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Abstract: Landslides are the most catastrophic geological hazard in hilly areas. The present work
intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan,
using landslide susceptibility mapping (LSM). To compare and predict the connection between
causative factors and landslides, the random forest (RF), extreme gradient boosting (XGBoost),
k nearest neighbor (KNN) and naive Bayes (NB) models were used in this research. Interferometric
synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technology was used to
explore the displacement movement of retrieved models. Initially, 332 landslide areas alongside
the Karakorum Highway were found to generate the landslide inventory map using various data.
The landslides were categorized into two sections for validation and training, of 30% and 70%. For
susceptibility mapping, thirteen landslide-condition factors were created. The area under curve (AUC)
of the receiver operating characteristic (ROC) curve technique was utilized for accuracy comparison,
yielding 83.08, 82.15, 80.31, and 72.92% accuracy for RF, XGBoost, KNN, and NB, respectively. The
PS-InSAR technique demonstrated a high deformation velocity along the line of sight (LOS) in model-
sensitive areas. The PS-InSAR technique was used to evaluate the slope deformation velocity, which
can be used to improve the LSM for the research region. The RF technique yielded superior findings,
integrating with the PS-InSAR outcomes to provide the region with a new landslide susceptibility
map. The enhanced model will help mitigate landslide catastrophes, and the outcomes may help
ensure the roadway’s safe functioning in the study region.

Keywords: CPEC; random forest; landslides; susceptibility; PS-InSAR; ArcGIS

1. Introduction

The China–Pakistan Economic Corridor (CPEC) demonstrates the flagship project of
the “One Belt, One Road” policy. It is also thought to hold Pakistan’s financial prospects,
which are receiving a lot of interest. The Karakoram Highway was built in 1974–1978 and
inaugurated in 1979 and runs alongside the CPEC in Northern Pakistan. It is regularly
closed for a few months each year because of landslides.

Local topography, tectonic features, geomorphology, landcover, geology and human
interference all have an influence on the spatial likelihood of landslides, which is then
examined to determine landslide susceptibility (LS) [1]. Landslide vulnerability assessment
models frequently assume that historical and current landslide conditions would be con-
stant in the future [2]. LS methodologies can be quantitative or qualitative; quantitative
methods evaluate the likelihood of landslide incidence in a susceptible zone, whereas
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qualitative methods introduce subjectivity into illustrative susceptibility zonation [1,3].
The analytical hierarchy model (AHP) [4–6], weight of evidence model [7,8], frequency
ratio [4,5,9] and certainty factor [4] are all commonly used landslide susceptibility models.
A growing trend is to compare the outcomes of implementing two or more models and
the result is a landslide susceptibility model (LSM). However, most studies still use only
one model for LSM [1,10]. Reichenbach et al. [1] suggest using numerous models to assess
landslides and developing an “optimal” zonation map to reduce risk prediction errors and
its integrity to be used for land-use planning. Our literature review of the investigated
area demonstrates several statistical approaches for LS such as frequency ratio and weight
of evidence [11,12], AHP, and Scoops3D [13], the weighted overlay technique, and the
AHP [14] were used in the research region. Several investigations [15,16] provide bivariate
analyses that measure the geographical links between particular variables and landslides
that influence their occurrence. However, the key disadvantages of these models are that
they change the ambiguity of risk processes, are typically static, incorporate geometrical
assumptions, and are costly and difficult for the gathering of hydrological and geotechnical
data, especially when examining vast and different locations.

In recent years, advances in ML algorithms, computing power, and geospatial innova-
tions have made it easier to create landslide susceptibility (LS) maps [17]. The precision of LS
maps can be improved using machine learning algorithms. Knowledge-based methods [18],
multivariate logistic regression methods [19–21] and multivariate binary logistic regression [22]
have all been presented in recent papers. General linear model [23,24], quadratic discrim-
inant analysis [10,24], boosted regression tree [23,25], random forest [26–29], multivariate
adaptive regression splines [30,31], classification and regression tree [23,32], support vector
machine [33–35], naïve Bayes [36,37], generalized additive model [24,32], neuro-fuzzy and
adaptive neuro-fuzzy inference [38–40], fuzzy logic [41], artificial neural networks [42–47],
maximum entropy [48,49] and decision tree [19,50,51] are some of the ML models used in
LSM. Qing et al. [52] used various ML techniques for LSM alongside the China–Pakistan
Karakoram Highway. In two South Korean catchments, Pradhan and Kim [53] compared the
precision consequences of deep neural network (83.71%), and XGBoost (76.73%) approaches
for LS mapping. Merghadi et al. [54] assessed the performance and competency of various
ML techniques in the literature and discovered that tree-based ensemble optimization algo-
rithms outcompete other ML algorithms. In a comparison analysis, Sahin [55] found that
CatBoost had the best precision (85%), followed by XGBoost (83.36%) since the proportion
of samples of the model was determined by Catboost was more precisely anticipated than
other models. The primary advantages of ML and probabilistic processes are their objective
statistical foundation, repeatability, capacity to quantitatively analyze the effect of variables on
landslide evolution, and capacity to update them regularly. Machine learning models can be
built using a variety of landslide-conditioning factors (slope, aspect, and elevation). Several
studies on landslide susceptibility evaluation have been undertaken using remote sensing
and GIS techniques [56–58].

Furthermore, remote sensing (RS) is an effective method for determining the motion of
landslides [59–61]. It provides a solution in surveys or enhanced detection in places where
catastrophic landslides occur frequently and quickly [62–65]. Furthermore, interferometric
algorithms to radar images effectively map large-scale landslide mapping and detection.
It may aid in the development of landslide inventory maps. In particular, decrypt ADIn-
SAR and PS-InSAR [66,67], coherence pixel technique [68], SqeeSAR [69], small baseline
subset [70,71], Stanford method for persistent scatterers [72], stable point network [73,74],
and interferometric point target analysis [75] have created various useful case research. As
noted in past studies [75–77], these approaches are involved with mapping and identifying
landslide occurrences.

A diversity of researchers in northern Pakistan has analyzed landslides using historical
records, field observations, tectonic characteristics, and geological data [78–81]. Previous
studies [14,82–85] concentrated on probabilistic and statistical relationships and regression
interpretation of landslides with parameters. For the first time, the PS-InSAR approach eval-
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uated the surface displacement in the study area using RF, XGBoost KNN, and NB models,
making it a distinctive method of identifying landslide movements. Persistent scatterer
interferometry (PSI), interferometric synthetic aperture radar (InSAR), and area under curve
(AUC) of ROC techniques were used along the KKH to assess displacements and the preci-
sion of the models used. Single landslides in hazardous areas can be identified and defined
using PS-InSAR. Landslides can also be detected using a spatial statistical method based on
a multitemporal assessment of SAR images that calculate slow landslide movements [71].

The current work seeks to develop a susceptibility model and a complete visually inter-
preted landslide inventory utilizing recently developed ML models, including RF, XGBoost,
KNN, and NB. The second goal is to quantify the deformation velocities of slow-moving
landslides using PS-InSAR to identify high-susceptibility zones for future landslide disaster
management. The third goal is to select the most susceptible model based on accuracy
and AUC value and then combine it with PS-InSAR outcomes to produce a new landslide
susceptibility map for the research area. These prediction approaches will help lead future
development and land management efforts in the area. These susceptibility maps will aid
in avoiding and limiting human and economic losses along this critical corridor.

2. Methods
2.1. Study Area

The research region is 178 km long and has a 5 km radius buffer zone along KKH
(Figure 1). The KKH in northern Pakistan is a crucial component of the CPEC; nevertheless,
it is frequently disrupted due to several hydro-climatological and geological risks along the
route. Landslides are the most common and devastating to highways, human lives, and
economic activity.

The research region experiences harsh winters and mild summers. The region’s annual
rainfall ranges from 120 mm to 130 mm: the maximum and minimum temperatures vary from
16 ◦C to −21 ◦C (Meteorological Department of Pakistan). The lithology of various sources
with thicknesses of up to 100 m is irregularly scattered [86,87]. The majority of these deposits
are weakly consolidated, making them conducive to landslides in the form of rockfalls and
debris flows [80]. The combination of complex topography, high erosion rates, human causes,
and active tectonics makes this area one of the most susceptible to landslides.

2.2. Geological Setting of the Area

The rocks in the region are mostly Paleozoic, Proterozoic, and Mesozoic in age
(Figure 2). According to the geological map prepared by Searle et al. [88], the study area is
comprised of the following lithology.

The Chilas complex in the study area comprises mafic and ultramafic plutonic rocks
and Kohistan batholiths composed of granodiorite, granite, and diorite. The Gilgit com-
plex metasedimentary rocks are slates, minor phyllite, quartzite, and dolomite limestone.
Komila amphibolite comprises of plutonic and meta plutonic rocks with intrusion of dior-
ite granodiorite and granite. In Paleozoic metasedimentary rocks are marble, dolomite,
and quartzite.

2.3. Landslide Susceptibility Mapping

Geological maps, remote sensing data, and meteorological data were gathered from
various sources for the study (Table 1). The Alaska Satellite Facility dataset contained an
Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar
DEM (Digital Elevation Model) with a resolution of 12.5 m (https://search.asf.alaska.edu/
(accessed on 20 January 2022)). Sentinel-2 images with a resolution of 10 m were extracted
from the USGS (https://earthexplorer.usgs.gov (accessed on 20 January 2022)) dataset
to create a landcover map for the research area. The geological map for the area was
digitized in the ArcGIS environment to comprehend surficial geological characteristics.
PS-InSAR processing was used to compute the deformation velocity using Sentinel-1

https://search.asf.alaska.edu/
https://earthexplorer.usgs.gov
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(https://search.asf.alaska.edu/ (accessed on 8 February)) (31 images in descending path
and 33 images in ascending path). Figure 3 depicts the approach used in the investigation.
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Table 1. Information on landslide conditioning factors.

S.NO Factors Description/Extraction Category

1 Elevation, aspect, curvature, slope, profile
curvature, TWI, plan curvature, roughness

ALOS-PALSAR DEM
(https://search.asf.alaska.edu/ (accessed

on 20 January 2022))
Topography

2 Geology, distance to fault Geological Survey of Pakistan Geology

3 Landcover

Land cover classes
(https://earthexplorer.usgs.gov) (accessed

on 20 January 2022)
(Sentinel-2 images)

Conditioning factor

4 NDVI Normalized Different Vegetation Index
(Landsat-8, 2021) Landcover

5 Precipitation Annual rainfall
(Pakistan Metrological Department) Triggered factor

https://search.asf.alaska.edu/
https://earthexplorer.usgs.gov
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2.4. Landslide Inventory

The landslide inventory is the stage in estimating susceptibility since it provides details
on all sorts of past landslides in the research area. This is the most important stage since the
required precision of the landslide inventory to fine tune the models influences the LSM
accuracy [15,89,90]. As a result, the more accurate and high-quality the landslide inventory,
the more improved the prediction execution of the SM [89]. The evaluation of landslide haz-
ard begins with creating realistic and detailed landslide inventory maps that show the type
of landslide, geographic extension, the date of the event, and location [89,91]. The produced
landslide inventory maps are then associated with contributing geo-environmental param-
eters such as land cover, topography, geology, geomorphology, and other factors to assess
the likelihood of terrain causing a landslide allocated to a susceptibility level [1,9,92–94].

Inventory maps contain information on all active and historical landslide distributions
based on field surveying, aerial image interpretation, and previous report data [80]. In this
research, we were using actual data of landslide occurrences obtained from the Geological
Survey of Pakistan (GSP) publications [95–97], Frontier Works Organization road clearance
logs, a research article [98], and Google Earth imagery to produce a multitemporal landslide
inventory along the highway. On the other hand, the landslide inventory was created by
the visual interpretation of Sentinel-2 photos with 10 m resolution (2020) and from Google
Earth and was validated using earlier reports and a field assessment of the research area.
Polygon shapes were constructed on satellite images for clearly visible landslides (based on
GSP and FWO data). Debris flow (188 locations) and scree slopes (51 locations) are mostly
found in the research area as a result of unconsolidated sediments on barren mountains and
rainfall, although rock falls (93 locations) are also common as a result of seismic activity and
toe cutting of steep slopes by anthropogenic activities for various causes (Figure 4). There
were 332 landslides mapped, shown in Figure 5. Of these landslides, 30% (100 landslides)
and 70% (232 landslides) were chosen for training for model validation [99].
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2.5. Landslide Causative Factors

Landslides’ spatial distribution is influenced by triggering, and conditioning variables were
chosen based on the region’s morphology, geology, hydrology, and anthropogenic activities.
There are no general criteria for choosing independent factors for LSM [71]. The concepts
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are that the factors must be non-redundant, non-uniform, operational, and measurable [100].
ArcGIS is commonly used to extract important susceptibility conditioning factors from digital el-
evation models, including elevation, slope, profile curvature, aspect, curvature, and topographic
wetness index (TWI) [101]. Land cover, geology, precipitation, roughness, normalized difference
vegetation index (NDVI), distance to faults, TWI, slope, plan curvature, curvature, elevation,
profile curvature, and aspect were all utilized to estimate the landslides’ disaster susceptibility
in the research area (Table 1). All of these maps were converted to a 12.5 × 12.5 m pixel raster
format for the models, which was up to digital elevation model resolution. In the resampling
method, the cell size of each factor was kept at 12.5 m so that the overlay assessment would
obtain the pixels at the same scale, and the output was also the same scale. The maps were
digitized at various scales, and the pixel resolution was kept at 12.5 m while converting them to
raster format. The DEM with a pixel of 12.5 m was used to extract the majority of the factors,
and all other factors were brought to a similar resolution. The thirteen landslide factors are
depicted in Figures 6 and 7.
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The modeling procedure included machine learning model fitting, identification,
and development.

I. The model unit in this investigation was the grid unit (12.5 m). The spatial resolu-
tion of DEM and RS data corresponds to 12.5 m, and all assessment variables have
been recalculated at this level.

II. A condition property reached thirteen causative variables and a landslide decision
attribute (1 indicates landslides, 0 indicates non-landslides), with each row creating
an object.

III. Each column represents an object’s attribute and has been converted into training
(70%) and testing the two-dimensional matrix (30%). Training data were used to
assemble the models, and test data was used to make forecasts.
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IV. The landslide susceptibility index maps were created using the forecast values of
every model unit per group. The findings of the four algorithms were exported
into GIS.

V. The Jenks natural breaks [102] classifications were used to categorize LS: very low,
low, moderate, high, and very high. The ROC curve and the area under the ROC
curve were used to test the four models.
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2.6. RF

One of the most widely used methods for regression and classification is the random
forest, which was designed by [103]. RF has a lot of important features for classification
tasks. Because RF is a non-parametric, non-linear approach, it can handle big datasets
with numerical and category data and complicated nonlinearity and interactions between
factors. Secondly, it can deal with the situation with more predictors than data and integrate
the connection between different predictors. Third, random forest can manage missing
values while maintaining precision for missing data.

Furthermore, unlike other ML approaches such as support vector machines and
artificial neural networks, RF does not need extensive hyper-parameter tuning. In many
instances, utilizing the default parameter values yields good results. When compared
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to other tree-ensemble approaches (boosting), random forest is relatively fast. Decision
trees are built during the training phase, and the output class is based on the classification
or regression mode of each individual tree’s decision trees. In order to train random
forests, the general method of bootstrap aggregation (also known as “bagging”) is used
for tree learners. This bootstrapping approach improves model performance by reducing
the model’s variance without raising the model’s bias [104]. Random forest has been
extensively utilized for classification applications and large-scale mapping in LSM [26,28]
ecology [105], flood mapping [106] and soil science [107].

R statistical software was used to develop the RF model [108]. Because the analysis
in the RF model was grid-based, gridded cells (12.5 by 12.5 m) were derived from the
randomly shaped sample spatial polygons of landslides and non-landslides, respectively.

The RF model operates by developing numerous decorrelated decision trees as a base
learner, with replacement, utilizing a percentage of randomly chosen landslide-predicting
variables and landslide observation. Every tree was trained using two-thirds of the ran-
domly chosen training samples, while the remaining one-third of the training samples,
called out-of-bag (OOB), was utilized to verify the prediction result. Finally, a pixel was
assigned to a class using the majority vote or mode rule [109]. In this research, this model
has employed the “randomForest” package in R-studio.

Table 2 lists the three significant parameters: the number of features that are appropri-
ate for dividing (mtry), the minimum number of a sample can also be taken arbitrarily in
each bootstrap sample to balance any tree with recursive portioning (ntree) [110].

Table 2. Parameters used in RF model.

Parameters Values

Node size 14
mtry 10
ntree 500

2.7. XGBoost

According to Stanford statistics professor Fridman, the gradient boosting algorithm
was developed in 2001 to estimate gradient descent approaches [111]. As the supervised
classification model in this work, the XGBoost approach [112] was applied. The approach
was invented by the gradient tree boosting algorithm [113,114], which is a powerful ma-
chine learning approach. It employs the regularized boosting strategy to prevent overfitting
and improve model precision. XGBoost provides scalability for various scenarios, sparse
data handling, thorough documentation, minimal computing resource requirements, good
performance (i.e., speed), and easy implementation [112]. The approach was chosen since
it has won several data science contests [112]. Further adjustments to the approach are
needed for extremely unbalanced datasets (e.g., [115]).

Algorithms that boost or lift data are known as “lifting tree models” or “XGBoost”.
Their key innovations are summarized below [113].

I. They optimize their loss function.
II. The candidate split value may be quickly and accurately generated using the

parallel approximation histogram method.
III. In addition to a novel sparsity-aware linear tree learning algorithm, they offer an

efficient cache-aware block structure for out-of-core tree learning.

In this research, this model has employed the “XGBoost” package in R-studio. Several
model preview parameters must be selected for the XGBoost model. User-friendly settings
are needed for three of the most important ones: colsample_bytree (column ratio subsam-
ples when each tree is constructed), nrounds (maximum number of iterations boosting),
and subsamples (the training instance subsample ratio); (Table 3).
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Table 3. Parameters used in XGBoost model.

Parameters Values

nround 210
colsample_bytree 1

subsample 1
max_depth 6

eta 0.05
gamma 0

2.8. KNN

The KNN algorithm is one of the most fundamental machine learning techniques. It
has recently been used in several other disciplines, including LSM [116,117]. KNN uses
the k nearest training examples in the components space as input. When it comes to
classification difficulties, class membership possibilities describe the degree of uncertainty
with which a particular given item may be assigned to any given class [118]. The attributes
of the nearby data points are used to classify a data point using a KNN algorithm [119]. It
is a more effective version of the ball tree idea [120] that may be used in bigger dimensions.
The approach is commonly employed in SM applications [116], and the categorization of a
data point’s nearest neighbors determines the chance of it being assigned to any class [118].
The data point chooses the categorization that classifies the greatest number of neighbors.
The number of K will be determined through a tuning procedure to obtain better outcomes.

According to Chen et al. [121], they propose that in KNN, objects are evaluated based
on the opinions of a majority of their immediate neighbors. The highest consistent closeness
of its adjacent neighbors is used to assign the item. If k = 1, the object is solely transferred
to the single contiguous neighbor’s class.

2.9. NB

NB is a statistical classifier predicated on the Bayesian principle [122]. The Bayes
theorem enables this methodology, which is a classification method. The NB maintains that
each attribute impacts classification outcomes individually to make estimating the posterior
likelihood of observed instances in training data easier [123]. The conditional self-reliance
assumption holds that all variables are completely self-sufficient of one another given the
output class [124].

The NB technique’s most notable benefits include its robustness to noise and irrelevant
variables, ease of use, and lack of reliance on time-consuming iterative procedures [125].
Numerous studies have used the NB approach for LSM [36,37,126]. The following equation
can be used to estimate the spatial prediction of landslides using NB:

yNB = P(yi)
n

∏
i=1

P
(

xi
yi

)
(1)

where P(xi/yi) is the conditional probability of each attribute and P(yi) is the prior proba-
bility of target class yi (landslide).

2.10. PS-InSAR

PS-InSAR is an enhanced InSAR technology designed for gradual deformation mon-
itoring or long-term displacement. InSAR is a time series-based method that is broadly
classified into two classes: small baseline (SBAS) approaches that focus on spatial cor-
relation and dispersed scattering and PS-InSAR techniques that work on the locations
of persistent scatterers (PS) [127]. PSI is a multi-interferometric SAR technique that can
estimate ground movement with millimeter precision [128]. The PS-InSAR process uses
multitemporal SAR images wrapping the same region to analyze the consistency of the
phase and amplitude, which identifies the pixels that are less influenced by spatiotemporal
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decorrelation and then determines specific deformation details on the constituents of the
phase which must be collectively evaluated and modeled to eliminate inconsistencies [129].

We employed Sentinel-1 C-band SAR pictures recorded along both ascending and
descending orbit tracks in this investigation. To complete the analysis in C-band data,
the PSI [68] requires at least 20 SAR pictures [130]. The PSI monitors surface displace-
ment over months or years, accounting for signal noise, atmospheric, and topographic
impacts. This sensor has a ground resolution of around 20 m in the azimuth direction
and 5 m in the range direction [131]. This sensor has several acquisition modes, including
interferometric wide (IW), wave (Wave), extra-wide swath (EW), and strip map (SM). This
study gathered images from the Sentinel-1A IW sensor and analyzed them in SARPROZ
software (12 days of temporal resolution). The line of sight (LOS) displacement velocity
(VLOS) was determined using 0.7 as the coherence threshold in PS-InSAR processing, as
shown in Table 4. The InSAR approach computes surface deformation values along the
LOS; however, the deformation rate in the LOS direction is inadequate for representing
the actual slope displacement [71]. The following equation was used to determine slope
velocity (Vslope), which is actually deformation velocity [132]:

Vslope =
VLOS
cos∅ (2)

where VLOS is deformation and Ø is the incident angle.

Table 4. Details of PS-InSAR processing.

Specification Ascending Descending

Temporal range 1 May 2020–20 May 2021 14 May 2020–9 May 2021
No. of images 33 31
No. of PS/DS 526,815 450,990

Minimum VLOS (mm/year) −98 −34
Maximum VLOS (mm/year) 31 73

Finally, the calculated result was used for comparative analysis with susceptibility
models generated by RF, XGBoost, KNN, and NB methods. The Vslope points were
converted into 12.5 × 12.5 grid cells to provide a more precise LSM-like ML model and
integrated to enhance the susceptibility degree of those cells defined by ground deformation,
minimizing missed alerts, while cells stable and consisting of high susceptibility degrees
according to SAR interferometry were not altered [128].

3. Results
3.1. The Significance of Landslide Variables

To compute the significance of the landslide variables in this study, we utilized
R-Studio Software. In comparison, the RF model performed better in estimating the rele-
vance of each element in causing landslides.

Figure 8, using origin software, depicts the significance of the factors using the RF
model. The slope and elevation had the greatest impact, according to Figure 8, and
profile curvature, roughness, distance to fault, and NDVI were almost equal on landslides
in the research region. The slope is critical for landslides in the region (Figure 8); it
encourages landslides and makes an area susceptible to landslides. Weathered rocks and
medium height frequently define high elevation zones, and slopes are usually overlaid
by thin colluvium, making them more prone to landslides [112]. The barren ground is in
close contact with climatological factors such as sunlight and precipitation, causing rock
deterioration and increasing the likelihood of landslides [133]. Because shear zones and
active faults strongly influence landslide activities in the region, the buffer class nearest
to the fault line is more susceptible [14]. The bulk of the debris flow, rockfalls, and other
slides in the area are caused by monsoon rains [134]. Annual average precipitation data
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were utilized in this study, which found that while precipitation was not a significant
causal factor, there were more landslides in locations with high precipitation (Figure 8).
The aspect and plan curvature had a minor impact on the landslide in the studied region.
The majority of landslides in the research area are northward facing and south-facing.
Arabameri et al. [135] employed RF models for LSM in Iran and found that aspect has a
minor impact on LSM. The Komila amphibolite and Gilgit complex metasedimentary rocks
are the most vulnerable formations in the study area [11,12,14,101]. The rocks in research
area are highly fractured and deformed.
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The outcomes of employing the four LSM models obtained using the LPI are de-
picted in Figure 9. The greater the LPI, the more probable it is that a landslide may
happen [136]. The likelihood value of LS was categorized into five classes using the natural
break (Jenks) [102] method: very high, high, moderate, low, and very low (Figure 10).
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The precision of the maps was evaluated using a confusion matrix, as suggested
by [137]. A confusion matrix illustrates the capabilities of the RF, XGBoost, KNN, and NB
models during the training stage (Table 5). The RF model shows a high accuracy (0.830) in
the research area. Validation was accomplished using the ROC approach [36]. A ROC curve
is created in this approach by plotting “sensitivity” versus “specificity” on cut-off values,
but it does not fully explain the model’s efficiency; so, the AUC of the ROC curve was
utilized to analyze the quantitative functioning of the models [138]. A larger proportion of
the area below the curve suggests that the model is more accurate. In contrast, a smaller
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percentage of the area below the curve shows that the model is less accurate in predicting
future occurrences of the phenomena [139]. The AUC of the prediction rate curve was
determined to be 88.83, 87.44, 83.38, and 72.80% for the RF, XGBoost, KNN, and NB models,
respectively (Figure 11).

Table 5. Confusion matrix of models.

Models Observation
Predicted Accuracy

No Yes

RF
No 35 12 0.830

Yes 43 235

XGBoost
No 33 13 0.821

Yes 45 234

KNN
No 32 18 0.803

Yes 46 229

NB
No 39 49 0.729

Yes 39 198
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3.2. PS-InSAR Based Validation

PS-InSAR approaches were utilized to evaluate and verify the models by checking the
displacement in the area. The Interferometric Synthetic Aperture Radar (InSAR) approach
has been well documented for identifying and tracking mass movements during the previous
decade due to its extensive high spatial–temporal resolution, spatial coverage, and operating
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capacity in all-weather conditions [93]. Many PS-InSAR studies have been conducted to
determine the temporal or spatial landslide deformation patterns or the kinematic resolution
of slow-moving landslides to quantify the scale of slow-moving landslides [140]. The estimated
result was compared to the RF model’s susceptibility model.

The line of sight (LOS) displacement velocity (VLOS) was determined using 0.7 as the
coherence threshold in PS-InSAR processing (Figure 12). PS-InSAR was also shown to be a
useful technique for monitoring slow landslide movement in non-vegetation regions. The In-
SAR approach computes surface deformation values along the LOS; however, the deformation
rate in the LOS direction is inadequate for representing the actual slope displacement [71].
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Figure 12. Landslide deformation velocity map along LOS direction for ascending and descending
paths using PS-InSAR.

PS-InSAR analysis was performed for both descending and ascending geometries,
with VLOS approved deformation in the region. The total number of PS/DS target points
acquired with LOS direction deformation results varying from −98 to 73 mm/year was
obtained. Using the transformation formula, the VLOS was changed to Vslope. The
greatest slope deformation velocity was determined to be −100 mm/year. VLOS indicates
just one direction’s deformation based on the satellite’s LOS, which is determined to
evaluate slope orientation velocity (Vslope). Because most landslides or ground surface
displacements occur along the direction of steep terrain in the event of landslide assertion,
Vslope is the main ingredient employed to define landslide advancement. The calculated
Vslope for ascending and descending pathways was added together (Figure 13). The only
displacements in RF’s highly sensitive zone-produced susceptible model were depicted
in an ultimate deformation map (Figure 14). The PSI findings revealed that most of the
mapped landslides were in deforming zones, although slow-moving landslides were
forecasted more precisely because of the Sentinel-1A sensor’s extended revisiting period.
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Finally, the RF-based LSM was combined with Vslope to improve the region’s precise
susceptibility map. The Vslope points were converted into 12.5 × 12.5 grid cells to provide
a more precise LSM-like RF model and integrated to enhance the susceptibility degree of
those cells defined by ground deformation, minimizing missed alerts, while cells stable
and consisting of high susceptibility degrees according to SAR interferometry were not
altered [128]. The contingency matrix was used to improve an LSM for the region to
a Vslope and RF-based susceptibility model (Figure 15). In other words, the degree of
difference for each cell was evaluated using the newly created LSM, which was generated
using the RF model.
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4. Discussion

The findings demonstrate that the RF, XGBoost, KNN, and NB data-mining techniques
have comparable precision for LSM along the KKH, with the RF outperforming the others
in terms of AUC value and accuracy. Our results conform to the consequences outlined in
other work [11,12,14,52,101].

The overall precision values found in this research (RF, 83.0%) were compared to
Youssef et al. [23]; it was discovered that the precision values found in this study were
higher than the RF (81.2%) in other ML models of the revealed research. Sevgen et al. [29]
compared ANN, logistic regression, and RF for LSM and found that the RF model shows
the best classification precision with respect to ANN and LR. Taalab et al. [26] evaluated the
RF algorithm for landslide in northwest Italy and found that the RF model performed well
compared to other tree-based models. Chen et al. [141] reassembled the random forest (RF),
logistic model tree (LMT), and classification and regression tree (CART) models to map
LS. The LMT (74%) and CART (73%) models showed slightly lower precision values than
the RF model (77%); RF performed better in LSM. Zhang et al. [142] demonstrated that the
random RF model outperformed the C5.0 decision tree model by comparing it to the C5.0
decision tree model. The RF technique has an advantage over other ML models. It can use
multiple input parameters without removing them and provide a limited number of classes
with good forecast precision [143]. This model’s categorization precision is determined by
the training dataset’s type, scale, number, and accuracy. The combination of all appropriate
parameters boosts the precision of this model. Furthermore, compared to other models, RF
has a greater capacity to implement a large number of data [144]. Arabameri et al. [135]
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employed RF models for spatial modeling of gully erosion in Iran and found that RF
performed best. Zhang et al. [145], when compared to neural networks, decision trees,
and the RF, obtained the best results for debris flow susceptibility with the RF method in
Shigatse Area, China. In areas with debris flow and rockfalls, we discovered that the RF
model is the best predictive technique for LSM.

Recently, InSAR approaches for producing and updating landslide inventories have
been created [146]. The findings of the InSAR techniques are thought to be more pre-
cise [147], yielding susceptibility maps with high production precision. The LOS velocity
statistics only reveal the velocities along the slopes in the highly sensitive zones of both
models. PS-InSAR was also shown to be a useful technique for monitoring slow landslide
movement in non-vegetation regions. The ROC curve AUC was used to evaluate prediction
capabilities, and it predicts 88.83, 87.44, 83.38, and 72.80% for RF, XGBoost, KNN, and
NB, respectively, confirming the model’s accuracy. The collected susceptibility map was
categorized into five groups using the Jenks natural breaks [102]: very low, low, moderate,
high, and very high. In comparison, the RF model performed better in estimating the
relevance of each element in causing landslides.

LSM was performed using the RF, XGBoost, KNN, and NB in this work. Nonetheless,
several limitations caused misclassification in the results, such as (1) the accuracy of the
landslide inventory and (2) the accuracy of data connected to each landslide variable.
Because of the severe environment along KKH, only 332 landslides have been mapped for
this research region. It resulted in considerable misclassification inaccuracies for the LSM,
emphasizing the significance of upgrading the LSM utilizing PS-InSAR results. Surprisingly,
when paired with the PS-InSAR data, the novel LSM reduced misclassification in which
landscape altered by slope deformity was categorized as extremely low and very low.

Another problem is that the landslide susceptibility mapping merely represents antici-
pated landslide dispersion in regions rather than interactive displacement processes through
time. Variations in landslide behavior over time, on the other hand, are a serious challenge for
decision-makers [148]. In conjunction with the PS-InSAR outputs, a new landslide susceptibil-
ity map can depict the real conditions of landslides. It can be designed for quantitative hazard
assessment and preliminary landslide mapping at the province level [149].

The LSM creates a susceptibility map for landslides, identifies the important variables
that cause landslides, and evaluates the effect and their contribution [27,150]. Land cover,
geology, slope, precipitation, NDVI, distance to faults, elevation, curvature, plan curvature,
TWI, profile curvature, roughness, and aspect were all utilized to estimate the probability of
landslides disaster in the research area. The main contributors of landslides in the area are
slope, elevation. The slope is critical for landslides in the region (Figure 8); it encourages
landslides and makes an area susceptible to landslides. Weathered rocks and medium
height frequently define high elevation zones, and slopes are usually overlaid by thin
colluvium, making them more prone to landslides [112]. Because shear zones and active
faults strongly influence landslide activities in the region, the buffer class nearest to the
fault line is more susceptible [14].

Previous studies such as [13] in this area relied mainly on statistical models, and
a considerable number of landslides were missing in the inventory. As a result of the
inadequate landslide inventory, the LSM is ineffective. This work focused on complete
mapping of landslides to identify primary landslide triggers and define high susceptible
zones using the PS-InSAR approach, which will be used in the future to mitigate landslide
risks in the region.

5. Conclusions

Landslides are one of Pakistan’s most devastating natural disasters, generating major
risks to lives and socioeconomic damage each year. So far, the process of landslide mapping
has been highly difficult and volatile to perform correct and quick estimation of landslides
in most places. Multiple attempts have been made to improve reliability based on many
forecast models for mapping the landslide susceptibility, targeting different locations for
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this goal. Decision-makers must construct more relevant landslide susceptibility maps
to improve the prediction model’s performance. This study concentrated on complete
landslide mapping to determine the fundamental causes of landslides and designate high-
risk zones, which will be useful in the future to mitigate landslide threats in the region. The
study’s distinctive feature is that it provides more accurate LSM by employing ML models
verified by PS-InSAR processing.

This study used RF, XGBoost, KNN, and NB ML algorithms to enhance the LSM of the
Karakoram Highway using the PS-InSAR approach. This study assessed the vulnerability
using elevation, precipitation, slope, land cover, roughness, NDVI, curvature, distance to
faults, plan curvature, aspect, profile curvature, geology, and TWI. Slope, elevation, and
profile curvature are the primary causes of landslides in the region. The susceptibility model
created will be used to identify zones for construction growth and improved management
planning along the KKH. The LSM illustrates the just forecast landslide distribution in
regions, not the dynamic displacement process over time. Variations in landslide activity
eventually, on the other hand, are a main consideration for decision-makers. The newly
developed LSM, when merged with the PS-InSAR results, may show the true situation of
landslides and should be utilized for quantitative hazard analysis and preparatory landslide
mapping at the regional level. Geotechnical and other slope stabilization procedures are
necessary to minimize future landslide catastrophes in an environment. We conclude that
our approach can give valuable insights into highway safety measures.
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