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The human brain has a remarkable lifelong learning capability to acquire

new experiences while retaining previously acquired information. Several

hypotheses have been proposed to explain this capability, but the underlying

mechanisms are still unclear. Here, we propose a neuro-inspired firing-rate

computational model involving the hippocampus and surrounding areas, that

encompasses two key mechanisms possibly underlying this capability. The

first is based on signals encoded by the neuromodulator dopamine, which

is released by novel stimuli and enhances plasticity only when needed. The

second is based on a homeostatic plasticity mechanism that involves the

lateral inhibitory connections of the pyramidal neurons of the hippocampus.

These mechanisms tend to protect neurons that have already been heavily

employed in encoding previous experiences. The model was tested with

images from the MNIST machine learning dataset, and with more naturalistic

images, for its ability to mitigate catastrophic interference in lifelong learning.

The results show that the proposed biologically grounded mechanisms can

e�ectively enhance the learning of new stimuli while protecting previously

acquired knowledge. The proposed mechanisms could be investigated in

future empirical animal experiments and inspire machine learning models.
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1. Introduction

The human brain has an impressive life-long learning

capability that allows the acquisition of new experiences while

retaining previously stored information (Parisi et al., 2019).

Even though the new information may retroactively interfere

with that already acquired (Barnes and Underwood, 1959), the

human brain only rarely undergoes a severe forgetting of old

information (Pallier et al., 2003; Parisi et al., 2019). On the

other hand, artificial neural networks tend to forget previously

acquired information when learning new patterns (McCloskey

and Cohen, 1989; French, 1999). This phenomenon has a typical

dynamic that differs from human retroactive interference and

is more similar to retrograde amnesia (McCloskey and Cohen,

1989; Parisi et al., 2019). Several hypotheses have been proposed

on how the brain avoids catastrophic forgetting.

A proposal to protect old information in artificial neural

networks is the Elastic Weight Consolidation mechanism

(Kirkpatrick et al., 2017). This hypothesis is inspired by some

notable properties of the brain. First, it has been shown that

two different motor tasks produce calcium transients and spine

enlargement in dendritic spines located on separate dendritic

branches of the motor cortex layer-5 neurons (Cichon and Gan,

2015). This localized activation and potentiation of dendritic

spines can be abolished through the inhibition of somatostatin-

expressing interneurons. When this happens, the two tasks

activate dendritic spines on the same branches and the learning

of the second task interferes with the retention of the first

one. This suggests that interneurons are responsible for spatial

segregation of task-related information on different synapses,

possibly to avoid catastrophic forgetting. Moreover, task-specific

potentiated dendritic spines represent the physical trace of

the acquired skill (Yang et al., 2009) and a large portion of

them (~70%) are stable for months after training (Hayashi-

Takagi et al., 2015). On the basis of this, the Elastic Weight

Consolidation algorithm constraints the variability of the most

important parameters for the performance of a certain task,

while learning other tasks. By employing this biologically

grounded strategy, the algorithm achieves a localistic connection

stability in deep neural networks that ensures protection of

the old acquired tasks (Kirkpatrick et al., 2017). The work on

ElasticWeight Consolidation demonstrates that in a deep neural

network the informationmust be stored in localized connections

in order to be protected. We considered this aspect in our work.

However, this model has been implemented only for supervised

learning and reinforcement learning, but not for unsupervised

learning. Moreover, the deep neural network employed by

Kirkpatrick et al. (2017) is not biologically plausible.

A recent proposal to ameliorate catastrophic interference is

that a novelty signal could be generated and used to protect

previous memories. Both the hippocampus and different areas

of the cortex, for example, the perirhinal and prefrontal cortices

and the ventral visual stream regions, are highly responsive

to novelty (Parker et al., 1998; Kishiyama et al., 2009; Barto

et al., 2013; Kafkas and Montaldi, 2014, 2018). Concerning

the hippocampus, a theory has been proposed on how such

novelty is detected and used by means of the neuromodulator

dopamine to control long-term potentiation (LTP; Lisman and

Grace, 2005). Experimental results demonstrate that novel, but

not familiar stimuli, induce a burst of activation in dopamine-

releasing neurons in the ventral tegmental area (VTA; Steinfels

et al., 1983; Ljungberg et al., 1992). The pathway leading to the

novelty-induced VTA activation passes throught the subiculum,

the nucleus accumbens, and the ventral pallidum (Legault et al.,

2000; Floresco et al., 2001, 2003; Legault and Wise, 2001). The

dopamine released by the VTA is sent back to the hippocampus,

thus instructing it to store the new information through the

consolidation of the late phase of LTP (Lisman and Grace, 2005).

We have implemented in our model an original mechanism to

detect novelty and to automatically modulate dopamine release

in the hippocampus, inspired by the work of Lisman and Grace

(2005). Another recent work attempts to model this mechanism

by introducing a dopaminergic contribution, which increases or

decreases inversely to the level of neuronal activation, to prevent

a neuron that has already learned from becoming dominant

over other neurons when the network is exposed to new

stimuli (Allred and Roy, 2020). This model represents a seminal

work that, following the principle of localized learning, exploits

novelty to face catastrophic interference in an unsupervised

learning context. However, the model does not have a biological

correspondence for various aspects it incorporates, such as the

use of a variable dopaminergic weight for each neuron, the reset

of the network before learning a new image, and the change

of the learning rate of the first neuron that fires after image

perception to protect it from further learning.

A mechanism also considered here is based on the

modulation of the excitation/inhibition balance via

interneurons. It has been observed that high-frequency

stimulation of the CA3 to CA1 Schaffer pathway induces LTP

in excitatory neurons, and in parallel increases the intrinsic

excitability of interneurons to adjust the feedforward inhibition

(Campanac et al., 2013). Besides excitability, several different

mechanisms of plasticity have been identified in interneurons

that potentially affect the excitation/inhibition balance in the

network (Hartmann et al., 2008; Vogels et al., 2013; Chevaleyre

and Piskorowski, 2014). Computational modeling suggests

that inhibitory plasticity is a homeostatic mechanism, allowing

new information to be acquired through Hebbian learning

and retrieved at a later time while maintaining network

stability (Vogels et al., 2011). Furthermore, it has been shown

that inhibitory plasticity can provide a mechanism for the

preservation of place fields when returning to a first evironment

after exposure to a second environment, thus protecting

hippocampal place cells from interference (Udakis et al., 2020).
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The model of Udakis et al. (2020) is the first to propose that

inhibitory plasticity can protect the acquired knowledge from

succeeding experiences. However, while relying on biologically

grounded learning rules for inhibitory plasticity of parvalbumin

and somatostatin interneurons, it models the hippocampus

place cells with a very simplified architecture and input patterns.

Here, we present a new computational model, encompassing

various architectural and functional elements of the brain’s

hippocampus-dopamine system, that proposes and studies an

original combination of the effects of dopaminergic signaling

(Lisman and Grace, 2005) and pyramidal neuron inhibitory

synapses plasticity (Udakis et al., 2020) in order to minimize

the phenomenon of interference during continuous learning

of different types of images. Specifically, the model is able to

enhance learning when dopamine release is triggered by novelty

signals generated intrinsically by the network itself, and to stop

dopamine release, and thus learning, in the case of familiar

stimuli. Furthermore, inhibitory synaptic plasticity produces a

homeostatic effect on the activity of neurons that are learning a

given piece of information. This prevents them from acquiring

dominant excitability and subsequently coding a multiplicity of

different patterns. In this way, the model achieves the separation

of population codes representingmultiple memory traces, which

is necessary to avoid catastrophic interference (Kirkpatrick et al.,

2017).

The two mechanisms cooperate in different ways to avoid

catastrophic forgetting. We highlighted this by testing the

model with different types of input images. In particular, we

used two image datasets having different characteristics: (a)

the well-known MNIST dataset containing images representing

handwritten numerical characters; (b) a dataset of images

representing naturalistic landscapes taken from the scenery of

Lake Como. These datasets allowed us to test both the normal

functioning model and the model missing either one of the

two mechanisms or both. In experiments, we used a common

procedure to measure catastrophic interference, specifically the

rate of recognition after learning a variable number of new tasks

(French, 1999; Allred and Roy, 2020). Moreover, we employed

the MNIST dataset to measure the generalization ability of the

system using test images different from training images.

The model was also tested with a second type of experiment

involving a more realistic continuous learning challenge

(lifelong learning test) that mimics the tests proposed by Udakis

et al. (2020). These experiments simulated an agent that fully

learns two different environments (datasets) in succession and

then returns to the first environment. These experiments probed

the stability of the representations generated by the model based

on both mechanisms: novelty-activated dopaminergic learning

and homeostatic plasticity of the lateral inhibitory connection.

The tests show the effectiveness of the two biologically

inspired mechanisms to face catastrophic interference in

different conditions (two types of tests) and with different

datasets (MNIST images organized by category, and Lake Como

naturalistic images). In the catastrophic interference test, lateral

inhibitory plasticity seems to play a more important role in

preventing catastrophic forgetting with the MINST dataset; in

contrast, dopamine modulation following the novelty signal

seems more important with the Lake Como images. In the

lifelong learning experiment, both mechanisms are necessary to

avoid instability of previously acquired experiences with MNIST

images, whereas dopamine is sufficient to ensure stability

with Lake Como images. The results also show how the two

mechanisms can avoid catastrophic forgetting by keeping the

neuronal populations that encode different tasks separated,

similar to what is otherwise achieved with machine learning

methods (Kirkpatrick et al., 2017).

2. Materials and methods

2.1. The neural network model

The model is formed by six neuronal layers that perform

specific functions (Figure 1), where the core layer is represented

by the pyramidal layer of the CA1 region of the hippocampus.

These neuronal layers are an abstraction of four regions of the

hippocampus-midbrain system (Lisman and Grace, 2005).

The model receives an external visual signal represented

by an image composed of gray-tone pixels. The neurons of

the first layer of the model (input layer, N = 1,600 neurons,

Supplementary Table 2) encode the pixels of the observed image,

each activating in proportion to the gray level of the image pixels

(see Supplementary Methods: Input pre-processing).

The CA1 region is formed by a layer of excitatory

neurons (N = 1,600, Supplementary Table 2), representing

pyramidal cells, and a layer of inhibitory neurons (N =

169, Supplementary Table 2), representing interneurons. The

network is designed to function as a SOM (Self-Organizing

Map): it selects a few neurons that respond specifically to

an input, according to the “winner-takes-all” paradigm, due

to connectivity between layers (which produces a neuronal

field resembling a Mexican hat, as described in Section 2.2

and Supplementary Figure 1) and a specific learning rule that

can take into account the dynamic properties of the network.

When an applied external input is received, after an initial

transient phase, the network self-organizes through plastic

connections between the input layer and the CA1. This process

brings activation to a steady state in which a small group of

locally connected pyramidal neurons are more active than the

others. This “winning population” of neurons encodes the input

pattern. However, the architecture of our model is biologically

more plausible than a standard SOM, as it is composed

of recurrent connections involving excitatory and inhibitory

neurons, which generate a dynamic neural competition. Below,

and in particular in Section 2.2, we describe the characteristics

of the connection scheme adopted in the model and how it was
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FIGURE 1

Model architecture. Green circles are excitatory neurons, purple circles are inhibitory neurons and the orange circle indicates dopaminergic

neurons. Red arrows are the excitatory connections, the blue connectors with a circle indicate the inhibitory connections, and the orange one

with the diamond represents the dopaminergic connection. The dashed lines indicate synapses that change their weight during learning. These

synapses undergo dopamine-based learning. Input is connected all-to-all with the pyramidal layer of CA1, a population of interconnected

excitatory neurons (without self-connections). Within CA1, pyramidal neurons excite inhibitory interneurons which in turn inhibit pyramidal

neurons. The strength of all other connections in CA1 depends on a distance-based function (see text for details). The CA1 pyramidal layer is

also connected with the Subiculum through one-to-one connections: when one or more neurons of the pyramidal layer reach a su�cient

activation level, they activate the corresponding neurons in the Subiculum. The activation of at least one neuron is necessary and su�cient to

trigger the inhibitory neuron of Accumbens/V.Pallidum to turn o� the dopaminergic neuron in VTA, thus stopping learning. ACC./PAL. indicates

the Accumbens/V. Pallidum.

modeled in analogy to biological data (Bezaire et al., 2016). In

addition, it is important to note that our model, in order to

have a more natural behavior and unlike others (Allred and Roy,

2016), does not reset the state of the CA1 network to the initial

condition before each presentation of a new image.

The output of CA1 is routed in a multisynaptic pathway

through three different areas, Subiculum—Accumbens/V.

Pallidum—VTA, which implements dopamine modulation

based on novelty detection (Lisman and Grace, 2005).

Subiculum neurons (N = 1,600, Supplementary Table 2) have a

high activation threshold, so a neuron within this area fires to

the Accumbens/V. Pallidum only when the corresponding CA1

pyramidal neuron is sufficiently active. To simplify, we have

represented the Accumbens/V. Pallidum with a single neuron

and also the VTA with a single dopaminergic neuron, assuming

for the purpose of this study that all neurons in those areas

behave homogeneously.

When VTA fires, dopamine is released on CA1 pyramidal

neurons, allowing them to learn. Conversely, when VTA receives

inhibitory input it stops releasing dopamine. When a novel

image is presented to the network there is a low correlation

between the input pattern and each of the connection weights

groups targeting distinct CA1 neurons, and as a consequence,

the CA1 neurons have a low activation. This condition can

be interpreted as the fact that the system is classifying the

stimulus as “novel”. When the input-to-pyramidal connection

weights progressively change by learning, the activation of

the winning population of CA1 neurons grows. This can

be interpreted as the fact that the system is classifying the

stimulus as “familiar”. When the activation of the peak neuron

within the winning CA1 population activates the corresponding

neuron of the Subiculum above its threshold, this activates the

neuron in Accumbens/V. Pallidum, which, in turn, inhibits

the dopaminergic neuron in VTA. Familiar input patterns

thus stop learning. After learning, the network is able to

discriminate between different images because the information

from each image is stored locally in the synaptic weights

of separate or possibly slightly overlapping populations of

winning neurons.

2.1.1. Implementation details of the model

The model was implemented in Python 3.5.10, using

NumPy libraries for scientific computing, and PyQt5 for the

graphical interface. The followings software packages were used

to set the python environment required to execute the model:

matplotlib 3.0.3, numpy 1.16.3, numpydoc 0.8.0, Pillow 6.1.0,

PyQt5 5.12, PyQt5-sip 4.19.17, paragraph 0.11.0, QtAwesome

0.5.6, qt-console 4.4.3, QtPy 1.6.0, Jason 3.2.0, mnist 0.2.2,

python-mnist 0.7.
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The code and the input datasets of MNIST and Lake Como

images can be found at: https://github.com/pafferni/A-neuro-

inspired-computational-model-of-life-long-learning-and-

catastrophic-interference.

2.2. CA1: Micro-architecture and
biological basis

We now explain in more detail the specific connectivity of

CA1 in our model, the core part of the model, and show how

it reflects some key qualitative features of the CA1 connectivity

observed in the biological brain.

Considering that the model represents CA1, we used a ratio

of 9 to 1 between the number of pyramidal neurons and the

number of generic interneurons (Bezaire and Soltesz, 2013). The

model is parametric and could be easily adapted to be used

in future work to simulate neural networks of different sizes

and ratios between pyramidal neurons and interneurons and

different connectomics. For example, themodel could be applied

to study the CA3 with a ratio of 4:1, although the parameters

and connectomics of the model should be adapted to reflect

the different structures of this area (Guzman et al., 2016). The

number of neurons forming each neuronal layer of the current

model are reported in Supplementary Table 2.

Each input neuron is then connected to all pyramidal

neurons of the CA1 region through all-to-all connections.

The input-to-pyramidal connection weights wINP
post,pre (with pre

and post representing respectively the pre-synaptic and post-

synaptic neurons) are initially set with the equation wINP
post,pre =

Normalize[random], where random is a random value uniformly

drawn in the interval [0,1) and Normalize[] computes the L2

norm. Subsequently, these weights can be changed as a result of

learning according to the learning rule described in the Section

2.4 by Equation (9).

The CA1 neurons in the model lie on a 2D square map to

capture as a first approximation some relevant aspects of the

spatial organization of neurons in the CA1 hippocampus area.

The neurons that are on the four sides of the map edge have

connections with those on the opposite side and are considered

close in space as if the two opposite sides were adjacent to avoid

the edge effect.

To simulate the natural probability of connection within

the CA1 area, we assumed that the lateral connectivity of the

excitatory pyramidal neurons in CA1 and inhibitory neurons

are generated by a random process in which the weight has

a value calculated as the product of: (a) a factor dependent

on the distance, within the neural 2D layer, between the two

connected units; (b) a random number generated with a uniform

distribution in the interval [0, 1). Supplementary Figure 1

indicates the values of the distance-dependent factor used

to calculate the connection weights, for the different types

of connections. The values of the pyramidal-to-pyramidal

connections and of the pyramidal-to-interneuron connections

(not shown in the figure) follow a similar function of distance

represented by a “narrow” Gaussian curve, obtained respectively

from Equation (1) with different values of the parameter s1. The

values of the interneuron-to-pyramidal (inhibitory) connections

follow a function of distance represented by a large Mexican-

hat curve, obtained from Equation (2). Supplementary Figure 2

shows, for the three types of lateral connections, examples of the

connections referring to one CA1 neuron, having a connection

weight above a threshold of 0.04. Supplementary Figure 3 shows

the above-threshold connection frequencies as a function of

the distance, measured after the network has been generated.

For comparison, Supplementary Figure 4 shows the connection

frequencies extrapolated from the experimental data for the CA1

of the rat, as reported in Bezaire et al. (2016).

We used the following equation to generate the weight

wPP
post,pre of the lateral pyramidal-to-pyramidal connection,

converging to one CA1 pyramidal neuron (parameter s1 is in

Supplementary Table 1, Layer: exc-exc):

wPP
post,pre = Normalize[e

−d2post,pre·s1 · random] (1)

where dpost,pre is the distance between the pre-synaptic

neuron and post-synaptic neuron, the factor random represents

a random value drawn from a uniform distribution over the

interval [0, 1), and the function Normalize[] performs the L2

norm of the vector of weights w.

The same equation, but with a different value for parameter

s1, was used to generate the weight wPI
post,pre of each pyramidal-

to-interneuron connection (see the parameter s1 value in

Supplementary Table 1, Layer: exc-inh).

The following equation was instead used to generate the

weight wIP
post,pre of the interneuron-to-pyramidal connection

converging to a CA1 pyramidal neuron (parameters s1, s2 are in

Supplementary Table 1, Layer: inh-exc):

wIP
post,pre = Normalize[0.5 ·(e

−d2post,pre·s1 −e
−d2post,pre·s2 ) ·random]

(2)

The formulas using the distance between neurons employed

as unitary measure the minimum distance between two

neighboring neurons.

The Subiculum is formed by a layer of excitatory neurons

receiving one-to-one afferent connections (weights = 1) from

the CA1 excitatory neurons. The Subiculum neurons have all-

to-one excitatory efferent connections (weights = 1) to the

Accumbens/V. Pallidum single neuron which in turn has an

inhibitory connection (weight = −1) to the VTA single neuron,

having an on/off type activation.
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2.3. Implementation of the neurons in the
model

Each pyramidal neuron in the model is implemented as a

leaky integrate-and-fire neuron. The variation of the pyramidal

neuron inner potential uPpost(t) at time t, depending on the

time constant parameter τ (Supplementary Table 3), is obtained

as follows:

τ1uPpost = −uPpost + SI + LE+ LI + Noise (3)

The components of the Equation (3) are computed

as follows:

SI =
∑

pre(w
INP
post,pre · a

INP
pre (t)), represents the sensory input,

where aINPpre (t) is the activation of a pre-synaptic input neuron at

time t, and wINP
post,pre is the connection weight between the input

pre-synaptic neuron and the post-synaptic pyramidal neuron;

LE =
∑

pre(w
PP
post,pre · aPpre(t)), represents the lateral

excitation, where aPpre(t) is the activation of another pre-synaptic

CA1 pyramidal neuron, and wPP
post,pre is the connection weight

between the pre- and post-synaptic pyramidal neurons;

LI =
∑

pre(w
IP
post,pre · a

I
pre(t)), represents lateral inhibition,

where aIpre(t) is the activation of a pre-synaptic interneuron,

and wIP
post,pre is the connection weight between the pre-synaptic

interneuron and the post-synaptic pyramidal neuron;

Noise = λ · rand · İpost where rand is a random value

uniformly drawn from interval [0, 1), λ is the noise level

(Supplementary Table 4), and İpost is the sum of all absolute

values of the time derivatives of the excitatory synaptic potentials

(each synaptic potential being wINP
post,pre · aINPpre ) and is used to

lower the noise when the neuron input signals stabilize.

Here, all terms of the type a(t) denote activation of neurons

and for both pyramidal neurons (aPpre(t)) and interneurons

(aIpre(t)) they are obtained by applying the neuronal gain

function described in Equation (4) to the activation inner

potential u(t) of the neuron: a(t) = f
(

u(t)
)

. The initial values,

at time zero (start of model execution), of the potential u(t) of

all neurons are set to zero.

The neuron gain function is as follows:

f (x) =







0 for x =< 0

min[1, sinh(x) · h+ 0.008] for x > 0
(4)

where the function min ensures that f(x) is maximum 1. Each

CA1 interneuron in the model is also implemented as a leaky

integrate-and-fire neuron. The variation of the inner potential

uIpost(t), at time t, is obtained as follows:

τ

1.5
1uIpost = −uIpost +

∑

pre

(wPI
post,pre · a

P
pre(t)) (5)

where aPpre(t) is the activation of a pre-synaptic CA1 pyramidal

neuron, and wPI
post,pre is the connection weight between the pre-

synaptic pyramidal neuron and the post-synaptic interneuron.

The neurons of the Subiculum have the following

activation dynamics (without losing generality we assume a

binary activation):

aS =







0 for aP < θ+

1 for aP >= θ+
(6)

This function ensures that the subiculum neurons activate

only when the corresponding neurons activate above a

certain threshold θ+ (Supplementary Table 3) thus realizing a

familiarity detection mechanism applied to the input pattern

(see Section 2.1).

The ACC/PAL neuron (that has an inhibitory connection

toward the VTA dopaminergic neuron) has the following

activation dynamics (without losing generality we assume a

binary activation):

aAP =







0 for
∑

aS = 0

1 for
∑

aS > 0
(7)

The VTA dopaminergic neuron has the following activation

dynamics (again, without losing generality, we assume a

binary activation):

DA =







1 for aAP = 0

0 for aAP > 0
(8)

The dopaminergic neuron is active with 1 when it is not

inhibited by the ACC/PAL neuron, and with 0 when the

ACC/PAL neuron activates, thus implementing a dopamine

modulation mechanism by novelty detection.

2.4. Synaptic plasticity

The plasticity of CA1 afferent excitatory connections from

the input layer is based on a Hebbian-like rule with homeostasis,

in order to implement both potentiation and depression, that

prevents unlimited connection weight growth. In our model, the

input signal is continuously sent to each pyramidal neuron in

the network and therefore each individual neuron has to detect

by itself when the input changes. For this purpose, the learning

rule takes into account the local variation over time of the pre-

synaptic signal and the variation of the post-synaptic potential

of the CA1 pyramidal neuron. Furthermore, the learning rule

also avoids learning during the initial transient time when a new

signal is received, but the activation of the pyramidal neuron in

CA1may still not be related to the input signal. The learning rule

also takes into account the activation level of the CA1 pyramidal

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2022.954847
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


A�erni et al. 10.3389/fncom.2022.954847

neuron to avoid updating synaptic weights when its activation is

too low. This prevents the update of synaptic weights when the

input signal is absent or too low to be distinguished from noise.

As a consequence of the architecture containing lateral

connections, CA1 tends to have a hill-shaped activation of the

winning population. The synaptic weights are thus updated in

proportion to such activation and so tend to further strengthen

and refine the hill-shaped CA1 activation in correspondence to

familiar patterns. However, learning stops when the activation

of at least one CA1 pyramidal neuron reaches a sufficiently high

level (a little below its saturation level) above the subiculum

activation threshold, to avoid that learning tends to progressively

recruit an unbounded number of CA1 neurons located around

the peak neuron.

The excitatory synaptic weight of a pyramidal neuron

wINP
post,pre is updated with the following equation, where

1wINP
post,pre denotes its variation:

1wINP
post,pre = HF · LT · SA (9)

The components of the Equation (9) have the following

definition and meaning:

HF = DA · aPpost · (aINPpre − wINP
post,pre), represents the

Hebbian Factor, where DA is the dopamine (DA=1 when phasic

dopamine is present, and DA=0 otherwise) and aPpost is the

activation of the post-synaptic CA1 pyramidal neuron; this

term is a variation of Hebb’s principle inspired by Oja’s rule

(Oja, 1982) and modulated by dopamine (Gerstner et al., 2018);

this rule updates the synaptic connections of highly active

(“winning”) neurons and protects the connections of all other

neurons; the dependence of this Hebbian factor from DA is

the first of the two key mechanisms of the model that prevent

catastrophic forgetting;

LT =
[

aPpost > θ−
]

, represents the learning threshold

factor, where θ− is the threshold parameter defined in

Supplementary Table 4; this term prevents learning when the

activation of a CA1 pyramidal neuron is very low and thus avoids

interference due to noise;

SA = (ȧPpost(δ1 · τ ) > δ2)(İpost < 0.012), represents

the stable activation factor, where ȧPpost(δ1 · τ ) is the time

derivative of aPpost computed as deviation from the moving

average over a time interval δ1 · τ ; the values of δ1 and

δ2 are defined in Supplementary Table 4; this term represents

a condition that allows learning only in presence of stable

activation, and prevents the model from learning in presence

of noise or residual activation due to the previous image; the

parameter 0.012 was manually tuned to trigger learning only

when the İpost is sufficiently small (the input signal is perceived

as sufficiently stable).

Learning also affects the lateral inhibitory connections of

CA1. This is the second one of the two key mechanisms that

prevent catastrophic forgetting in the model and is inspired

by the work of Udakis et al. (2020). To avoid the dominance

of the CA1 pyramidal neurons that have already learned an

image, the model increases the inhibition of those neurons

while they are learning. Importantly, Udakis et al. (2020)

showed two different learning rules for parvalbumin and

somatostatin interneurons. In our model, interneurons provide

lateral inhibition between excitatory CA1 neurons, but not

feedforward inhibition from the Schaffer pathway. We thus

considered them as somatostatin interneurons (Stefanelli et al.,

2016) and implemented a plasticity rule compatible with the

findings of Udakis et al. (2020).

For this purpose, the inhibitory synaptic weight wIP
post,pre

is modified during the learning process with the following

plasticity rule, where 1wIP
post,pre is its variation:

1wIP
post,pre = LF · LT · SA · ELL (10)

The components of the Equation (10) have the following

definition and meaning:

LF = − L
τ
· DA · aPpost · (a

I
pre + 0.3 · wIP

post,pre) represents

the learning factor for inhibitory synapses, where L is a constant

parameter defined in Supplementary Table 4. In presence of

dopamine, plasticity is proportional to the neuron activation

level: this strengthens the inhibitory connections of highly active

(“winning”) CA1 neurons while affecting fewer other neurons.

LT and SA, respectively represent the learning threshold

factor and the stable activation factor and they are the same as

those in Equation (9);

ELL =

∑N
pre |a

INP
pre −wINP

post,pre|

N > 0.004 represents the excitatory

learning level, where N is the number of input neurons

(Supplementary Table 2), which is equal to the number of input

synapses of one CA1 pyramidal neuron; this term is inversely

proportional to the learning level of the excitatory synapses (the

value of this term decreases as the pyramidal neuron learns) and

in this way it reduces the plasticity of the inhibitory synapses

while the neuron learns; the parameter 0.004 was manually

tuned to trigger learning only when the excitatory synaptic

weight update is sufficiently large as this signals that the neuron

still needs to learn.

2.5. Experimental setup and tests

We tested the model with two different image datasets

and with two different experimental procedures. We introduce

here the rationale for using such datasets and experimental

procedures and then further specify their features in the

subsections below.

The first dataset is the classic machine-learning dataset

MNIST (LeCun et al., 1998, 2010; LeCun, 2013), and the

second consists of images taken from a landscape of the city of

Lake Como. The purpose of using two image datasets having
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FIGURE 2

Test on Catastrophic forgetting experiment. The system learns

each of the 10 tasks (each of which represents a numerical digit)

by looking at its constituent images once. Then the system is

tested with the repetition of all tasks, while plasticity is turned

o�, to evaluate catastrophic forgetting. The number of images

correctly classified for each task provides a measure of the level

of recognition of the task. The test is repeated several times by

changing the learning order of the tasks, and, on this basis, the

average level of catastrophic forgetting per task is calculated.

different features was to test the behavior of the model and in

particular its two core mechanisms used to face catastrophic

forgetting. The MNIST dataset, a standard machine-learning

dataset, consists of handwritten numerical digits, while the

images of the Lake Como landscape consist of nature photos

taken from a real scenario. The different source of these images

implies different characteristics of contrast and brightness and

also different content and amount of details. All original images

were converted to grayscale images with 256 levels of gray, and

a resolution of 40 × 40 (1600) pixels corresponding to the size

of the input layer (Figure 1). The two sets of images can be

approached with similar model parameters, as shown in the

Supplementary Table 4. The parameters that were different in

the two experiments were related to the different brightness

and contrast of the images of the two sets. In real organisms,

these differences would be compensated for by appropriate

adjustments of the eye and early visual areas that are not

represented in the model (Rahimi-Nasrabadi et al., 2021).

The two experimental protocols were directed to test

different aspects of learning interference. In particular, the

catastrophic forgetting experiment follows the classic protocol

(French, 1999; Allred and Roy, 2020) in which an agent learns

a large number of blocks of class-specific stimuli one after the

other (in our setup 10 blocks of 4 images each, see Figure 2).

This allows measuring the degree of interference in terms of

the capacity of correct classification of a block class when the

number of blocks learned after it progressively increases. The

key of the test is hence the possibility of measuring the “speed”

of forgetting when new stimuli blocks are progressively learned.

The experiment, therefore, focuses on the study of catastrophic

forgetting as a function of progressive learning over time. In

addition, the experiment also allowed us to test the ability to

generalize within each class block.

On the other hand, the life-long learning experiment is more

ecological in the sense that it does not involve classification tasks,

but the recognition of two different tasks after their free learning,

with the aim of observing how the respective population codes,

represented by the position within the network of the peak

neuron (the most excited of a population), change or stabilize

as the agent moves from one task to another. This experiment

type was inspired by the experiment of Udakis et al. (2020).

Each task requires the model to decide by itself when it has

been fully learned before moving on to the next one; this

may involve looking several times at the images that make

up a single task. In particular, the test is directed to test

the amount of the “shift” of several internal representations

(place cells), related to well-learned stimuli taken from a

certain environment (in our case the images taken from a

corridor, see Figure 3), when another large set of stimuli from

a new environment are learned in depth (images taken from

a second corridor). The “shift” is measured by evaluating if

the neurons that encoded the images of the first environment

change their representations after learning the images of the

second environment. The experiment thus focuses on studying

catastrophic forgetting in (neural) space. This test is relevant

as Udakis et al. (2020), proposed it to study the stability of

receptive fields of place cells based on the plasticity of lateral

inhibitory connections.

2.5.1. The MNIST handwritten digit dataset

In this setup, the network model was tested using

the MNIST images. Every single image observed by the

network (field of view) had a size of 40 × 40 pixels. In

particular, we used the first four images for each digit (0–

9), or class, of the dataset, thus having a sequence of 40

images grouped into 10 consecutive subsets, or learning

tasks. Each task consisting in learning 4 images corresponds

to learning one of the digits from 0 to 9 (Figure 2).

In addition to such 40 images, we also used other 40

images (4 from each digit) as a test-set to perform a

generalization test.

2.5.2. Dataset of naturalistic images of the city
of Lake Como

The naturalistic images are taken from the landscape

of the city of Lake Como. The images were divided

into two sets representing two distinct landscapes, each

composed of 20 contiguous images, for a total of 40 images.

Every single image observed by the network had the size

of 40 × 40 pixels. The two landscapes contain images

with different brightness and contrast and are very rich

in detail.
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FIGURE 3

Life-long learning experiment with images of Lake Como. The agent moves down the first corridor seeing and learning each image observed in

each of the next 20 locations and repeats the corridor until all images have been fully learned (Epoch 1), then the agent moves to the second

corridor and repeats the process until all images in the second corridor have been fully learned (Epoch 2). Then the agent goes back to visit the

first corridor (Epoch 3) and learns only the unrecognized images. The agent then moves to the second corridor and does the same. The process

is repeated by alternating between the two corridors until all the images in both corridors have been fully learned and recognized. The

experiment allows evaluating whether and to what extent the representations of the di�erent images by the di�erent neural groups encoding

them are stable when the agent has other experiences.

2.5.3. Catastrophic forgetting test: Experiment
procedure

In this experiment, the model has to perform 10 learning

tasks, each of which involves observing four consecutive images

only once. After the learning phase, all images are presented to

the model in the same order, with plasticity turned off, to check

which ones are recognized. The logic of the test is that the more

the model is affected by catastrophic interference, the more it

will tend to not recognize the images observed and learned at the

beginning of the sequence. The experiment was repeated with

both the MNIST and the naturalistic images to study the effects

of different features of the two datasets.

When using the MNIST image dataset, the four images that

make up a learning task all correspond to the same class, one

of the digits 0–9. To measure whether an image was recognized,

we followed this procedure: (a) during learning, each pyramidal

neuron (in CA1) whose synaptic weights were modified by the

learning rule of the Equation (9) was labeled with the digit class

corresponding to the learned image (an example is shown in

Figure 7); (b) during the test, an image was considered correctly

recognized if the neuron that fired the most was labeled, during

learning, with the same digit class as the subset to which

the current image belongs. Note that because each subset was

formed by 4 images, the average recognition rate of a subset

could have one out of five possible values: 0, 25, 50, 75, or 100%.

For the experimentation with naturalistic images of the Lake

Como landscape, we used a similar procedure with the following

differences. As with MINST, we considered 10 subsets of 4

images each, but this time these subsets did not correspond to

any class, so instead of the class number, we used a number from

0 to 9 as a label, which uniquely identified the subset. Note that

in each MNIST subset, the 4 images in it refer to the same class

of digits and are therefore more similar to each other than those

in other subsets that refer to other classes of digits. In contrast, in

the naturalistic dataset, all images within and between different

subsets have a comparable degree of similarity. This allowed us

to test the robustness of the system by grouping images based on

the task to be performed and not based on the greater similarity

between the images.

Also in this case the experiment consisted of learning,

one after the other, 10 sequences of 4 images each, and then

measuring the recognition percentage of each sequence, while

the learning was disabled. Specifically, the following steps were

implemented: (a) during learning, each neuron whose synaptic

weights were changed according to the learning rule of the

Equation (9) was labeled with the number identifying the subset

containing the learned image; (b) during the test, an image

was considered correctly recognized if the neuron that fired the

most was previously labeled with the same number as the subset

of the current image. Again, since each subset consisted of 4

images, subset recognition could have only five values: 0, 25, 50,

75, 100%.

In the case of MNIST images, we also tested the

generalization ability of the model in correctly classifying digits

even in the presence of images other than those used for

learning. This was possible by using different images for testing

than those used for learning since the MNIST dataset contains

many different images that refer to the same digits.

Since the results could be influenced by the specific

characteristics of the images that form the sequence of tasks, we

repeated the experiment 10 times mixing each time the order

in which the 10 tasks were learned. In particular, we changed

the learning order of the 10 tasks by applying permutations to

the initial order: the result reported represents the average of the

results over 10 permutations.

The experiments described above were performed with

both the wholly functioning model and the model in which

we deactivated the dopamine modulation (this was done
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by preventing the dopamine stopping mechanism) and the

plasticity of inhibition (this was done by preventing the learning

process). Under these conditions dopamine release does not stop

when the novelty disappears, so the learning of an image would

never stop if left under the control of dopamine. Therefore, after

amaximum time has elapsed, themodel is always forced tomove

on to observe the next image.

2.5.4. Lifelong learning test: Experiment
procedure

The second class of experiments simulated an agent (e.g.,

a mouse) that moves along two virtual corridors. As it moves

through each corridor, the agent stops at 20 successive positions

and observes the resulting landscape image at each position

(Figure 3). In each position, the agent can learn the observed

image and then move on to the next when the dopaminergic

neuron is inhibited, thus indicating that the image has been

learned. Note how this implies that the agent autonomously

decides when to pass to the next position. However, after a

maximum observation time has elapsed, the model is always

forced to move on to the observation of the next image. The

visit of the entire corridor is repeated several times until all

images are fully recognized, that is, until there is no more

novelty signal, and dopamine stops being released during the

exploration of the entire corridor. Note that, in a subsequent

passage in the corridor, it may happen that an image already

observed previously may not be recognized when it is observed

again, for two reasons: either because the image was not fully

learned during the previous visit, or because the learning of

subsequent images interfered with its encoding. The whole test

ends when the agent crosses the two corridors recognizing all the

images observed, without producing any signal of novelty.

The aim of these experiments was to evaluate the efficiency

of the model during a long learning process, alternating

two different environments (corridors), and observing how

the respective population codes, represented by the position

within the network of the peak neuron (the most excited of a

population), change or stabilize as they move from one corridor

to another. Unlike the previous catastrophic interference test,

here the agent had the opportunity to relearn the non entirely

familiar images until they become fully recognized before

passing to the next environment (corridor).

In these experiments, we define “epoch” the time taken by

the model to fully learn a set of 20 images corresponding to a

single virtual corridor. Each time the agent changes the corridor,

we increase the total number of epochs by 1. We also define a

“learning episode” the learning of a single image. To measure

learning efficiency we counted the number of learning episodes

for each epoch, and the number of epochs needed to learn the

images of both corridors. Figure 3 illustrates the process.

The Lifelong learning test was also repeated with a model

in which we deactivated dopamine modulation and/or plasticity

of inhibitory connections, following a procedure similar to the

one described above for the case of normal functioning. In the

condition in which the absence of dopaminergic modulation

prevents the agent from autonomously switching to the next

image, in order to prevent it from remaining in observation of

the same image forever, the agent is forced to switch to the next

image after a predefined maximum time.

3. Results

3.1. Tests on catastrophic forgetting with
the MNIST dataset and naturalistic
images of Lake Como

The first tests were directed to evaluate how the whole

intact model behaves with respect to catastrophic interference.

Figure 4A shows that in this condition the model has a high

recognition rate with the MNIST images, in particular between

80 and 90%, and close to 100% for the last subset. Instead,

with the naturalistic images (Lake Como images) the recognition

rate gracefully degrades from about 70% with the recently

experienced images (subsets 9 and 10) to about 50% with the

first experienced images (subsets from 1 through 4).

The next test was directed to study the effects of catastrophic

interference when the novelty detection mechanisms is

deactivated (that is when dopamine was always present), and

the inhibitory plasticity was absent. With the MINST images,

the quality of memory drops drastically, from about 90% for the

last learned image subset to about 10% for the image subsets

learned at the beginning of the sequence (Figure 4A). With

the Lake Como images, the quality of memory also drops

drastically, from about 70% for the last learned image subset to

about 30 − 10% for the image subsets learned at the beginning

of the sequence (Figure 4A). This demonstrates the effectiveness

of the combination of the two mechanisms in the protection

from catastrophic interference.

The differences in the recognition rate of the two datasets

can be explained by the experimental procedure of this

experiment. Indeed, the procedure consists in learning ten

groups of four images and requires recognizing the class of each

image. This tends to increase performance with the MNIST

dataset since each subset refers to the same numerical digit and

contains images very similar to each other. Instead, the Lake

Como images belonging to each subset are different from each

other and this makes the task more difficult.

In order to understand the relative contribution of

dopamine regulation and of lateral inhibitory plasticity, we

analyzed the catastrophic interference by deactivating the two

mechanisms separately. Figure 4B shows that in both cases

a catastrophic interference effect occurs. However, the lesion

of the novelty mechanism results in a milder impairment

compared to the blockage of the inhibitory plasticity. Again,
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FIGURE 4

Test on catastrophic interference with MNIST and Lake Como images. (A) Comparison between the normal functioning model and the lesioned

model (without dopaminergic modulation and without plasticity of inhibitory synapses). (B) Normal functioning is compared with the two

conditions where only inhibitory synapses plasticity or only dopaminergic modulation is deactivated. The data were collected after training the

model by performing 10 tasks in succession, each of which consisted of learning 4 images. The graphs show the mean and standard deviation

over 10 repetitions of the test, performed by changing the order of the tasks through 10 permutations of the initial task order.

we observed that, when the model is tested with the MNIST

dataset, the performance is higher than with the Como dataset.

Moreover, there is protection from catastrophic interference

if the lesion only involves the novelty mechanism, while the

lateral inhibition is still in place (Figure 4B). In the case of

MNIST without novelty-induced modulation of dopamine,

we see that catastrophic interference is milder than for the

Como images. The reason for this effect is due to the easier

generalization within the same subgroup of MNIST digits,

which counterbalances the blockage of novelty. Instead, the

Como images are different even within the same class, so this

generalization effect is not present. In the case of Como images,

the performance of the model in Task 10 is higher when there is

no dopamine modulation by novelty, with respect to the wholly

functioning model. The reason is that the learning process never

stops and, consequently, the last images are overtrained. This

phenomenon is not visible with MNIST images because in this

case the wholly functioning model already reaches a maximum

level of performance on the last tasks.

To investigate if the model is indeed capable of

generalization, we tested it with new MNIST images, that

is, using for the test an image set which is different from that

used for training. We can see in Figure 5 that in the case of

normal functioning the digits of the test set are recognized

with an accuracy of about 35%. Notwithstanding performance

does not achieve high levels, this is an interesting result

considering that the system has learned to classify never-seen-

before MNIST images by looking at only 4 images of each

class once.

As expected, in the case of the lesioned model the

result shows catastrophic interference. Again, the removal of

dopamine modulation by novelty causes learning to never stop.

This produces the effect that system performance for task 10 is

higher in the lesioned model than in the fully functional model.
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FIGURE 5

Tests of generalization with the MNIST dataset using a di�erent

test dataset, run with the wholly functioning model and the

lesioned model (without dopamine modulation and without

inhibitory plasticity). The values reported in the graphs are

averaged over repeated tests each of which was performed by

changing the order of execution of the tasks (using 10

permutations of the initial task order). The vertical bars represent

the standard deviations.

3.1.1. The memory content of the network

To investigate the internal organization of the model that

led to the results illustrated above, we evaluated the memory

content that the model acquired with learning. Figure 6 shows

the weights of the connections linking the input excitatory

neurons to the CA1 pyramidal neurons after learning the 10

MNIST digits (40 MNIST different images). In Figure 7, where

different colors represent different populations, it can be seen

that the population code for each learned image is composed of a

series of neurons that have undergone changes in their excitatory

synaptic weights to varying degrees.

To understand the responsiveness of individual neurons,

we compared the synaptic weights, shown in Figure 6, with

the MNIST digit best recognized by each neuron. For this

purpose, Figure 7 shows the images classified by the CA1

pyramidal neuron populations after learning theMINST images.

Comparing Figure 6 with Figure 7, it can be observed that

neurons encoding images related to the same class tend to be

close in the neural (physical) space. This is due to the local

nature of the connectivity of the neurons, as shown by self-

organizing maps (Kohonen, 1982; Hazan et al., 2018). The

observation of the two figures suggests that the neurons that are

at the boundaries between two neural areas encoding different

classes of digits (Figure 7), tend to encode a mix of digits

(Figure 6, highlighted by red rectangles). Figure 7 also shows

that the learned images employed almost all the neural resources

available in the network (black cells indicate neurons that were

never active for any image during learning).

Furthermore, we present in Figure 8 an example of the

responsiveness of the network to an image of the digit class “1”

after learning 4 other images of the same class. In Figure 8A, we

can see the input image observed. Figure 8D shows the weights

of the connections between the input and the pyramidal neuron

that responded with the highest activation to the observed

image. It can be seen that, although similar, the observed image

and the representation of the weights of the neuron that is

most responsive to it slightly different. This represents a case

where the network was unable to distinguish the differences

between the two images, but still correctly classified the input

image as belonging to the digit class “1”. Figure 8 also shows

the activation of neurons in the pyramidal layer (Figure 8B), and

interneurons in the inhibitory layer (Figure 8C), in response to

the observed image. The highest level of activation involves a

small group of excitatory neurons and a corresponding small

group of inhibitory neurons. On the other hand, the neurons

that encode other images have a very low activity because the

synaptic weights from the input are too small. In this way, they

are protected from interference of the currently perceived image.

3.2. Experiments of life-long autonomous
learning with Lake Como images

This group of experiments aims to evaluate the ability of the

network to carry out a continuous unsupervised autonomous

learning and recognition task of two long sequences of

naturalistic images, representing two distinct landscapes of

Lake Como city. The two sequences are learned several times,

therefore the final interference level is reduced to a minimum.

In this condition, the dynamics of the experiments highlight the

possible shift of neural image representations within the CA1

neural map, which could resemble the place field shift observed

in Udakis et al. (2020).

3.2.1. Life-long learning in the wholly
functioning model

The first test was directed to investigate the overall

performance of the wholly functioning model. Figure 9 shows

the number of learning episodes for each image, using different

colors for different epochs (each involving multiple visits to

the same corridor until all its images are learned, Section

2.5.4). Within the same epoch, some images required more than

one episode to be learned: (1) First epoch: the first corridor

was explored for the first time, and all the 20 images were

learnt with 40 learning episodes; (2) Second epoch: the second

corridor was explored for the first time, and all the 20 images

were learnt with 46 learning episodes; (3) Third epoch: the

first corridor was explored again, and additional learning was

required for only three images for a total of 5 learning episodes;

(4) Fourth and subsequent epochs: the second corridor and the
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FIGURE 6

Representation of the model memory content after learning some images of the MNIST dataset (10 MNIST digits, 4 images per digit, for a total

of 40 images). Each small image (digit or blurry image) in the 40 × 40 cells of the graph consists of 40 × 40 pixels representing the incoming

connection weights of the excitatory synapses of the pyramidal neuron at the corresponding position in the 2D neural map representing the

pyramidal layer of CA1. White represents the highest value of the weights and black represents the lowest value. The red rectangles highlight

some of the neurons, located near the boundary of adjacent populations, that encode a mix of digits.

first corridor were explored again, and no additional learning

was required; by alternating the exploration of both corridors,

further learning was no longer necessary. We can see from

the figure how different images required a different number of

learning episodes to complete the learning. This is because some

images have a higher level of similarity with other images, and so

they require a longer time to learn in order to better distinguish

them. For three images of the first corridor, the model also

needed further learning (epoch 3) after completing the learning

of the second corridor (epoch 2). This phenomenon possibly

occurred because these images are less distinctive than others

and so are more sensitive to catastrophic interference.

Figure 10 shows the activation of the CA1 neurons

corresponding to a Lake Como image from the second corridor,

before learning (top) and after learning (bottom). When a new

image is presented, the model reacts by activating a pattern of

neural populations. This produces a novelty signal that triggers

the learning of the perceived image. During the learning process,

the excitatory and inhibitory synaptic plasticity of the most

active excitatory neurons causes their specialization, and the

dynamics of the network change until a new stable condition

is reached in which a new population with a different shape

emerges. At this point, the novelty signal ceases and the network

stops learning because dopamine release stops.

3.2.2. Life-long learning in the lesioned model

Next, we analyzed the role played by catastrophic-

interference protection mechanisms in the life-long learning

experiment. For this purpose, we performed the life-long

learning experiment with Como images under three different

conditions: with a wholly functioning model; with the model

in which dopamine modulation and inhibitory plasticity were

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2022.954847
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


A�erni et al. 10.3389/fncom.2022.954847

FIGURE 7

The specialization of excitatory CA1 pyramidal neurons after learning the MNIST image dataset. Each two-digit number in the cells of the graph

indicates the image learned by the neuron located at that position within the 2D map of CA1: the first digit of the number in the cell indicates

the class, and the second digit after the dot indicates the image position within the sequence (of the 4 images that belong to the class). During

the learning phase, the class and the number of the image were assigned to each “winning” neuron when its synaptic weights were updated.

Di�erent colors represent di�erent populations, each of which has learned a specific class of digits. The cells highlighted in white identify the

peak neuron for each population responding to one single image, and the cells highlighted in red identify the peak neuron responding to two

images of the same class.

blocked; with the model without dopamine (thus without

excitatory and inhibitory learning).

Figure 11 shows that, after learning, the wholly functioning

model forms distinct winning neurons/populations for the

different images of the two corridors. In contrast, the lesion-

affected model often uses the same neurons/populations to

represent different images. The map is not stable because

the model continues to relearn the images already learned

using different populations. This shows that, without the two

protective mechanisms, the model is affected by catastrophic

forgetting. In the absence of learning all images are encoded

by a few neighboring neurons in the neural (physical) space.

These neurons correspond to those that are most activated

on the basis of the random input connection weights. This

happens because random weights could promote the activation

of neurons in certain areas of the neural (physical) space, and

all the images presented are more similar to each other than to

the uncorrelated random weights. Moreover, once a population

is maximally active for one image, it tends to inhibit other

populations and thus win for subsequent images as well. This

effect is due to the fact that, in order to have greater biological

plausibility, the system is not reset between the observation of

different images as is the case in other models (Section 2.1).

To check the stability of these results, we repeated the

experiment three times for each operating condition, with three

different values of the random generator seed used to set the

initial values of the synaptic weights. In Supplementary Table 5,

we report the average and standard deviation of the number

of distinct neurons having maximum activation caused by all

experienced images. A number similar to that of the images
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FIGURE 8

Example of how the CA1 neurons respond to a MNIST image after learning. (A) The input image representing the digit “1”; the gray scale of the

pixels is proportional to the level of activation of the input layer ranging in [0, 1]. (B) Activity of all the excitatory neurons (in red) and (C) activity

of all the inhibitory neurons (in blue) of the CA1 in response to the input image. Each cell of the graphs corresponds to a neuron, and the color

intensity reflects its activation level ranging in [0, 1]. (D) The weights of the connections between the input and the excitatory synapses of the

neuron that is the most active in response to the input image. The grayscale is proportional to the level of each weight ranging in [0, 1]. In this

case, the network responded with the peak neuron that learned a slightly di�erent image of the same class because it was not able to distinguish

the di�erences.

FIGURE 9

Life-long learning test with Lake Como images, model performance. The left graph shows the data for the 20 image sequence from the first

corridor, while the right graph shows the data for the 20 image sequence from the second corridor. The graphs show the number of visits to the

same corridor (learning episodes) to complete an epoch; the colors indicate the di�erent epochs.

to encode (40) means that the model represented them in

distinct neural groups; instead, a lower number means that the

model encoded some images with the same neurons. These data

confirm the results that the two mechanisms are very effective in

protecting acquired representations from interference.

3.2.3. Representations of instability caused by
catastrophic forgetting in life-long learning
tasks

Given that novelty-induced dopamine modulation and

inhibitory plasticity are jointly important in lifelong learning

settings, we investigated their relative contribution. For this

purpose, we used Lake Como and MINST datasets to better

understand the effects of the two mechanisms depending on the

different properties of the two image datasets.

Figure 12, referring to the Lake Como images, and Figure 13,

referring to the MNIST images, present the positions of the

winning neurons on the neural map, in the last three epochs,

in three cases: (a) wholly functioning model; (b) model without

inhibitory plasticity; (c) and without novelty-based dopamine

modulation. In this experiment, where the model learned the

images in the two corridors in sequence, we focused on the

stability of the internal representations of the images by looking
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FIGURE 10

Life-long learning task, an example of the model CA1 activation with a Lake Como image from the second corridor. Top: before learning.

Bottom: after learning. Picture from left to right: the image observed by the network; the corresponding activation level of the excitatory layer

(darker red indicates higher activation); the corresponding activation level of the inhibitory interneuron layer (darker blue indicates higher

activation); the synaptic weights of the connections from the input to the most active excitatory neuron in CA1.

FIGURE 11

Results of the life-long learning task with Lake Como images. (A) With normal model operation. (B) Without dopamine modulation and without

inhibitory plasticity. (C) Without dopamine release, there is no learning (both no excitatory and inhibitory plasticity), and the position of the

neurons on the map is determined only by random synaptic weights that cause those neurons to have greater activation than others. Each of

the three graphs was drawn after 4 epochs, in which in the case of normal operation (A) the map is stable and no longer changing, while in the

case when both mechanisms are deactivated (B) the map is not stable but always changing. The symbols in each graph indicate the positions of

pyramidal neurons, within the CA1 neural map, that are maximally activated for each of the 20 images in the first corridor (squares) and for each

of the 20 images in the second corridor (circles). The red color indicates two images encoded by the same neuron. The green color indicates

three images encoded by the same neuron.

at the positions of the winner neurons on the neural map. For

this purpose, we observed the winning neurons representing

images of the first corridor after the agent learned the first

corridor (Epoch 1), and then when it revisited the first corridor

(Epoch 3) after it learned the second corridor (Epoch 2), to assess

the stability of these neurons.

The results show that in the case of Lake Como images

in the wholly functioning model, the two mechanisms succeed

in protecting the representations after new experiences. In

particular, after the second corridor images are learned (epoch

2) there is very little interference in the representations acquired

in the first corridor (compare Epoch 1 and Epoch 3, in

Figure 12A). As shown in Figure 12B, the removal of the

inhibitory plasticity causes a moderate instability effect on the

representations of images learned in the first corridor after

the second corridor images are learned. Instead, as shown in
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FIGURE 12

Life-long learning test: peak firing neurons corresponding to Lake Como images. (A) Normal model operation. (B) Model working only with

dopamine modulation (no inhibition plasticity). (C) Model working only with inhibition plasticity (no dopamine modulation). The maps on the left

show the peak firing neurons after the first pass of the first corridor (Epoch 1). The maps at the center show the peak firing neurons after the first

pass of the second corridor (Epoch 2). The maps on the right show the peak firing neurons after the second pass of the first corridor (Epoch 3).

Figure 12C, the lesion of dopamine modulation has a strong

effect, as most of the representations of images learned in

the first corridor change after the second corridor images

are learned.

We repeated the experiment with the MNIST dataset.

In the wholly functioning model, the two mechanisms

are quite effective in protecting the representations of

the first corridor from the interference of the learning

of the second corridor (Figure 13A). The lesion of

one of the two mechanisms instead causes a marked

instability of the representations of the first corridor

(Figures 13B,C).

To check the stability of these results, we repeated all

the experiments three times for each operating condition,

with three different values of the random generator seed

used to generate the initial values of synaptic weights. In

Supplementary Table 6 related to the experiment with Lake

Como images, and in Supplementary Table 7 related to the

experiment with MNIST images, we report the average and

standard deviation of the number of distinct neurons having

maximum activation with a stable position on the neural map

when returning to the first corridor after the second corridor.

These data confirm the results that the two mechanisms

are very effective in protecting acquired representations

from interference.

Overall, the results show that the contextual operation of

the twomechanisms succeeds to avoid catastrophic interference.

However, the importance of the two mechanisms can vary

depending on the features of the observed images. The

MNIST images are more similar to each other, due to

their simplicity and digit similarity, with respect to the

Lake Como naturalistic images, which have richer features

and gray tones. The results of the simulations suggest that

the more similar the images, the higher the importance of

lateral inhibition to avoid the emergence of a dominant

population.
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FIGURE 13

Results from the life-long learning experiment with MNIST images, for the last three epochs that complete the learning. (A) Maps refer to model

normal operation. (B) Maps refer to model operation without modulation of lateral inhibition. (C) Maps refer to model operation without

dopamine modulation. Epochs 3 and 5 illustrate the results of the first corridor, and Epoch 4 the result of the second corridor. Di�erently from

Figure 12, here the maps corresponding to the epochs 3, 4, and 5 are shown because the model takes more epochs to fully learn the images of

the two corridors.

4. Discussion

4.1. Comparison with other models

In this section, we compare our model with other models

incorporating bio-inspired mechanisms to face catastrophic

forgetting. The first model we consider was proposed by

Allred and Roy (2020) which represents a pioneering work

in the study of the role of novelty detection as a mechanism

protecting networks from catastrophic interference. This model

uses spiking neurons, so the resulting network has a higher

degree of biological detail than the one presented here. However,

the model dynamics contain elements of “global level” control,

whereas in our model the control is localized to the neuronal

and connectomic level. In particular, in Allred and Roy (2020)

the model activation is reset before receiving any input. When

a new image is presented, the first neuron to fire receives a

temporally enhanced plasticity with the dopaminergic neuron.

This mechanism, although biologically implausible, allows rapid

learning and protection from forgetting. Instead, our model is

more abstract, as it uses firing rate neurons. On the other hand,

it is based on continuous functioning and learning (no reset of

the network between different images). This led us to develop a

model that (a) is able to self-regulate its activation passing from

image to image, also based on lateral excitatory connectivity

not present in the other model, and (b) uses learning processes

that are robust to such dynamics, that is, are not impaired by

the passage from image to image. Regarding the solution to

the catastrophic interference problem, our model considers not

only a dopamine-based mechanism of plasticity of excitatory

synapses, as in the model mentioned, but also the plasticity

of the lateral inhibitory connections. The latter mechanism is

biologically grounded (Udakis et al., 2020) and helps to keep

distinct the population codes corresponding to different images.

The work of Udakis et al. (2020) proposes a model, based

on data collected with optogenetic procedures, on the role of
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the plasticity of inhibitory connections in the hippocampus.

The model suggests the importance of life-like learning of

such lateral inhibitory neuron plasticity, in particular showing

that the place fields of neurons tend to change when the

model experiences different environments (interference) one

after the other when such plasticity is blocked. Ourmodel, which

has more detailed connectomics, extends this investigation

by considering two different types of images (MNIST and

naturalistic images) and by studying how novelty-based and

lateral inhibitory plasticity mechanisms affect their learning.

This showed that blocking lateral inhibitory plasticity causes

interference (non-conservative neural fields) mainly in the

case of very similar images (MNIST), while it is of much

less importance for dissimilar images (images of Lake Como).

Furthermore, we have shown that blocking the novelty-

based mechanism facilitates catastrophic interference with both

similar and dissimilar images.

We have mentioned in the introduction that the model

presented in Kirkpatrick et al. (2017) leads to a segregation of

information into different neuron populations. However, this

effect was obtained with a machine learning mechanism that

freezes the plasticity of the connections that are important for

performing previously learned tasks. In contrast, our model

uses biologically grounded mechanisms based on dopamine

modulation induced by novelty signals, together with the

plasticity of the lateral inhibitory connection, leading to the

spontaneous emergence of segregation of neural populations

encoding different classes. Other hypotheses different from

our approach have been proposed on how the brain avoids

catastrophic forgetting.

The Complementary Learning Systems theory (McClelland

et al., 1995; Kumaran et al., 2016) posits that the hippocampus is

capable of fast learning of episodic memories, while the cortex

slowly acquires the information stored in the hippocampus

through gradual and interleaved learning. This allows the cortex

to integrate the new information into the existing cognitive

schemes without overwriting them. It has been shown that

slow-wave sleep enhances memory consolidation (Born et al.,

2006; Marshall et al., 2006; Rasch and Born, 2013) and that

during the sleep phase a specifically coordinated replay of

recent memory traces occurs in the hippocampus and cortex

(Euston et al., 2007; Ji and Wilson, 2007; Maingret et al.,

2016). On this basis, slow wave sleep has been proposed as the

stage when the hippocampus drives cortical interleaved learning

through spontaneous memory reactivation (Rasch and Born,

2013; Kumaran et al., 2016; Maingret et al., 2016). A recent

computational model has shown how slow waves can strengthen

two competing memory sequences while protecting them from

catastrophic forgetting (González et al., 2020). This interesting

mechanism can be considered useful for long-term memory

consolidation, but it is not sufficient to avoid catastrophic

forgetting during memory acquisition in the short term because

sleep time cannot follow the learning of every single task, or a

few tasks before catastrophic forgetting occurs.

It has also been suggested that adult neurogenesis in the

subgranular zone of the dentate gyrus could prevent catastrophic

forgetting of episodic memories in the hippocampus (Wiskott

et al., 2006; Weisz and Argibay, 2009). New neurons generated

in the subgranular zone manifest a lower threshold for

LTP, together with the absence of GABAergic inhibition that

is instead very strong on the old granule neurons (Wang

et al., 2000; Snyder et al., 2001; Schmidt-Hieber et al., 2004).

This feature makes the young neurons ideally suited to be

recruited in the memory trace encoding new experiences.

Some computational models of these phenomena show that,

while the network incorporates new information on the young

neurons, the previous information is spared because is encoded

in the connections of the old neurons (Wiskott et al., 2006;

Weisz and Argibay, 2009). However, the role of neurogenesis

is still controversial and seems to have different roles in

brain functioning depending also on the stages of development

and maturation of the adult-newborn neurons. Other studies

have shown how neurogenesis can enhance pattern separation

during learning (Aimone et al., 2010; Deng et al., 2010;

Aimone and Gage, 2011; Sahay et al., 2011; Groves et al.,

2013; Agis-Balboa and Fischer, 2014) and how a stimulating

environment and training can enhance neurogenesis. However,

this type of mechanism, avoidance of catastrophic interference

by sparsification and, hence, separation of patterns could also

work without adult neurogenesis. Sheer numbers of granule

neurons and their strong inhibition may be sufficient (Abrous

and Wojtowicz, 2015). Furthermore, although neurogenesis

could prevent catastrophic forgetting in murine models there

is no evidence that this mechanism is widespread in all

mammals. Indeed, the presence of adult neurogenesis in humans

is controversial (Kempermann et al., 2018; Duque et al.,

2021). While some authors found evidence of newly generated

neurons in the adult human hippocampus (Boldrini et al.,

2018; Moreno-Jiménez et al., 2019), others came to opposite

results (Dennis et al., 2016; Sorrells et al., 2018). A recent in

silico analysis showed that the neurogenesis-associated markers

decline early during development, and suggests that the newly

generated cells in the human hippocampus could be part of

the glia (Kumar et al., 2020). This prompted us to search for

other plausible mechanisms to prevent catastrophic interference

beyond neurogenesis.

4.2. Limitations and future works

The first limitation of the model concerns the identity

of the interneurons simulated. We focused here on lateral

inhibition from somatostatin interneurons, leaving out the effect
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of other interneuronal classes (e.g., feedforward inhibition from

parvalbumin interneurons).

A second limitation is in the neuronal connectomics. In the

model, we introduced localistic connections between neurons,

that decay with distance. In this regard, we were qualitatively

inspired by the actual murine connectomic (Bezaire et al.,

2016). However, we did not reproduce the connectomics in a

quantitative way. Our Mexican hat connectomics resulted in

the clustering of neurons coding for similar information, as

usually observed in SOMs (Kohonen, 1982). This topological

arrangement could change if a different kind of connectomics

is used, leading to a sparsification of the neurons encoding

similar information (Diehl and Cook, 2015; Hazan et al.,

2018). While it is still debated if the hippocampus has

a topological organization of the information (França and

Monserrat, 2019), computational models employing the actual

connectomics of the neuronal populations could shed light on

the topic.

Future directions of this work will include the use of

different subclasses of interneurons and the study of how their

connectomics affect the topology of the SOM.

In the model, we considered binary dopamine

(presence/absence) for simplicity (the presence is phasic).

If dopamine was continuous rather than binary, we

would not expect a substantial qualitative difference,

just a slowing down of the learning process. This can

be seen from Equation (9), showing that dopamine

is used as a multiplicative factor in the learning rule.

This issue should be further investigated in future

work.

The current model works on the basis of equations that are

rather sophisticated as it aims to find sufficient conditions to

obtain the results. It would be a valuable effort to check if it is

possible to obtain similar results by simplifying the equations. In

connection to the previous point, the current model has several

parameters: future work might aim to simplify this aspect of the

model, so also havingmore possibility to systematically study the

impact of changing them.

5. Conclusions

We presented a computational model that can ameliorate

catastrophic interference, based on two bio-inspired

mechanisms. The first mechanism is a novelty-dependent

learning process that mimics dopamine modulation controlled

by the ability of the hippocampus to detect new experiences. The

model in particular mimics the function of hippocampal units

CA1 and Subiculum that together detect novelty/familiarity of

images and generate a dopamine-like learning signal dependent

on the accumbens/pallidum-ventral tegmental area neural

pathway. The core of the novelty detection mechanism is based

on the intensity of the activation of the population code inside

the pyramidal layer of the hippocampus: with the progress of

learning of a certain image, the activation of the population

encoding the image grows above a certain threshold, activates

the subiculum, and this activates the accumbens/pallidum

neuron that in turn inhibits the dopamine outflow of the ventral

tegmental area thus stopping learning.

The second mechanism incorporated by the model to

address catastrophic interference relies on hippocampal

interneurons that ensure the maintenance of homeostasis

through inhibitory synaptic plasticity. This in particular

increases the inhibition of the winning population code of

pyramidal neurons while they are learning. This mechanism has

the effect of naturally controlling the level of activation of the

winning neurons to prevent them from becoming too reactive

to all images, thus prevailing over all other neurons.

The model was tested with two tasks. In a first “catastrophic

interference” task the model learned succeeding image sets

and the impairment caused by an increasing number of

newly learned sets on previous experinece measured. In a

second more ecological “life-long learning” task the model

fully learned a large set of images and the stability of the

learned codes was measured after learning a second large

image set. The two tasks used two different types of images,

the first one formed by artificial images of numeric digits

(MNIST) and a second one from a naturalistic scenario (Lake

Como landscape).

The results showed that the two biologically inspired

mechanisms are able to substantially ameliorate catastrophic

interference. Specifically, in the catastrophic interference

test, the two mechanisms prevent the system from

incurring strong forgetting with MINST images, whereas

with the Lake Como images memory is generally a little

lower and a little less impaired by the lack of the two

mechanisms. In the lifelong learning test, both mechanisms

are necessary to avoid instability of previously acquired

experiences with MNIST images, whereas dopamine

regulation is sufficient to ensure stability with the Lake

Como images.

Overall, the model contributes to showing the important

synergistic effect that the two mechanisms, previously studied

in isolation, have under different conditions involving different

learning regimes and different types of images. Moreover, it

contributes to proposing a possible implementation of the

two mechanisms having a higher biological detail than in

previous models (Allred and Roy, 2020) or a higher specification

of mechanisms and ability to scale to realistic images than

previously done (Udakis et al., 2020). Finally, the results

also show how the two mechanisms, implemented within a

neural network having a biologically realistic architecture, can

ameliorate catastrophic forgetting by decreasing the overlapping

of neuronal populations encoding different images, as was

previously done with machine learning methods (Kirkpatrick

et al., 2017).
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