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Cronobacter sakazakii is an emerging foodborne pathogen, which is linked to
life-threatening infections causing septicemia, meningitis, and necrotizing enterocolitis.
These infections have been epidemiologically connected to ingestion of contaminated
reconstituted powder infant formula. Even at low water activity C. sakazakii can survive
for a long time; it is capable of protective biofilm formation and occasionally shows high
virulence and pathogenicity even following stressful environmental conditions. Hence it
is a challenging task for the food industry to control contamination of food ingredients
and products through the entire production chain, since an increasing number of severe
food-related outbreaks of C. sakazakii infections has been observed. The seemingly
great capability of C. sakazakii to survive even strict countermeasures combined with
its prevalence in many food ingredients requires a greater in depth understanding of its
virulence factors to master the food safety issues related to this organism. In this context,
we present the whole genome sequence (WGS) of two different C. sakazakii isolated
from skimmed milk powder (C7) and ready-to-eat salad mix (C8), respectively. These
are compared to other, already sequenced, C. sakazakii genomes. Sequencing of the
fusA allele revealed that both isolates were C. sakazakii. We investigated the molecular
characteristics of both isolates relevant for genes associated with pathogenesis and
virulence factors, resistance to stressful environmental conditions (e.g., osmotic and
heat), survival in desiccation as well as conducted a comparative genomic analysis. By
using multi-locus sequence typing (MLST), the genetic type of both isolates is assessed
and the number of unique genes is determined. DNA of C. sakazakii C8 is shown to
hold a novel and unique sequence type; the number of unique genes identified in the
genomic sequence of C. sakazakii C7 and C8 were 109 and 188, respectively. Some of
the determined unique genes such as the rhs and VgrG genes are linked to the Type VI
Secretion System cluster, which is associated with pathogenicity and virulence factors.
Moreover, seven genes encoding for multi-drug resistance were found in both isolates.
The finding of a number of genes linked to producing capsules and biofilm are likely
related to the observed resistance to desiccation.
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INTRODUCTION

Cronobacter sakazakii is regarded as an opportunistic foodborne
pathogen, which can cause meningitis, bacteremia and
necrotizing enterocolitis, particularly in infants (Drudy
et al., 2006; Aly et al., 2018). Neonates have suffered from
life-threatening infections of C. sakazakii within the first
28 days after birth (Mullane et al., 2007). Also, older infants
have suffered fatality rates ranging from 40 to 80% and
even immune-compromised adults have suffered fatalities
(Nazarowec-White and Farber, 1997; Tsai et al., 2013).
Cronobacter is one of the costliest foodborne pathogens
due to the debilitation of survivors and loss of life. The cost of
each case is estimated to be approximately 1 million USD (Minor
et al., 2015). In epidemiological studies, infections in infants
and neonates have been connected to ingestion of reconstituted
powder infant formula contaminated with C. sakazakii (Hunter
et al., 2008). Cronobacter survives under desiccated conditions
in powdered infant formula even for extended durations of
several months (Bennour Hennekinne et al., 2018). Generally,
C. sakazakii can adapt to different adverse environments. It
shows an unusual resistance to acid stress (ability to live in
pH < 3.9), heat, desiccation (with surviving at a water activity
of 0.118) and osmotic stress (continues to grow at 10% NaCl)
(Fakruddin et al., 2014). C. sakazakii was shown to produce
a capsular form or biofilm layer to protect itself from dry
conditions. This helps to explain the high survival capability
of C. sakazakii in infant powder milk (Hurrell et al., 2009). In
addition, C. sakazakii can resist some antibiotics, thereby raising
important issues regarding antibiotic therapies used to combat
this organism (Kilonzo-Nthenge et al., 2012; Xu et al., 2015). For
example, the resistance gene of colistin (mcr-1) was reported in
Cronobacter (Liu et al., 2017). Further investigations of genes
encoding for antibiotic resistance in Cronobacter isolates as
well as genes responsible for its marvelous ability to survive the
extreme environments in the food production chain are therefore
of high priority for public health studies.

However, the mechanisms of pathogenicity in C. sakazakii
remain largely unknown. It is known that after humans are
infected by C. sakazakii, it can infect intestinal epithelial
cells; from there, it invades the brain to infect human brain
microvascular endothelial cells (HBMEC), confirming a route
by which to cause meningitis (Giri et al., 2012). In this context,
the outer membrane proteins A (OmpA) and X (OmpX) play
important roles to explain how Cronobacter efficiently can
adhere to and invade HBMEC, Caco-2, and INT-407 cells
(Townsend et al., 2008; Kim et al., 2010; Holý et al., 2019).
Strains expressing OmpA also resist killing and multiply in
dendritic cells (Mittal et al., 2009; Holý et al., 2019). Moreover,
C. sakazakii has been demonstrated not only to survive but
also to replicate in macrophages (Townsend et al., 2007). Three
putative virulence genes hemolysin (hly), plasminogen activator
(cpa), and siderophore interacting protein (sip) were identified in
Cronobacter spp. isolates (Cruz et al., 2011). Recently, multi-locus
sequence typing (MLST) of 7 housekeeping genes was used to
describe the diversity of the genus of Cronobacter from different
sources (Joseph and Forsythe, 2012). Alleles known as a sequence

type (ST) are determined using MLST schemes that interpret
the nucleotide sequence data from a number of conserved
housekeeping genes (Joseph and Forsythe, 2012); these enable
comparisons and grouping of strains (Joseph and Forsythe,
2012). For example, C. sakazakii ST4 is predominantly connected
with meningitis of neonates, while C. sakazakii ST1, 4, 8, and
12 strains are considered pathovars related to human illnesses
(Joseph and Forsythe, 2011; Joseph et al., 2012b; Masood et al.,
2015; Ogrodzki and Forsythe, 2017). Cronobacter spp. possess
ubiquitous presence and have been isolated from cereals, rice,
flour, dairy, herbs, medicinal plants, spices, meat, vegetables, and
fruits (Cetinkaya et al., 2013; Ye et al., 2014). However, it is
of interest to note that ST4 strains usually have been isolated
from powdered infant formula and from milk powder processing
factories (van Acker et al., 2001; Siqueira Santos et al., 2013;
Sonbol et al., 2013; Gicova et al., 2014). Recently, efforts have been
made to develop rapid detection schemes for Cronobacter species
in food samples (Aly et al., 2018, 2019; Pan et al., 2018). Such
technologies would greatly enhance food safety by allowing for
continuous monitoring of contamination in the food chain.

Pulsed-field gel electrophoresis (PFGE) has long been
considered the gold standard for molecular typing of the
pathogens linked to outbreaks (Stranden et al., 2003; Alsonosi
et al., 2015). However, PFGE has many limitations, including
being incapable of distinguishing strains of highly clonal bacteria
that are unrelated, as is the case for Cronobacter species (Alsonosi
et al., 2015). Therefore, FoodNet is moving from PFGE to whole
genome sequencing (WGS) for epidemiological investigations of
foodborne outbreaks (Scharff et al., 2016; Nadon et al., 2017).
WGS offers a more detailed resolution of how closely bacterial
isolates are related than PFGE does; it additionally provides
insights concerning the MLST, pathogenicity genes, as well as a
complete molecular characterization of strains (Kozyreva et al.,
2016; Forsythe, 2018).

Kozyreva et al. (2016) recently reported that WGS could
be used to confirm the Salmonella enterica serovar Poona
outbreak in California. Lytsy et al. (2017) examined the
applicability, resolution, and reliability of PFGE, MLST, and
WGS in three outbreaks in Sweden that occurred 2013–2015
for vancomycin-resistant enterococci. This study led to the
recommendation to use WGS-ANI analysis for epidemiological
identification of vancomycin-resistant enterococci (Lytsy et al.,
2017). Publicly accessible genomic sequence data and the tools
utilized to examine these data are now ubiquitous in biological
studies, with the food safety research area as no exception
(Taboada et al., 2017). Currently available bioinformatics tools
for comparative genomic analysis, such as pan-genome analysis,
have been employed to characterize the entire gene repertoire of
bacterial species (Medini et al., 2005). In molecular biology, the
pan-genome is defined as the complete set of non-orthologous
genes present in species, consisting of the core and accessory
genomes, i.e., sets of genes that are present in all strains and
unique to single strains, respectively (Kim et al., 2015). Moreover,
this analysis confirms how many new genes can be determined
from newly sequenced genomes.

In this work, we use WGS to compare the sequences of
C. sakazakii isolated in Austria with other previously published
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genomes to obtain additional insights into their genetic makeup.
We focus our study on parts of the genome that support our
understanding of previous observations of pathogenicity and
long-term persistence of C. sakazakii. In detail, we investigate and
characterize some of the unique genes detected and associated
with virulence and pathogenicity mechanisms, resistance to
stressful conditions, biofilm formation, and multidrug-resistance.

MATERIALS AND METHODS

Bacterial Isolates and Genome
Sequencing
The two Cronobacter isolates used in this work named
C. sakazakii C7 and C8 were isolated from skimmed milk powder
and ready-to-eat food (salad mix) samples, respectively. The
isolates were obtained in Austria and confirmed as described
previously (Aly et al., 2019). They were identified by the rpoB
gene (Stoop et al., 2009). Furthermore, fusA sequences were
queried in MLST databases1 to confirm their belonging to the
Cronobacter species. The bacteria were cultured as described
in our earlier work (see text footnote 1; Aly et al., 2019).
The genomic DNA (gDNA) of both isolates was extracted and
purified using the bacteria genome kit (peqGOLD Bacterial
DNA Kit, VWR International GmbH, Germany), according
to the guidelines from the manufacturer (Aly et al., 2019).
Optical density measurements of the gDNA was performed in
a Qubit Fluorometric Spectrophotometer (Life Technologies,
Wilmington, DE, United States). Libraries were generated by
enzyme fragmentation and constructed using the NEBNext
Fast DNA-Library for Ion Torrent sample kit preparation
(New England Biolabs, Ipswich, MA, United States) following
the manufacturer’s instructions. The fragmented gDNA was
end-repaired and ligated to the specific adapters and individual
barcodes. The quality control of the gDNA libraries was
determined with the Agilent Bioanalyzer 2100. The enriched
libraries were amplified using emulsion polymerase chain
reaction (ePCR, Ion PITM Hi-QTM OT2 200 kit), following the
manufacturer’s instructions (Thermo Fisher Scientific, Inc.). Ion
PITM Chip kit v3 chips were employed on the Ion Torrent Proton
(Thermo Fisher Scientific, Inc.) platform for the WGS.

Bioinformatics
The single end sequencing reads generated from the Ion Torrent
sequencing were trimmed using the Trimmomatic Tool version
0.36 (Bolger et al., 2014) and filtered by the quality control
step of the coupling pipeline in a FASTAQ file format. De
novo assembly of high-quality reads is performed with SPAdes
(version 3.9.0) assembler (Bankevich et al., 2012). The Quast
software was used to evaluate the de novo assembly results.
The results were generated on a scaffold based on the number
of contigs, GC-depth analysis, coverage analysis of assembly,
and comparison and N50 to ensure its quality (Gurevich et al.,
2013). Scaffolds greater than 500 bp in sequence length were
used for downstream analysis. Next, genome annotation (DNA

1http://pubmlst.org/cronobacter/

annotation) was conducted through the “Rapid Annotated using
Subsystem Technology” (RAST) with server pipeline (Aziz et al.,
2008; Overbeek et al., 2014) in a FASTA file format. RNA
gene and protein-coding sequencing (CDS) was used to assign
functions and determine the presence of subsystems in the
genome. Comparative genome to genome analysis was evaluated
in the SEED viewer as previously reported (Overbeek et al., 2014).
Homologs of conserved genes in both isolates were identified
using the annotation of the NCBI GeneBank of C. sakazakii
ATCC BAA-894 (GCA_000017665.1) as the reference genome.
The analysis of bacterial pan-genome was performed by the
ultra-fast bacterial pan-genome analysis pipeline (BPGA) tool
(Chaudhari et al., 2016), and GView Server (Petkau et al.,
2010) using the retrieved published complete genomes from
the NCBI database including those of, C. sakazakii ES15
(GCF_000263215.1), C. sakazakii BAA-894 (GCA_000017665.1),
C. sakazakii NCTC-8155 (GCF_001277275.1), and C. sakazakii
Sp291 (GCF_000339015.1). These four genomes were compared
to the genomic sequence in our study C. sakazakii C7
and C8. BLASTP search with functional annotation of the
unique and core genes was performed by the BLAST2GO
analysis pipeline (Götz et al., 2008), applying the default
settings for the BLAST search expectation value (E value)
of 1.0 × 10−3. Phage-associated gene region clusters in
the assembly sequence of C. sakazakii C7 and C8 isolates
were identified using the PHASTER server (Arndt et al.,
2016). Three scenarios for the wholeness of the identified
phage-associated region clusters were assigned according to
how many proteins/genes of a known phage the region
involved (Dennis et al., 2011): intact (>90%), questionable
(70–90%) and incomplete (<70%). Antibiotic resistance genes
in the genome assembled for C. sakazakii were detected by a
search against a local antibiotic resistance gene sequence from
the CARD (Comprehensive Antibiotic Resistance Database)
database (Jia et al., 2017).

O-Serotype Determination Analysis
The gnd and galF loci gene clusters are specific for the
O-serotype region; they were identified from the BLAST gDNA
sequences by the BIGSdb pipeline tools in the PubMLST
typing database (see text footnote 1; Jolley and Maiden, 2010;
Ogrodzki and Forsythe, 2015).

Multi-Locus Sequence Typing (MLST)
Briefly, MLST was utilized to query each genome for all known
alleles at each locus by homology check, with new alleles
recognized and afforded with a unique allele number. MLST
of Cronobacter was executed by submitting genome sequences
to the PubMLST typing database for Cronobacter (see text
footnote 1; Larsen et al., 2012). The 7-loci MLST profiling of
Cronobacter being glutaminyl tRNA synthetase (glnS), glutamate
synthase large subunit (gltB), ATP synthase b chain (atpD), DNA
gyrase subunit B (gyrB), phosphoenolpyruvate synthase A (ppsA),
translation initiation factor IF-2 (infB), and elongation factor
G (fusA). Speciation of Cronobacter spp. was obtained by a
phylogenetic analysis sequence of the fusA allele (Joseph et al.,
2012a; Forsythe et al., 2014; Forsythe, 2015).
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The whole genomes were submitted to NCBI under
the C. sakazakii complete genome bioproject number
PRJNA510032 and biosample accession numbers are
SAMN10593105 and SAMN10593106 for C. sakazakii C7 and
C8, respectively.

RESULTS AND DISCUSSION

General Genome Properties
Whole-genome sequencing showed a total of 2,193,827,360 bp,
and 2,265,893,859 bp with single-end reads from gDNA of C7
(milk powder C. sakazakii isolate) and C8 (ready-to-eat salad
C. sakazakii isolate). After quality control, 1409 Mbp of high
quality reads were obtained for C7 and 1472 Mbp were obtained
for C8. These were kept for de novo assembly, which yielded
a total of 64 scaffolds with total scaffold N50 of 344,291 bp
for C7 and 61 scaffolds with total scaffold N50 of 436,880 bp
for C8. The genomic features of C7 and C8 are summarized
in Table 1 and functionally annotated by the RAST server
(Figure 1 and Supplementary Table S1). Figure 2 illustrates
this phylogenetic analysis of WGS using the MEGA 7 tools.
The distances between branches in Figure 2 were calculated
using the Maximum Composite Likelihood method (Tamura
et al., 2004; Kumar et al., 2016). The phylogeny analysis of
the seven species members in genus of Cronobacter strains
revealed that the ST of C. sakazakii strains formed their own
distinct cluster.

A map showing the BlastN comparison of the plasmids
from C. sakazakii C7 and C8 with homologous plasmids
from C. sakazakii ATCC BAA-894 plasmid pESA3 is shown
in Figure 3. Comparative analysis by RAST pipelines of the
WGS assemblies with that of the putative virulence plasmid
showed the existence of plasmid genes P1 (126 kbp), pESA3
(131 kbp), and pCTU1 (138 kbp) (see Supplementary Table
S2). In silico analysis of plasmid P1, pESA3, and pCTU1
showed that these plasmids possess chromosome (plasmid)
partitioning proteins parAB genes immediately upstream of
plasmid replication protein repA. The C. sakazakii C7 and C8
strains share some of the alleles present in pESA3 and pCTU1
as described by Franco et al. (2011). This plasmid contains
many virulence factors, including iron acquisition systems
(iucABCD/iutA), protease VII (Omptin), ABC transporter
(iron.B12.siderophore.hemin), aerobactin siderophore and the
T6SS gene cluster. The C. sakazakii C7 and C8 strains harbor
a plasmidborne T6SS gene cluster such as VgrG (valine-glycine
repeat G protein) as described by Franco et al. (2011). These
results suggest that the virulence factors cluster in the sequenced

TABLE 1 | General genome features of both Cronobacter sakazakii isolates.

Feature C7 C8

Genome size (bp) 4,388,331 4,488,633

GC content (%) 57.1 56.9

Number of CDS 4074 4192

Total number of RNA 83 81

genome, as also observed in previous studies (Kucerova et al.,
2010; Franco et al., 2011; Yan et al., 2013; Jang et al., 2018;
Kadlicekova et al., 2018). A site-specific integrase was detected in
the in silico analysis of each plasmid (C7 and pESA3 at position
66 Kbp) and was found to belong to integrases in an operon
arrangement with four genes encoding a hypothetical protein.
These genes were absent in the C8 plasmid. The same genes
were previously observed on the plasmid pESA3 by Franco et al.
(2011). A channel-forming transporter/cytolysin activator of the
TpsB family gene was found at 80 Kbp. It was clustered in the
plasmid sequences of C7 and C8 but was absent in plasmid
pESA3. Also, at 130 Kbp a gene encoding a hypothetical protein
was found within both the C7 and C8 genomes. In previous
studies, C. sakazakii strains have been found to harbor plasmids
such as pSP291–3 (Yan et al., 2013), pESA2 (Kucerova et al.,
2010), pCTU2, and pCTU3 (Stephan et al., 2011; Yan et al.,
2013). However, we did not find these plasmids in the strains
that we analyzed.

Predicted O-Serotype of Cronobacter
Isolates
The prediction of O-serotype was based on the presence of
flanking genes gnd and galF on the DNA sequence following
the approach of Ogrodzki and Forsythe (2015). In this study,
the C. sakazakii C7 isolated from skimmed milk powder was
representative of O-antigen serotype (Csak_O2) gene clusters
located between the gnd and galF. However, only 17 serotypes,
all O-serotypes, have been determined in Cronobacter spp.
(Mullane et al., 2008; Jarvis et al., 2011; Sun et al., 2012).
The C. sakazakii C8 isolate from ready-to-eat food represents
an unknown serotype; there have been no O-antigen genes
identified for these flanking loci. This demonstrates that the
current standards for molecular serotyping are not adequate
and additional protocols for serotyping should be developed
to enable serotyping of all C. sakzakii. Additional data on the
distribution of serotypes are also required to define whether
molecular serotyping is a helpful alternative for epidemiological
surveillance of the Cronobacter genus.

Multilocus Sequence Typing (MLST)
Multilocus sequence typing is a method to distinguish strains
in the Cronobacter genus, using the seven-loci MLST (Forsythe
et al., 2014). It has been reported that the fusA allele sequence
is matched with the phylogeny sequence and could be utilized
for speciation of the Cronobacter genus (Joseph et al., 2012a).
The resting six alleles could then be defined for seven-loci
MLST profiling. In the current study, the MLST results for
C. sakazakii C7 and C8 isolates are summarized in Table 2.
The MLST revealed C7 to be of ST308. Surprisingly, C8 isolated
from ready-to-eat food was found to be a new unique ST
with novel alleles [gltB, infB, and ppsA]. These are single
nucleotide substitution variants when compared with their
most homologous alleles. This finding combined with the
few investigations to date of the genetic populations of C.
sakazakii, indicate that it is essential to recognize more STs
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FIGURE 1 | Subsystem category distribution of Cronobacter sakazakii based on the SEED database. (A) C7 and (B) C8. Bar chart (BI) shows the percentage of
subsystem coverage (green bar corresponds to the percentage of proteins involved). The pie chart (BII) with legend (BIII) shows the fraction and count (parenthesis in
legend) of each subsystem feature.

to aid in epidemiological investigations and risk assessments
of this pathogen.

Comparative Genomic Analysis
Pan-Genome Analysis
The complete genomes of four different C. sakazakii strains
and their annotation data have been published to date in the
GenBank database. As illustrated in Figure 4A, the pan-genome
analysis of these 4 complete genomes and those of the 2 new
isolates, C7 and C8, presented here were conducted and strain
specific-regions were obtained and visualized. An analysis by

the BPGA tool was applied to the 6 C. sakazakii strains. First,
the core- and pan-genomes and their sizes and trajectories were
analyzed using the approach suggested by Knight et al. (2016).
Second, the median counts were extrapolated employing two
models: exponential regression described in Tettelin et al. (2005)
and power-law regression described in Tettelin et al. (2008). The
resulting extrapolations from the gene counts were normalized by
the mean of the genome sizes of the respective sets to aid in the
comparison and visualization of the fits (Figure 4B).

The pan-genome was made up of 5399 genes, and the
C. sakazakii strains shared 3268 genes as core-genomes
(Figure 4B and Supplementary Table S3A). The BGPA power
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FIGURE 2 | Neighbor-joining tree of C. sakazakii isolated from food, compared with seven representative Cronobacter genus type strains. Accession numbers (NCBI
GenBank) of type strains: C. sakazakii ES15 (GCF_000263215.1), C. sakazakii BAA-894 (GCA_000017665.1), C. sakazakii NCTC-8155 (GCF_001277275.1),
C. sakazakii Sp291 (GCF_000339015.1), C. universalis NCTC 9529 (NZ_CP012257), C. condimenti LMG 26250 (NZ_CP012264), C. malonaticus LMG 23826T
(NZ_CP013940), C. turicensis LMG 23827 (NC_013282), C. dublinensis subsp. lausannensis LMG 23824 (NZ_AJKY00000000), C. dublinensis subsp. lactaridi LMG
23825 (NZ_AJKX00000000), and C. muytjensii ATCC 51329 (NZ_CP012268). The tree was created in MEGA version 7. Sequence type (ST) information was
obtained from MLST website (http://pubmlst.org/cronobacter/). Asterisks (∗) indicate novel sequence.

FIGURE 3 | Map of the plasmids from C. sakazakii C7 and C8. The rings show BlastN comparison with homologous plasmids from C. sakazakii ATCC BAA-894
plasmid pESA3. The map was drawn in GView (https://server.gview.ca/).

law regression analysis identified the pan-genome of C. sakazakii
strains as open (Supplementary Table S3B). The pan-genome
is recognized to be “open” as long as new genes significantly

increase the total repertoire for each new extra genome and
“closed” when newly added genomes do not significantly add
to the total repertoire of the genes (Guimarães et al., 2015).

Frontiers in Microbiology | www.frontiersin.org 6 July 2019 | Volume 10 | Article 1464

http://pubmlst.org/cronobacter/
https://server.gview.ca/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01464 July 2, 2019 Time: 18:22 # 7

Aly et al. Whole Genome Sequencing of C. sakazakii

TABLE 2 | Clustering of Cronobacter sequence type by multilocus sequence typing.

Isolates Locus Identity Coverage Alignment length Allele length Gaps Allele Sequence type
(ST)

C7 atpD 100 100 390 390 0 atpD_16 308

fusA 100 100 438 438 0 fusA_18

glnS 100 100 363 363 0 glnS_120

gltB 100 100 507 507 0 gltB_119

gyrB 100 100 402 402 0 gyrB_88

infB 100 100 441 441 0 infB_73

pps 100 100 495 495 0 pps_18

C8 atpD 100 100 390 390 0 atpD_3 Unknown nearest
STs: 348, 318, 654,

and 641

fusA 100 100 438 438 0 fusA_10

glnS 100 100 363 363 0 glnS_120

gltB 99.8028 100 507 507 0 gltB_59∗

gyrB 100 100 402 402 0 gyrB_125

infB 99.5465 100 441 441 0 infB_236∗

pps 99.1919 100 495 495 0 pps_321∗

∗ alleles with less than 100% identity found (Novel allele, ST may indicate nearest ST).

Mathematical modeling of the data implies that the pan-genome
gene reservoir of unique genes will increase even after hundreds
of newly sequenced genomes are added and therefore is
considered to be open (Tettelin et al., 2005; He, 2015). The
number of unique genes detected in C. sakazakii BAA-894
and C. sakazakii NCTC-8155 were 465 and 53, respectively
(Table 3). The C. sakazakii C7 and C. sakazakii C8 have
a total of 109 and 188 unique genes conserved in gDNA,
respectively. The gene ontology (GO) of the unique genes in
gDNA of C. sakazakii C7 revealed that they are rich in proteins
associated with molecule binding, heterocyclic, and organic cyclic
compound binding, hydrolase activity, drug and ion binding
(Supplementary Tables S3C,D).

Genotype of Antimicrobial Resistance (AMR)
The presence of multidrug-resistant genes in gDNA that may
contribute to antimicrobial resistance was identified by BLAST
searching the assembled sequence genome of C. sakazakii isolates
against a local copy of CARD sequence data (Supplementary
Table S4). As shown in Supplementary Table S4, seven antibiotic
resistance genes were found: msbA, emrR, H-NS, emrB, marA,
CRP, and PBP3. These provide resistance to multiple antibiotics,
such as, beta-lactam antibiotics, tetracycline, a macrolide
antibiotic, a fluoroquinolone antibiotic, penams, cephalosporin,
and cephamycin. The genomes of both C. sakazakii isolates
contained all these genes. Active efflux pumps provide a known
mechanism for increased virulence by improving the survival of
Enterobacteriaceae in the host’s gastrointestinal tract (Touze et al.,
2004). Further, the efflux system enables the invasion of brain
microvascular endothelial cells (Franke et al., 2003; Kucerova
et al., 2010). Tetracycline-resistance was reported for C. sakazakii
isolated from a freshwater Chilean salmon aquaculture farm
(Miranda et al., 2003). Previous studies have shown that abuse
of antibiotics in such environments and the presence of various

antibiotic resistance (mar) operons may enable Cronobacter spp.
to develop resistance to numerous different antibiotics (Kim
et al., 2008; El-Sharoud et al., 2009; Chon et al., 2012). Hence,
the large number of multidrug-resistant genes found here, with
an unknown entryway to the C. sakazakii genome, suggests that
further studies are required to define the extent of acquired
antimicrobial drug resistance and an attempt to map the way it
was acquired. Only by such efforts can we prevent the emergence
of additional antimicrobial resistance or create early warnings of
the emergence of such resistance.

Genes Involved in Resistance to Environmental
Stress
The high survival rate of C. sakazakii, under extreme dessication
(e.g., in milk powder, starch, or flour), low pH, heat and
osmotically challenging environments, has so far not been
examined at the molecular level. We performed WGS also
to understand this unusual and challenging property of
C. sakazakii. Supplementary Table S1 includes a number of
genes associated with resistance to stressful environmental
conditions identified in the genomic sequences of the C. sakazakii
C7 and C8 isolates. Osmoregulation genes such as osmotically
inducible protein (OsmY), transcriptional regulatory protein
(YciT), aquaporin Z, hyperosmotic potassium uptake protein
(TrkH) potassium uptake protein (TrkA and TrkG), ProP,
Betaine aldehyde dehydrogenase (otsA), Trehalose-6-phosphate
hydrolase (ostB), and Glutathione-regulated potassium-efflux
system protein (KefB, KefC, and KefG) were identified in both
genomes of C. sakazakii isolates. In addition, heat/cold shock
stress genes were also identified, such as DnaJ and DnaK
suppressor proteins and the heat shock proteins (YciM) and
(GrpE). It is supposed that when C. sakazakii is exposed to
low water activity conditions, it rapidly accumulates electrolytes
to increase the internal osmotic pressure; this is the primary
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FIGURE 4 | (A) Pan-genome of six C. sakazakii strains (4 database genomes and the 2 isolates) was visualized using the Gview server (Zheng and Huang, 2004;
Petkau et al., 2010). The cut-off value was 80% of BlastN homology. The annotation indicates clusters of conserved genes with C. sakazakii (ATCC BAA-894).
(B) Plot showing the pan- and core-genome of C. sakazakii. The overall number of genes or pan-genome (Orange) and shared or core-genome (Blue) of 6
C. sakazakii are shown in the plot. The pan-genome consists of 5399 genes, while the core-genomes are made up of 3268 genes.
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TABLE 3 | Number of core, unique, accessory, and exclusively absent (from a particular strain) genes taken from the pan-genome analysis of 6 C. sakazakii strains.

Genome no. Organism name Originally
isolated from

No. of core genes No. of accessory
genes

No. of unique
genes

No. of exclusively
absent genes

from a particular
strain

1 C. sakazakii ATCC -BAA-894 Powdered milk
formula

3268 550 465 42

2 C. sakazakii C7 Skimmend milk
powder

3268 535 109 13

3 C. sakazakii C8 Ready-to-eat
food (salad mix)

3268 567 188 44

4 C. sakazakii ES15 Ground whole
grain

3268 423 95 128

5 C. sakazakii NCTC-8155 Tin of dried milk 3268 764 53 1

6 C. sakazakii Sp291 Powdered
infant formula

3268 678 95 24

fast action by which it protects itself by counteracting the
high external osmotic pressure in desiccated environments
(Feeney and Sleator, 2011). Jang et al. (2018) also found
genes encoding for proteins associated with osmotic response,
such as Aquaprotein Z, DnaJ, TreF and ProQ. For example,
DnaJ operates actively in the response to hyperosmotic and
heat shock by preventing the aggregation of stress-denatured
proteins. The physiological mechanisms of survival in desiccated
environments are thought to include countermeasures to both
primary and secondary desiccation stresses. Glycine betaine,
trehalose and other osmoprotectants are used in adaptation
strategies by xerotolerant organisms (Santos and Da Costa, 2002;
Srikumar et al., 2019). For example, the osmoprotectants found
in osmotically stressed E. coli are trehalose, glycine betaine
proline, and carnitine (Dinnbier et al., 1988; Lehner et al., 2018;
Srikumar et al., 2019). These previous reports describe two genes,
otsA and otsB, that are part of the biosynthetic pathway for
trehalose, which were transcriptionally highly up-regulated in
C. sakazakii cells grown under xerotolerant conditions (Srikumar
et al., 2019). The Glutathione-gated potassium-efflux systems
(Kef ) can also play an important role in desiccation tolerance
by preventing extended exposure of bacterial cells to excess
potassium ions (Du et al., 2018). The proP gene found in
our isolates have been shown to be highly upregulated when
the organism has been subjected to a desiccating environment.
Deletion of the proP gene in Salmonella Typhimurium led to
loss of viability during desiccation for long periods of time
(Finn et al., 2013). We also identified the outer membrane
protein W (OmpW) gene in the genomes of both C. sakazakii
isolates. It was reported that the OmpW gene contributes to
survival of C. sakazakii under osmotic and oxidative stress,
as well as being associated with increased biofilm formation
(Ye et al., 2018; Zhang et al., 2019). Furthermore, epoxide
hydrolase was identified as a unique gene in the genome of
C. sakazakii C7 (Supplementary Table S3C); it plays a vital
role in the degradation of organic compounds and is potentially
useful in enantioselective biocatalysis. Being able to survive
in dried material is a known characteristic of C. sakazakii
and contributing to its virulence. Previous investigations have
also described that C. sakazakii is able to survive extreme

temperatures, including heat-shock at 47◦C and cold-shock
at −20◦C (Shaker et al., 2008; Chang et al., 2010; Gajdosova
et al., 2011). The identified genes provide molecular links to these
remarkable properties.

Genes Associated With Biofilm Formation
It has been demonstrated that C. sakazakii can produce biofilms
on stainless steel, glass, polyvinyl chloride, polystyrene, silicone,
and latex surfaces (Kim et al., 2006; Hurrell et al., 2009; Aly
et al., 2019); these biofilms could not always be eliminated even
by thorough washing procedures using disinfectants and water.
This capability of biofilm formation by C. sakazakii makes it
a more capable pathogen (Shi et al., 2017). We found genes
linked to the ability to form biofilms in the genomes of both
C. sakazakii isolates (Supplementary Table S1). These include
genes for biosynthesis, such as colanic acid biosynthesis process,
flagellar assembly protein (FliH), flagellar protein (FlgA-K) and
FliCJLPQSTZ, FlhA-E genes linked to the biosynthesis of flagella.
Bacterial flagella have been shown to have multiple important
roles in biofilm development (Wood, 2013; Kang et al., 2015).
They provide cell motility, which is important during formation
of biofilms as well as for dispersal bacteria from biofilms,
and they play an important role in sensing and colonization
of surfaces (Cammarota et al., 2012; Friedlander et al., 2015;
Ratthawongjirakul et al., 2016). The flgJ gene is associated with
the biosynthesis of a flagellum and it has been described that
the presence of the flgJ gene led to increased ability to form
biofilms (Ye et al., 2015; Bao et al., 2017a). A unique sequence
annotated as filamentous hemagglutinin protein (FHA) was
identified in the genome of isolate C7 (Supplementary Tables
S2, S3C). In Cronobacter spp. this gene is present on the pCTU1
plasmid and it encodes a filamentous hemagglutinin (Franco
et al., 2011). This gene is suggested to play a role in promoting
bacterial aggregation and adhesion. In Bordetella, the filamentous
hemagglutinin leads to adhesion both in a secreted and surface-
associated form (Lambert-Buisine et al., 1998; Jacob-Dubuisson
et al., 2000; Franco et al., 2011). In Xanthomonas axonopodis,
genes encoding for filamentous hemagglutinin protein is needed
for surface attachment, tissue colonization and linked to biofilm
formation (Gottig et al., 2009). The grxA family glutaredoxin
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was identified as a unique gene in the genome of C. sakazakii
C8 (Supplementary Table S3D); it is also implicated to play
a vital role in biofilm formation. It was recently demonstrated
in E. coli that grxA is associated with biofilm formation and
with prolonging attachment periods following cell attachment
to the substrate (Hancock and Klemm, 2007; Bhomkar et al.,
2010). E. coli strains that were functionally deleted for grxA
formed biofilms that had lower survival rates after exposure to
metal ions (Harrison et al., 2007). Recently, the link between
cellulose (a component of the biofilm matrix) production and
biofilm formation ability of C. sakazakii was experimentally
demonstrated (Hu et al., 2015; Aly et al., 2019).

Cronobacter sakazakii have been shown to have the gene
cluster of nanAKTR to utilize sialic acid as a carbon source
for bacterial growth (Joseph et al., 2013). We found that
C. sakazakii C7 and C8 have the gene clusters nanT, nanR,
and for the first time found nanC, for sialic acid metabolism.
This unique capability to utilize sialic acid for biosynthesis
during biofilm formation could be due to an adaptation to the
milk powder environment, because milk contains sialic acid
(Wang et al., 2001).

The genes associated with desiccation resistance were
identified in both genomes; they include Capsular polysaccharide
ABC transporter, Colanic acid capsular biosynthesis activation
proteins rcsA and rcsB, Putative capsular polysaccharide
transport protein (YegH) and Capsular polysaccharide genes
cluster (KpsCDES). The ability to produce a heteropolysaccharide
capsule by both C. sakazakii isolates can enhance their ability
to form biofilms, which also contributes to their desiccation
resistance. Recently, (Ogrodzki and Forsythe, 2015) reported that
capsule-associated genes in a C. sakazakii clinical strain is a
potentially important virulence trait linked to severe neonatal
infection. Furthermore, colanic acid is known as a component of
exopolysaccharides in the genus of Cronobacter, which promotes
adhesion to different abiotic surfaces with increased resistance
for environmental stress factors such as heat, acid, antibiotics
and desiccation (Jung et al., 2013). Our observations here agree
well with the biofilm formation ability under different conditions
of both C. sakazakii C7 and C8 described in our earlier study
(Aly et al., 2019). We emphasize that the two unique sequences
annotated with filamentous hemagglutinin protein (C7) and
grxA gene (C8) associated with the biofilm-forming ability have
previously not been observed in C. sakazakii.

Pathogenicity and Virulence Factors
To define the conserved genes associated with pathogenicity,
we identified the virulence factors of C. sakazakii C7 and
C8 isolates (Supplementary Tables S1, S3). The genes of C7
and C8 associated with virulence can be classified into 5
categories. These are: adherence, invasion, secretion system, iron
uptake, and toxins.

Starting with the adherence category, we found outer
membrane protein A (OmpA), FliR, fliC, and FlhA adhesion
genes in the genomes of both the C7 and C8 isolates. It
has been reported that the OmpA gene led to improving cell
adhesion of C. sakazakii and invasion of HBMEC (Nair et al.,
2009), suggesting both isolates may invade HBMEC. The FliR

gene is mainly responsible for the structural components of
the flagellum. Flagella are implicated in many mechanisms
of adhesion to host cells and pathogenicity; the FliR gene is
therefore instrumental in both adherence and invasion (Du et al.,
2016). The fliC gene has also been strongly associated with
adherence and virulence traits of the pathogens (Dingle et al.,
2011; Aldubyan et al., 2017; Holý et al., 2019). The FlhA gene
is implicated as required for export of flagellin and therefore
assembly of flagella; it therefore has been described to play a
role in invasion into and adhesion to epithelial cells by various
bacteria, such as Pseudomonas aeruginosa, Bacillus thuringiensis
and B. cereus and C. sakazakii (Fleiszig et al., 2001; Ramarao and
Lereclus, 2006; Du et al., 2016).

Additionally, identified genes that potentially can aid invasion
and contribute to pathogenicity and virulence were annotated as
efflux system component, zinc metalloprotease YfgC precursor,
putative S-ribosyl homocysteine lyase encoded by the luxS gene
and protein hemolysin III homologs. The silver and copper cation
efflux system has also been implicated in facilitated invasion of
HBMEC (Kucerova et al., 2010). Furthermore, the superoxide
dismutase gene was present in the genome; it has been implicated
in improved survival of bacteria in macrophages (Townsend
et al., 2007; Bao et al., 2017b).

In the secretion system category, based on sequence analysis,
we identified several putative genes of Type VI Secretion System
cluster in the genomic sequence of both isolates. In addition, we
identified unique sequences linked to the Type VI Secretion, such
as the rhs gene in the genome of C7 and the VgrG gene cluster
in the genome of C8. The Type VI Secretion System (T6SS) is a
versatile protein secretion machinery able to immediately deliver
protein toxins into eukaryotic cells (Durand et al., 2014; Wang
et al., 2018). Its functions are linked to virulence factors and it
delivers bacteriolytic effectors to target cells. In P. aeruginosa, it
has been reported that the Type VI Secretion System can secrete
three types of exported effectors (Tse1-3) that act to destroy
cell membranes, peptidoglycans and cytoplasmic components in
infected organisms (Russell et al., 2011, 2013). The VgrG genes
are part of the Type VI Secretion System machinery, also acting
as effectors; VgrG1 possesses a C-terminal extension, defined as
an actin cross-linking domain of the Vibrio cholerae Type VI
Secretion System (Ma et al., 2009).

In the iron uptake category, a number of genes responsible
for production of metal binding proteins were identified in
both genomic sequences; these include the iron ABC transporter
system and the iron-sulfur cluster binding protein. Both are
associated with bacterial virulence. The iron ABC transporter
permease was also identified as unique gene in the genome
sequence of C7. Iron is an important element for survival and
colonization by bacteria since it plays a considerable role in
the electron transport chain to produce energy (Mietzner and
Morse, 1994). Successful competition for iron uptake is therefore
crucial for pathogenicity. The privileged iron acquisition system,
containing siderophore biosynthesis (iucABD/iutA operon) and
EfeO systems for the acquisition of ferrous iron were identified in
C. sakazakii C7 and C8. This ability may lead to the survival of
C. sakazakii in blood and thereby its ability to invade the central
nervous system (Singh et al., 2015) by crossing the blood-brain
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barrier. The latter is a characteristic responsible for the worst
diseases observed to be caused by C. sakazakii.

In the toxin category, many genes associated with toxins
such as a HigB toxin protein, RelE/StbE replicon stabilization
toxin and HigA protein (antitoxin to HigB) were identified
in the genomic sequence of both C7 and C8. Furthermore,
C. sakazakii C7 exhibited one unique toxin RelE gene associated
with cellular processes that include persistence. RelE bacterial
toxin is structurally like microbial endoribonucleases (Griffin
et al., 2013); RelE has been suggested to “represent a shift in
the RNase general acid-base catalytic paradigm and promote
catalysis predominantly by leaving-group protonation” and
charge stabilization (Griffin et al., 2013). In summary, several
unique genes associated with pathogenicity and virulence were
identified in the genomic sequences of C7 (milk powder) and C8
(ready-to-eat mixed salad) isolates.

Phage-Associated Regions
Prophages are mobile genetic elements able to deliver virulence
factors (O’Brien et al., 1984) or antimicrobial-resistance genes
(Colomer-Lluch et al., 2011) to bacterial hosts and increase
the diversity of the host genome (Ventura et al., 2006). We
found three regions associated with phages (A1–A3) in the
genome of C7. We also identified three regions associated with
phages (S1–S3) in the genome of C8 (Supplementary Table
S5). Each isolate contains two intact phages. Further, we found
one questionable prophage in the S1 region (Entero-Tyrion
phage) of the C8 genome, whereas for C7 one incomplete
prophage was identified.

CONCLUSION

In this study, we present the WGS results of C. sakazakii
strains isolated from ready-to-eat mixed salad and skimmed
milk powder. Many identified genes harbored by both isolates
are associated with multidrug-resistance, pathogenesis, virulence,
and biofilm formation ability. Several identified genes associated
with producing capsules and biofilms point to this as an
important mechanism for the C. sakazakii defense against
desiccation and its ability to survive in, e.g., milk powder for
a long time. Analyzing all these traits gives a molecular basis
to understand their ability to survive the extremely stressful
environments met in food production and storage, including
the highly desiccated and heat-treated environment of dried
milk powder. The genome of C. sakazakii isolated in Austria
from ready-to-eat mixed salad held a unique ST not previously

observed, but also most of the genes implicating C. sakazakii as
a highly virulent pathogen. The presence of such C. sakazakii in
ready-to-eat food indicates another potential route for infection
and pathogenicity by C. sakazakii, besides the established route of
powdered milk formulas. Especially disturbing is the multidrug
antibiotics resistance found in both isolates. Our study provides
new data to better understand the pathogenicity mechanism and
virulence of C. sakazakii in food ingredients, and to improve
monitoring and tracking of the source of food contamination.
It highlights the use of WGS for traceability and detection of
C. sakazakii strains. Based on our findings we call for further
research to clarify the potential reservoirs of this emerging
pathogen as well as to how and where it has acquired its
multidrug antibiotics resistance.
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