefly described in Figs 1 and 2 has some neuro-

biological foundations. At the brain level, one cortical area found important for processing

neural chains is the Parietal cortex that includes the Post-Parietal Cortex (PPC) and the Intra-

Parietal Lobe (IPL). These structures are hypothesized to form a working memory of action-

perception rules [29]. For instance, some experiments show that they serve for embodied

simulation like mental rotation or coordinate transformation [36, 37] and for retrieving/

generating spatio-temporal sequences [38, 39]. Recently, they have been identified to serve for

sequence generation [9] and for self-generated thought [17].

In line with these proposals, we see the spiking RNN in our framework to play the role of

the IPL working memory, the associative map to play the role of BG, the PFC to provide the

goal task and the reinforcement signal to correspond to a dopaminergic signal; see Fig 2.
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Following this, the IPL cortical neuronal chains can be assembled dynamically and recursively

toward higher-level actions and functions depending on the targeting goal furnished by other

brain structures, supposedly the Pre-Frontal Cortex (PFC) and the Basal Ganglia (BG). This

architecture appears important for reaching and grasping [40, 41], arithmetic operations

[16, 42] as well as language formation. For instance, in the language domain, lexical chains are

hypothesized to be constructed dynamically based on a global context and a set of grammatical

rules.

Our computational model of IPL-PFC-BG loop captures some of the features of Daw’s

model for the representation of complex tasks [16, 43], which embeds in turn some ideas

found in classical symbolic AI about tree-search algorithms. As explained by [16], “at each

Fig 2. Neural architecture INFERNO for Iterative Free-Energy Optimization of Recurrent Neural Networks. This architecture is a

model-free reinforcement learning for exploratory behaviors in a recurrent working memory (WM) of spiking neurons and model-based

reinforcement learning in a short-term memory (STM) with reward signal. The former memory model corresponds to the Inferior Parietal

Lobe (IPL) where motor chains are assembled dynamically. The later memory model corresponds to the Basal Ganglia (BG) where simple

signal-response rules are learned by an associative map (AM) to trigger one spatio-temporal sequence into the working memory. The frontal

cortex (PFC) provides the targeting signal to the IPL and BG. The dopaminergic signal supervises both the exploratory search in the WM

and the learning in the STM when the goal has been retrieved. RNNs, once unfolded in time, can be seen as a virtually deep feed-forward

network in which all the layers share the same weights [33]. The reinforcement signal on the output dynamics can serve to control the input

dynamics with noise to search stochastically the inputs that diminish the error to the output dynamics.

doi:10.1371/journal.pone.0173684.g002
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state, one can choose between one of many different responses, each of which leads to a new state:
In this view, behaviour can be modelled as starting at the top-most ‘node’ in the tree, choosing a
response ‘branch’, entering a new state, choosing another response, and so on until one has com-
pleted the task (hopefully resulting in a reward)”. Here, branching is done by BG, entering a

new state in the cortical working memory until completion of the task given by PFC using a

Dopaminergic reinforcement signal.

Moreover, our model is greatly in line with recurrent spiking neural network models using

reinforcement signals for sequential planning [9] and [10]. Its capabilities to boot-strap clus-

ters recursively and to retrieve ordinal sequences make it compatible also with reservoir com-

puting methods [44, 45] such as the echo-state networks [46], RNNPB [47] or the dynamical

neural fields [48]. Its properties to assemble dynamically neural chunks remind further

Genetic Programming optimization of neural networks like NEAT and others [49].

Interestingly, once unfolded in time, its structure can be seen also as a virtually deep feed-

forward network in which all the layers share the same weights [33]. Rolfe and LeCun pro-

posed an architecture similar called DrSAE, in which auto-encoders evaluate and minimize

the function given by the recurrent map [50]. The INFERNO architecture combines a self-

organized structure (IPL) with a supervised one (BG) as the DrSAE architecture. Here, the

reinforcement signal on the output dynamics can serve to control the input dynamics to search

stochastically the inputs that diminish the error.

This stochastic descent gradient that we employed in RNN can remind the accumulation of

evidences process sampled continuously over time of the LIP neurons [51–53]. These neurons

show ramping responses inferring latent decision making so that the better the evidence, the

larger the amplitude. The decision making can be seen as a random fluctuation Wiener process

pressured by time constraints and decision thresholds [54].

Methods

Neural units and STDP-like algorithm

We used in the recurrent neural network a variant of the Hebbian equations, the Rank-Order

Coding (ROC) algorithm, which grasps well the structure of the Spike Timing-Dependent

Plasticity algorithm and of the classical Delta rule in the spatio-temporal domain [55].

STDP has been discovered to modulate the neural activity of temporally related neurons in

many brain regions by reinforcing their links. The Rank-Order Coding algorithm has been

proposed by Thorpe and colleagues as a discrete and faster model of the derivative integrate-

and-fire neuron and of the standard STDP reinforcement learning algorithm [56]. The ratio-

nale is that ROC neurons are sensitive to the sequential order of the incoming signals; that is,

their rank code. The distance similarity to this code, say rank(x) –, which corresponds to the

argsort function in Matlab,—is transformed into an amplitude value by the function

f ðxÞ ¼ 1

rankðxÞ.

A scalar product between the input’s rank code with the synaptic weights furnishes then a

distance measure and the activity level of the neuron. If the rank code of the input signal

matches perfectly the one of the synaptic weights, then the neuron fully integrates this activity

over time and fires. At contrary, if the rank coding of the signal vector does not match properly

the ordinal sequence of the synaptic weights, then integration is weak and the neuron dis-

charges proportionally to it. To this respect, this mechanism captures the intrinsic property of

cortical spiking neurons.

The neurons’ output V is computed by multiplying the rank order of the sensory signal vec-

tor x, f ðxÞ ¼ 1

rankðxÞ, by the synaptic weights w; w 2 [0, 1]. For an input vector signal I of

Iterative free-energy optimization for recurrent neural networks (INFERNO)
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dimension M and for a population of N neurons (M afferent synapses), we have:

Vn2N ¼
X

m2M

1

rankðImÞ
wm;n ð1Þ

The updating rule of the neurons’ weights is similar to the winner-takes-all learning algo-

rithm of Kohonen’s self-organizing maps [57]. For the best neuron win and for each element

m of the current input signal I with m 2M, we have:

wm;winðt þ 1Þ ¼ wm;winðtÞ þ �Dwm;win;

Dwm;win ¼
1

rankðImÞ
� wm;win:

ð2Þ

with � the learning rate equals to 0.01 in our experiments.

Free-energy optimization mechanism

Viewed as an optimization problem, the control of the RNN dynamics consists in retrieving

the most salient inputs that will trigger the neural units to specific amplitude values. This is an

inverse problem and can be solved with a gradient descent. In order to explain better the

mechanism behind, we can reduce the control of the RNN dynamics to its simplest case with

the controlling of one neuron solely, see Figs 1a) and 3a) and 3b).

If we consider I� to be the optimal input signal from which one neuron will fire the most at

V = V� using Eq 1, one heuristic will consist on searching the term Isearch to be added to the

current input dynamics I so that we can have I + Isearch = I� and the neuron will reach V = V�,
see Fig 3b) with Isearch shaded in light red. As a meta-heuristic method, retrieving Isearch can be

done with a stochastic gradient descent (greedy search) by injecting some noise to I while

using V as a metric distance: any intrinsic noise that diminishes the error E to the desired goal

V� is reinforced and kept (exploitation), or otherwise forgotten to select another random vec-

tor Ie (exploration). This optimization technique can be extended to a population of neurons

and applied to distant rewards, in these cases the terms I, Isearch, E and V are vectors, see

Table 1.

The number of iterations necessary for the WM to converge is not taken into account,

therefore the recurrent map will explore several solutions in an unlimited amount of time till

convergence. One common solution is to use a threshold value to stop the search. This prob-

lem is known in neuroscience as the credit assignment problem [58]: to which particular past

event shall we assign credit for the current reward received?

In its present form, the reinforcement signal algorithm corresponds in AI to a classical

meta-heuristic method with random walks, which does no prevent from local minima. It may

correspond in neurocomputational theory to dopaminergic modulation and to model-free

reinforcement learning [59]. However, it does not take into account more sophisticated types

of signals, which could be given further by other types of neuromodulators [60].

Recurrent network model

The neural architecture consists of one recurrent neural network arranged as in Fig 1a). The

neurons in the recurrent map (N = 25 neurons) encode a temporal sequence directly from

their feeded back activity. The temporal horizon H for each synaptic link is defined to be of

H = 20 iterations max (1 ms corresponds to 1 cycle), which is therefore the maximum possible

time length to be encoded by any synaptic link. Its value is chosen with respect to the average

synaptic time found in the neurons of the cortical maps, about 50 ms [61]. The network is

Iterative free-energy optimization for recurrent neural networks (INFERNO)
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implemented as a buffer of dimension [H × N] = [20 × 25] so that each neuron n integrates

with the synaptic weights wm,n and the function f(BUFFER[m]) with m 2M and M = [HN] to

generate the output value Vn. To force the network to be recursive, we update at each iteration

the buffer by shifting at each iteration the rows to have h(x + 1) h(x) and by adding to the

Table 1. Free-energy optimization based on stochastic gradient descent to minimize prediction error.

Code Stochastic optimization as

Lines Accumulation Evidences Process

#01 At time t = 0, initialize V, V*, I

#02 choose randomly Isearch

#03 compute Vsearch(t) from V(t), I + Isearch

#04 While t� horizon_time, repeat:

#05 compute Vsearch(t + 1) from Vsearch(t)

#06 If V* − V� V* − Vsearch(t + 1):

#07 I = I + Isearch

#08 V = Vsearch

#09 break

#10 t = t + 1

#11 Goto #02

Prediction error E on the output vector V is used as a reinforcement signal to control the level of noise Isearch

to inject in the input dynamics I in order to explore local or global minima toward V*.

doi:10.1371/journal.pone.0173684.t001

Fig 3. Spike optimization. We can consider the control of the amplitude level V of one neuron as an optimization problem. a) For one input

vector I for which a neuron is the most responsive, we have I = I* and V = V*. b) Controlling the amplitude level V of that neuron requires to

find for any input I, the input error vector Isearch that satisfies Isearch = I* − I. The exploration of Isearch can be done by stochastic gradient

descent and meta-heuristics methods. This optimization technique can be applied and extended at a neural population-level.

doi:10.1371/journal.pone.0173684.g003
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first row of the buffer at h = 0, the latest update of the neural activity Vn, see Table 2. Now, in

order to inject external inputs I to the recurrent network, the neural population Vn receives an

input vector of same dimension In added to the first row of the buffer and only at h = 0 and

weighted by 0.5; Vn = ∑ f(BUFFER)wm,n + 0.5 � In. The function f is the inverse function as

explained in section 2.1.

Associative network model

The previous section explains how our optimization technique serves to retrieve the optimal

I�search to be added to the current input vector I using the reinforcement signal E, the error sig-

nal, in order to reach the desired amplitude value V�. The optimal signal I�search found can be

learned by an associative layer with perceptrons with all-to-one and one-to-all connections

that link the input value I to the associative neurons Va and these to the output value I�search,
see Fig 1b). The neurons’ equation is similar to the equation of Kohonen neurons with Va 2 A

= ∑m 2 M g(Im, wm,a) (all-to-one connectivity) and I�search ¼
P

m2MgðVa;wm;aÞ (one-to-all con-

nectivity), where

gðx; yÞ ¼
1

1þ RMSðx; yÞ
;

RMSðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðx � yÞ2

q

:

ð3Þ

The weights of the associative neurons are updated with respect to the reinforcement signal

ΔE in RNN, similar to Eq 3:

wðt þ 1Þ ¼ wðtÞ þ �DEDw;

Dw ¼ IðtÞ � wðtÞ;

DE ¼ EðtÞ � Eðt � 1Þ:

ð4Þ

Results

We resume in the Table 3 below the different experiments that we have done to present our

model. The first experiment corresponds to the study of the RNN optimization along with the

stochastic descent gradient toward goal-driven control. The second experiment presents its

application to a 3 degrees-of-freedom robotic arm control. The third experiment shows the

AM-RNN coupled system and its capabilities for habit learning; e.g., for arm postures. The

Table 2. Description of the buffer algorithm used to simulate integration over a temporal horizon.

Code Recurrent Map

Lines Buffer to compute temporal horizon

#01 Compute Vn,

Vn = ∑m f(BUFFER)wm,n + 0.5 * In

#02 Shift the buffer with h 2 [0, H − 1],

BUFFER[h + 1, n] ≔ BUFFER[h, n]

#03 Add to the first row h = 0,

BUFFER[0, n]≔ V

The buffer is used to model the recurrent activity of the neural network over time. After each iteration, the

buffer that retranscribes the neural activity over time is shifted and presented again to the neural population.

doi:10.1371/journal.pone.0173684.t002
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fourth and fifth experiments describe the ability of AM-RNN working memory to generate

long-range spatio-temporal learned sequences, in a flexible way (resp. experiment 4) or in

forced fashion (resp. experiment 5).

RNN goal-driven control

In this section, we study solely the RNN, decoupled from the associative map, in order to

explain its behavior during goal-driven control. First the recurrent map learns some spatio-tem-

poral rules for several iterations until convergence of its dynamics. This is done using the rein-

forcement mechanism presented in the previous section. When the neurons’ synaptic weights

become stable enough after one thousand iterations, the network is ready to be used for testing.

For this, we define a desired output V� as goal vector and we let the reinforcement signal

drive the search of the input vector Ie from a fixed input vector I chosen arbitrarily and only

for the first iteration. We plot in Fig 4 the euclidean distance of RNN’s output V to the desired

output vector V� for one hundred trials starting with different initial conditions. This first

graph shows how well all trajectories of the network are converging to a global minima. This

convergence is also fast as it requires at most 20 iterations to reach it. We display in Fig 5 the

raster plot of the neurons’ dynamics for the input vector in the top chart and for the output

vector. After initial conditions, the input and output vectors converge both rapidly to a stable

pattern, for which the neuron 24 is the most active neuron (indicated arrow).

The goal-directed behavior of the working memory is also exemplified in Fig 6a) and 6b) in

which the neurons dynamics at several time steps is plotted for the input and output vectors

respectively. The super-imposed activity level in black for the input and output vectors corre-

sponds to small variations of the input vector controlled by the reinforcement signal in a)

(dashed line) that induce the convergence of the output dynamics to the desired vector in b)

(plain line). We observe that small amplitude variation in the input dynamics is well sufficient

to make big amplitude variation in RNN as the output dynamics in blue gradually converges to

the desired goal. This shows that the working memory can be controlled as a dynamical system

or a chaotic system and its sensitivity to initial conditions can be used to retrieve any spatio-

temporal pattern as it would be for an attractor [62].

In Fig 7 we present four raster plots taken from the recurrent map, which all converge to

the same neuron spiking, neuron #14 in red at time t = 20 iterations, and for a different goal

than in the previous figure. The amplitude level of the recurrent map dynamics for the four

maps are different yet they converge all to the triggering of the same neuron. We make the

note that the neural activity at the population level is sub-threshold till the activation of the

desired neuron at the end. Although the network and the learning process are based on spikes,

the inter-dependency among the neurons is enough to produce weak coordinated dynamics,

which can have a strong effect.

Table 3. Table of the different experimental setups.

Section Exp. Architectures

3.1 1 RNN, Optimization control

3.2 2 RNN, Arm control

3.4.1 3 AM$ RNN, Habit learning

3.4.2 4 AM$ RNN, Bottom-up

3.4.3 5 PFC!AM$RNN, Top-down

Description of the different experiments done on their corresponding section.

doi:10.1371/journal.pone.0173684.t003
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The causal chaining in the neural network is not straightforward to observe. We propose

therefore to plot the spatio-temporal trajectory within the working memory for ten solutions

found; see Fig 8. We plot the neural trajectory till reaching the goal vector by selecting at each

iteration the most active neuron. In our example, the goal to reach is the neuron #25 ordered

from the time-to-trigger = 0 at the most-right hand side of the plot. We emphasize that the

most active neuron at each iteration is also the most influential for driving the neural activity

for the next steps. We can observe from the graph that all trajectories have different lengths,

although in average they converge after ten iterations. At the same time, the spatio-temporal

trajectories present some similar patterns within their dynamics placed coherently at the

beginning, middle and end of the sequence that we retrieve in different trials. These patterns

come from the short-range synaptic rules learned and represent one chunk or one unit that is

combined with others to constitute a longer chain, up to sixteen elements in our case. We

stress that these chunks are dynamically assembled and not predefinedly learned, although

they present one stable shape.

RNN arm control

We use the RNN as a working memory for controlling the motion of a three joints robotic arm

in a 2D space, see Fig 9a). We exploit the goal-directed behavior of the recurrent network for

sequential planning and for the reaching of five positions in space. The three angles of the

robotic arm are coupled to the dynamics of three neurons of the recurrent network with same

properties than the one presented in the previous section and the reinforcement signal is

Fig 4. RMS convergence to one targeted goal by the RNN for one hundred trials. The amplitude level of

the neurons in the RNN converges to the desired output vector rapidly in dozen iterations; some solutions are

more precise than others due to local minima.

doi:10.1371/journal.pone.0173684.g004
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simply the euclidean distance of the end-effector to the goal. The neural activity between [0;

0.1] for the three neurons (sub-threshold activity) were renormalized between [0; 2π] in radi-

ans for each joint angle. The result of the arm trajectory is presented in Fig 9a) and the output

dynamics of the neural network is shown respectively in Fig 9b). The network easily retrieves

the different positions in several iterations and updates its dynamics exploiting the reinforce-

ment signal.

Spiking recurrent network analysis

In order to understand better the organization of the spiking recurrent network, we analyze its

functional properties at the population level and its dynamics at the neuron level. First, we ana-

lyze the redundant clusters found within the optimal sequences and the processing time neces-

sary to discover them, resp. Fig 10a) and 10b). In Fig 10a), we have counted the occurrence of

clusters (neural pairs, triplets, etc. . .) retrieved for a long period of time during spontaneous

activity with respect to their size. These clusters are not orthogonal from between each other

but are combined into longer-range patterns so that their frequency is inversely proportional

to their length; ordinal neural pairs and triplets are proportionally easier to be triggered and

retrieved than longer clusters. Meanwhile, the log-curve histogram and cluster coefficients

indicate the hierarchical structure of the sequences, which corresponds to scale-free dynamics

and small-world properties of the recurrent network [63]. Thus, the reaction time necessary to

Fig 5. Raster plots of the input vectors injected to the RNN and its respective output vector for the

first 60 iterations toward a target solution. Following a hill-climbing random walk, we observe the rapid

retrieval by the input controller of the desired RNN’s spatio-temporal pattern (a different example of such

desired pattern is presented in Fig 6); the blue color is for a low activity level and the red color is for a high

activity level.

doi:10.1371/journal.pone.0173684.g005
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Fig 6. Snapshot of the explored input and output’s RNN dynamics for the first 10th iterations and their

convergence to the desired output values (in black); resp. a) and b). The small amplitude variations

added in the input dynamics (dashed line) achieve to induce big output changes in RNN with the triggering of

the desired spikes (plain black line).

doi:10.1371/journal.pone.0173684.g006
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Fig 7. Raster plots of four strategies found by the RNN to trigger the firing of neuron #14 in twenty iterations. The four trajectories show

some similar sub-threshold patterns although they exhibit also high variabilities, in the temporal delays as well as in the amplitude level.

doi:10.1371/journal.pone.0173684.g007
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retrieve one goal depends on the problem complexity (e.g., the locking into a local minimum

or not) and requires around ten iterations in order to converge.

In Fig 10b), the reaction time depends mostly on the initial conditions of the recurrent net-

work and of the explorative search. For solutions difficult to retrieve, the map requires an

explorative search above a dizain of iterations. This variance can be compared with the density

probability found in the real IPL neurons during visual search, which shows similar trends

[52].

At the neuron level, we measure the probability distribution of the neurons’ variance till

convergence to a desired goal since variance is a hallmark of cognitive activity and of decision

making [52]. The histogram presents a log-curve distribution with two-third of the neurons

with low or weak amplitude variability (variance) and one third of the neurons high amplitude

variation, see Fig 11. This results indicates how exploration is done, having one third of the

neurons really effective for the neural map to converge to the output dynamics and to generate

a spatio-temporal pattern, whereas the rest of the neurons is not.

It indicates also the neurons’ connectivity level within the RNN, or its sparsity. One-third of

the neurons interact with each other so that weak amplitude variations in a small set of neu-

rons is enough to interact with another subset and to control its activity. This feature has been

emphasized in nonlinear mixed selective neurons [64].

Fig 8. Ten trajectories found till triggering of neuron #25. The trajectories are created by picking up at

each iteration the most active neuron. The ten trajectories present a mix of neural chunks common to all

trajectories and of novel patterns found solely in them. Each trajectory is retrieved dynamically (novelty)

although the solutions appear similar (redundancy) due to the constraint dynamics in RNN.

doi:10.1371/journal.pone.0173684.g008
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Fig 9. Arm control by the recurrent network with a reinforcement signal. a) The three d.o.f. planar robot

is controlled by the spiking recurrent neural network for which the amplitude level of three neurons control the

three joint angles. b) The euclidean distance to the goal location furnishes a reward to the motor neurons.

doi:10.1371/journal.pone.0173684.g009
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BG-IPL coordination: Recursivity and bootstrapping

In the previous section, we have investigated the control of a recurrent network by a reinforce-

ment signal mechanism to drive its output dynamics to a desired goal as in Fig 1a). We pro-

pose here to complete our architecture and to add an associative map AM that learns the

RNN’s input-output association with respect to the reinforcement signal already used for

explorative purpose, see Fig 1b). By learning directly the inputs that produce a high-valued

Fig 10. Cluster analysis in RNN. In a), number of clusters found within an optimal sequence with respect to

their length. This histogram shows that for any optimal sequences, repetitive clusters are found, which are

more often present when they are small than big; this shows some hierarchies within RNN and the property of

scale-free dynamics. In b), the average processing time necessary for the RNN to retrieve the goal dynamics.

For one hundred trials, it requires in average a dozen of iterations till convergence.

doi:10.1371/journal.pone.0173684.g010
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Fig 11. Histogram of the neurons variability measured during exploration and their relative position

found within the sequence for hundred trials. These graphs attempts to explain how exploration is done.

In a) and b), during the solution-search, the two third of the neurons are rapidly placed within the optimal

sequence and one third of the neurons are highly variable and can change positions up to twelve locations

within the sequence.

doi:10.1371/journal.pone.0173684.g011
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reinforcement signal, we can reduce the exploration phase and boot-strap at the same time the

working memory dynamics to the goal trajectory. By doing so, we expect the two interacting

learning systems to generate longer spatio-temporal sequences of sub-goals. This schema is

assumed to be played by the Basal Ganglia, which learns rapidly simple stimulus-response

rules, and the IPL-like RNN, working at a slower temporal rate [43]. As an analogy with rein-

forcement learning, it corresponds to learn the rewarding Q-values associated to an action

[60]. In our framework, the Q-values correspond to the activity-level of the AM neurons. This

optimization technique in our case can be viewed as model-based reinforcement learning [65].

The bi-directional coupling between the two systems can be done in two ways to generate

longer spatio-temporal sequences: in a self-driven fashion when it is the RNN that controls the

AM or in a controlled fashion, when the AM controls tightly the RNN’s activity. In our exam-

ple, this second memory contains twenty neurons so that each neuron can trigger a specific

spatio-temporal sequence of the RNN. These two ways are explained thereafter.

Habit learning of arm sequence. We propose to re-use the experiment done on arm con-

trol in section 3.2 but this time for learning the targeting goals with an associative memory

during exploration of the IPL-like recurrent network.

We present in Fig 12 the averaged learning rate and convergence time when the BG-like

associative network is exposed to several presentation of the same goals; respectively in a) and

b). We can observe that the average time interval required by the associative map to make the

IPL map to convergence is decreasing for each exposure of the targeting goal: as the BG net-

work is learning, the explorative search done on the IPL dynamics is diminishing over time,

see Fig 12a). Sometimes however, the error level appears not related to the number of exposure

as for the blue curve around iteration 500 for example because we might be in a local minima,

which makes the error correction to be slow. Nonetheless, the recurrent network trains the

associative network faster and the response time to retrieve any sequence is quicker, see Fig

12b). Without the BG network, the response level would have been slower and similar to the

level found at its slowest performance as during the first exposure.

IPL!BG!IPL bottom-up associative recall. When we let the two coupled systems

work in an autonomous fashion –, which means that we do not force the activity of one spe-

cific AM (BG) neuron for example,—the RNN’s output activates the most salient neuron in

the AM BG-like network, which recursively controls the RNN’s dynamics in return, see

Fig 13a). The result is the autonomous recall in a self-organized fashion of spatio-temporal pat-

terns by the AM BG-like neurons of the exact RNN ordinal sequence –, in our case of thirty

steps,—so that when one BG neuron is activated, its corresponding sequence is observed; e.g.,

the two same sequences reactivated are super-imposed in red.

As similar to the RNN neurons, the BG-like neurons can form also spatio-temporal

sequences to create longer patterns. When the same pair is activated as in Fig 13b) and 13c) in

red and green traces, the slightly same sequences in RNN are reproduced. The activation of

these two chunks can be considered as part of one integrated sequence over an interval span of

forty steps.

In certain situations, when the two maps have a very stable bi-directional coupling, the cou-

pled systems can generate even longer sequences above 190 iterations, see Fig 14. In this figure,

the raster plots taken at two different period of time are almost aligned from each other within

the black dashed lines. The associative map has generated a sequence over ten neurons.

PFC!BG$IPL top-down control, forced bootstrapping. Self-driven activity shown in

the previous section can generate long range episodes, but can we generate even longer ones

by forcing the temporal order of AM neurons activation? This experiment differs from the pre-

vious one in the sense that we externally force the activation of BG-like neurons to fire in a spe-

cific order: i.e., we bypass the spontaneous activity of AM neurons and we control the one
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selected till convergence of RNN to the desired output dynamics, which means till the AM

neuron activity is satisfyingly high above a threshold. This role is supposed to be played by the

PFC, which can learn the sequential order of the AM BG-like neurons. This feature will not be

investigated in this paper.

At each retrieval of one RNN episodic memory, which can be more or less rapid, the next

BG neuron is selected in the sequence when its activity level reaches a threshold value, there-

fore the temporal interval can fluctuate for each episode. Fig 15 presents the forced RNN

Fig 12. BG training by the IPL neural network and convergence rate with respect to the number of

exposure of targeting goals. In a), time duration and error rate for the IPL network to reach the assigned

goals iteratively (arm posture). In b), as the associative map learns the recurrent map inputs, the convergence

rate decreases on average with the number of exposure to the goals.

doi:10.1371/journal.pone.0173684.g012
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Fig 13. Interactive coupling between the recurrent map and the associative map. Each neuron of the

BG-like associative memory learns a stimulus-response pattern that triggers a specific spatio-temporal

pattern in the RNN IPL-like working memory. In a), we super-imposed in red the RNN dynamics when the AM

neuron #10 triggers. Stable spatio-temporal clusters as long as 28 iterations can be retrieved. The AM BG-like

Iterative free-energy optimization for recurrent neural networks (INFERNO)
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spatio-temporal sequences at two different temporal intervals for the same serial order activa-

tion of the BG neurons. In this figure, the spatio-temporal patterns produced are spanning a

very long interval range, over several hundred iterations, which is higher in comparison to the

self-driven activity presented previously.

Fig 15 presents the activity control of the AM neurons at two different time intervals (bot-

tom and top charts). This result shows how the spiking order can be stabilized over long

spatio-temporal patterns (200 iterations) even within a recurrent map for the generating of

neural chains proper to the configuration of the RNN. The similarity measure computed

above is based on a co-variation measure to detect the relative temporal displacements between

patterns of the two intervals. The AM BG-like neural system ‘replays’ or reenacts the neural

chains proper to the one learned during action, as described in simulation theory of action

representation [66].

We can compare the two behaviors of the AM-RNN / IPL-BG system by measuring the

density probability distribution of the number of clusters found with respect to the clusters’

length, when the two maps are bidirectionally coupled and self-driven (section 3.4.2) or when

the activity of the BG map is supervised (section 3.4.3).

The Fig 16 presents this result with the density probability of the number of clusters found

during the self-driven case plotted in blue using the left axis and found during the controlled

case plotted in green using the right axis. The two densities present a logarithmic curve of dif-

ferent magnitude order, the self-organized case in blue can generate long range sequences at

most of 180 iterations (below 10−2%). In comparison, during the controlled case, for which the

order magnitude is ten times higher, the probability of occurrence of one sequence of 180 iter-

ations achieved to be reproduced is below 1%. Although robust, the working memory in the

self-driven case present more variability and flexibility, which is more advantageous in unex-

pected situations. Besides, the external control of the associative map (green line) limits

strongly the variability of RNN dynamics and induces the reproduction of long-range spatio-

temporal sequences as noise is reduced.

Discussion

We propose a framework based on a coupled recurrent spiking neuronal system that achieves

to perform long sequential planning by controlling the amplitude level of the spiking neurons

through reinforcement signals. The AM-RNN coupled system exploits error prediction reward

to model the cortical and sub-cortical interaction found between IPL and BG networks for

neuronal chaining [41] [42]. The control done is weak so that the propagated reinforced sig-

nals let the working memory plastic enough to converge to the desired internal states from var-

ious trajectories. Used in a robotic simulation, the neural dynamics can drive a three d.o.f. arm

to reach online different locations.

The neural control is done below the neurons’ spikes and the sub-threshold amplitude vari-

ations injected into the recurrent network can iteratively change its dynamics to make it to

converge to attractors or to make it to diverge from repellors. To this respect, our framework

embodies some aspects of the free-energy optimization principle proposed by [24] as an opti-

mization technique and some aspects of chaos control of neural dynamics, like chaos itinerancy

network can bootstrap dynamically the neural population of the IPL-like network. In b) and c), when two

consecutive AM/BG pairs are formed –, here the neurons #10 and #3,—the RNN/IPL network can form longer

sequences although they possess some variability within it; these longer sequences (40 iterations) are above

the temporal horizon of each neuron, which is of 20 iterations.

doi:10.1371/journal.pone.0173684.g013
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Fig 14. Self-driven interaction between RNN (IPL) and AM (BG). Presentation of the amplitude dynamics

of the recurrent map for a sequence length of two hundred iterations between 3420 and 3600 in a), and 4280

and 4460 in b). The amplitude level of the recurrent map is almost similar within the interval of the two dashed

lines in black.

doi:10.1371/journal.pone.0173684.g014
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[6, 62, 67], in which small feeded back perturbations can give rise to big amplitude variations

and permit to go from one memory to another [68] [69]. It shows also the importance of

slow dynamics that persist for a long period of time, which links to critical slowing that is a

necessary aspect of free energy minimisation—and links usefully to self-organised criticality

[70–74]. At another degree, it conveys also ideas in line with belief propagation and inference

in spiking recurrent networks within the Bayesian framework [26] in which the iterated com-

putation embedding the exploration/exploitation stages can be seen as an inference process

using reinforcement learning. The free energy optimization process has been proposed to

drive flexible neural dynamics in a seemingly coherent manner following the Bayesian para-

digm [21, 29].

The functioning of our architecture is partially similar also to recent proposals for sequence

generation by [9] and [10], reservoir computing and echo states methods by [44, 45, 75] and to

DrSAE model used for classification where auto-encoders iterate a recurrent map using gradi-

ent descent [50].

The original distinction of our approach with these techniques resides (1) on the control of

the neurons’ amplitude to indirectly control the spikes timing, and (2) on the use of an extra

Fig 15. Open-loop IPL control by the BG-like neurons following an ordinal sequence. Every twenty

iterations corresponding to the temporal horizon of the IPL buffer, the IPL dynamics are bootstrapped from the

AM neurons activity. In our example, the same AM (BG) sequence is injected to the RNN (IPL) dynamics for

the two raster plots at different periods of time. The comparison between the two dynamical systems shows

an extreme stability to drive the RNN dynamics over long period of time, even without feedback, see the

similarity measure at top.

doi:10.1371/journal.pone.0173684.g015
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memory (BG) that learns to associate the correct input vector to inject to the working memory

with respect to its output from a reinforcement signal; these two features enable to drive the

working memory into a desired state. Its computation can be viewed also as a neural ‘router’

[76] that makes the recurrent network virtually deep: i.e., using the output of the recurrent net-

work as its own entry for processing the next stage [33, 50]; e.g., over 200 iterations of virtual

layers in Fig 15. For these reasons, the INFERNO compound system has the features of a recur-

rently deep spiking neural network.

Computational power

Taking account of the computational power of Rank-Order Coding spiking neurons [55], each

neuron can encode 2N different representations with N their input dimension, in our case

N = M � O, with M = 25 the size of the neurons’ population and O = 20 the temporal horizon

of each neuron (i.e., fixed by the buffer length). Besides, each neuron of the associative mem-

ory encodes virtually only one trajectory of the recurrent map as a stimulus-response rule;

in our case the number of neurons in the associative map is L = 20. Therefore, the maximum

theoretical length for a spatio-temporal pattern possible to retrieve is equal to L � O, which is

in our case of 400 iterations (or layers). These orders are empirical, however, adding more AM

neurons should highly increase the length of RNN sequences produced and the number of

possible combinations.

Fig 16. Sequence length retrieval during self-driven and forced conditions. We counted the number of

temporal sequences found over time and we computed their probability distribution with respect to their

length. In the self-driven condition (in blue, left axis) as done in section 3.4.2, the working memory can repeat

spatio-temporal sequences of a maximum length of 200 iterations, which is already above the limits of a

conventional spiking RNN. In the controlled condition (in green, right axis) as done in section 3.4.3, the

coupled system can retrieve a magnitude longer sequences.

doi:10.1371/journal.pone.0173684.g016
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Subsumed and complementary systems. As there is evidence that suggests that although

single actions can be selected without basal ganglia involvement, chains of actions seem to

require the basal ganglia [77]. The BG with the parietal cortex are found both complementary

for action planning [41, 45, 78, 79], motor simulation [66] and thought generation [17]. The

parietal cortex, involved in implementing complex predictive models as multi-step state-

action-state maps (model-based RL), and BG (model-free RL) form a cooperative system driv-

ing online behavior [15, 18, 80]. The BG network in our model helps to create long neuronal

chains dynamically in the IPL working memory while the IPL working memory trains the BG

network.

The numerical limit to subsume new memory maps, one layer at the top of another, is not

clear in our model but a third complementary memory, the PFC, can play this role by learning

and directing the BG sequences at a higher-level, see Fig 17. This architecture can be replicated

hierarchically in INFERNO with many maps inter-connected through continuous feedback

control with top-down and bottom-up dynamics [21, 29, 81].

In our model, we have limited the function of PFC to provide one goal at a time so that AM

sequences can be formed dynamically in a self-organized fashion along with RNN, see section

3.4.2. Learning this temporal sequence by a top layer can permit to generate an even longer

plan execution as done in section 3.4.3 for one sequence only and without any learning.

Hence, our model can be extended to a more elaborated PFC model as it is known that PFC

contributes to sequential planning over seconds [82] and to the selection of neural ‘programs’

[76].

Multi-step computation

While the IPL working memory provides, stores, and manipulates representations; the basal

ganglia model maps current states to courses of action [83]. BG can serve for selection of com-

plex, sequenced actions at the cortical map level [13]. Thus, it can be interpreted as a repertoire

of if-then rules or a set of stimulus-response associations to select appropriate cortical chains.

In section 3.4.2, we used our cognitive architecture for iterating a long sequential pattern of

200 steps, a serial WM task, which is a feature that can be used for computational purposes

(e.g., arithmetic counter). Here, the BG rules can be seen as ’pointers’ of cortical ’programs’.
This kind of cortical architecture has been emphasized to be used possibly for multi-step com-

putation; i.e., for implementing neuronal Turing machines [35, 84–86].

Making an analogy with Turing machines, we can see AM as an instruction table, its opera-

tions as the injected inputs into RNN, RNN as the infinite tape and their respective neural

activity as symbols and states, see Fig 17a). In INFERNO, we can interpret the execution of

one neural rule as follows: IF currentactivity(symbol)in RNN (tape)is j AND

currentactivity(state)in AM (instructiontable) is i, THEN inject
the signal k to j (replacingoperation).

Furthermore, the reinforcement signal used here as a heuristic function makes a link with

more classical AI algorithms using meta-heuristics like the A� tree search, as proposed by Daw

[43]. These meta-heuristics are optimization techniques that let the recurrent spiking neural

network converge to specific trajectories with some flexibility, see the schema in Fig 17, which

are directly taken from the trajectories found in Fig 8. On the one hand, all the trajectories

derive from the spatio-temporal primitives learned by the RNN. On the other hand, they are

assembled flexibly to reach one goal. Therefore, for each specific goal, the trajectories found

in each structure possess roughly the same structure and prototype (global coherence), see

Fig 17a) while the structure within each sub-cluster is however different (internal variability),

see Fig 17b).
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This shows the capabilities of the RNN to produce hierarchical plans and tree structures,

which are found important for human language and cognition [1, 87, 88]. Its structural organi-

zation follows also a complex network topology as the log-curve distribution of the clusters’

size demonstrate it with scale-free dynamics.

Gain modulatory control

Our optimization technique is based on the control of the sub-threshold activity of the neu-

rons. We propose that this mechanism can be one candidate for flexible neural coordination,

along with phase synchrony and spike timing-dependent plasticity.

Fig 17. Neurocomputational and AI principles of INFERNO for Working Memory. In a), INFERNO generates, selects and stores a set of rules to

assemble dynamically a neuronal sequence from a reservoir of dynamics toward a desired goal and based on free-energy minimization. It has some

similarities with a Turing machine that has a table of instructions, Write and Read heads to generate a code from an infinite tape. We super-impose with

different colors the clusters of four optimal trajectories found in Fig 8. b) unwrapped in time, INFERNO generates tree-like trajectories as a A* algorithm and

as a virtually deep feed-forward neural network.

doi:10.1371/journal.pone.0173684.g017
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For instance, sub-threshold activity optimization is similar to the phenomenon known as

gain-modulation [89, 90]. This mechanism describes how the activity level of gain-field neu-

rons can be modulated by the amplitude-level of several neurons sensitive to different vari-

ables, which is therefore interesting for neural control [91] and context switch [11]. Gain-

modulation is found important for the neural processing in the parieto-motor cortices [92]

and may provide a hint on how generative causal chains are formed in a neural population for

planning in PFC as proposed by [1].

Gain-modulation has been proposed recently to control the amplitude-level of a neural pop-

ulation (its local field potential). It conveys contextual information in a complex form of propa-

gated neural activity; a mechanism coined as nonlinear mixed selectivity [64]. Furthermore,

Botvinick and Watanabe proposed a prefrontal model based on gain-field neurons showing

their ability to recall serial order information [90]. Their model assumes that abstract ordinal

information is conjoined with item-specific information through a gain-field mechanism.

Dopaminergic optimization

The neurons in the recurrent network have sparse connections to each other so that the system

possesses a high number of spatio-temporal patterns and requires several steps to reach the

desired configuration; this behavior corresponds to the characteristics of one working mem-

ory. Therefore, in order to retrieve one desired spatio-temporal sequence, a reinforcement sig-

nal (presumably dopaminergic neuromodulation) evaluates the exploratory search of the

working memory to the desired goal; depending on the reward value, the sensory input

dynamics are strengthened to hill-climb the gradient or elicited to search for another solution

[93]. This is similar to model-based reinforcement learning for which the internal primitives

of the RNN corresponds to the model. Thus, the neural sequences found in Fig 8 are not

completely random but depends on the synaptic organization of the RNN so that the later plas-

tically self-organizes to generate the beginning, middle and end of one complete sequence, see

Fig 17 on which we super-imposed colours for each stable clusters, as well as cliques and loops

found.

Neuromorphic computation and symbolic AI systems

In comparison to computer memories, the human Working Memory has developed the ability

to deal with uncertain data sets and to initiate flexible and robust decision making. Next gener-

ation of neuromorphic architectures of spiking neurons based on the functional organization

of the brain will be able to mimic the attributes of the Human Working Memory to learn, pre-

dict and generate sequences, this will have major impact in the design of next generation com-

puters and autonomous devices such as robots [34, 94].

Different concepts of AI have been applied to the understanding and the modeling of brain

functions. Nonetheless, their use in large scale recurrent spiking neural networks is not trivial.

INFERNO is an attempt to design a cognitive architecture based on predictive coding and

free-energy minimization for categorizing external inputs prone to uncertainties, for generat-

ing and stabilizing long-range sequences. It is based on previous neural architectures that we

have implemented for modeling working memories. Important concepts that we have bor-

rowed from them are the self-organization of cortical associate maps in an unsupervised

fashion based on STDP [95], a novelty-detection mechanism for cumulative learning in a hip-

pocampus model [96, 97], and a taboo greedy search to model the anterior cingulate cortex for

error-based exploration [98]. This work and others may help to converge toward some distinct

concepts found in classic AI and neural networks to model brain-like cognitive systems [99].
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