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Abstract
Nonpharmaceutical interventions, such as contact tracing and quarantine, have been the primary means of controlling the 
spread of SARS-CoV-2; however, it remains uncertain which interventions are most effective at reducing transmission at the 
population level. Using serial interval data from before and after the rollout of nonpharmaceutical interventions in China, 
we estimate that the relative frequency of presymptomatic transmission increased from 34% before the rollout to 71% after-
ward. The shift toward earlier transmission indicates a disproportionate reduction in transmission post-symptom onset. We 
estimate that, following the rollout of nonpharmaceutical interventions, transmission post-symptom onset was reduced by 
82% whereas presymptomatic transmission decreased by only 16%. The observation that only one-third of transmission was 
presymptomatic at baseline, combined with the finding that NPIs reduced presymptomatic transmission by less than 20%, 
suggests that the overall impact of NPIs was driven in large part by reductions in transmission following symptom onset. This 
implies that interventions which limit opportunities for transmission in the later stages of infection, such as contact tracing 
and isolation, are particularly important for control of SARS-CoV-2. Interventions which specifically reduce opportunities 
for presymptomatic transmission, such as quarantine of asymptomatic contacts, are likely to have smaller, but non-negligible, 
effects on overall transmission.
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Introduction

In January 2020, in Wuhan, China, what began as a cluster 
of viral pneumonia cases rapidly spiraled into an epidemic 
of a new disease, COVID-19, caused by a novel coronavirus, 
designated SARS-CoV-2. As cases mounted in Wuhan and 
began cropping up elsewhere, China introduced a compre-
hensive set of measures, termed nonpharmaceutical inter-
ventions (NPIs), to contain the virus. On January 23, a lock-
down was enacted in Wuhan, which shut down public transit 
and travel out of the city. Other cities throughout Hubei 
province (of which Wuhan is capital) announced similar 

lockdowns over the next few days [1]. The rest of China 
was subject to social distancing measures: mass transit and 
public gatherings were severely curtailed, and the New Year 
holiday (Chunyun) was extended, which kept most schools, 
workplaces, and businesses closed [1–3]. In addition, numer-
ous measures were implemented to rapidly identify and iso-
late suspected cases. These included temperature checks at 
borders and travel hubs, quarantine of new arrivals, isolation 
of both confirmed and suspected cases, and contact tracing 
with quarantine and medical observation.

China’s robust public health response was decidedly 
effective in controlling the spread of SARS-CoV-2 [4–7]. 
As of April 4, 2021, China had a cumulative incidence of 
70 cases per million residents and cumulative mortality of 
3 deaths per million, compared to 16,737 cases and 365 
deaths per million persons globally [8]. Given the magni-
tude and intensity of the response in China, which would 
be difficult to replicate in many settings, it would be useful 
to know which interventions were most effective in limiting 
the spread of the virus.
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Evaluating the effectiveness of specific NPIs has been 
a challenge throughout the COVID-19 pandemic because 
multiple interventions are typically used concurrently. Sev-
eral studies have estimated the combined impact of multiple 
NPIs [5–7, 9]; others have estimated the effect of specific 
control measures using statistical approaches [10–20] or 
modeling [21–25]. The majority of studies focus on the 
effectiveness of social distancing interventions, while rela-
tively few explicitly consider the impact of quarantine or 
isolation measures. However, in China, the impact of rapid 
case isolation was indirectly observed in a shift toward ear-
lier transmission, reflected in shorter serial intervals [26]. 
Here, we explore how strong this effect was, using serial 
interval data and case incidence data to estimate how much 
NPIs reduced transmission before and after symptom onset. 
We show that, in the first few weeks after NPIs were imple-
mented, presymptomatic transmission decreased slightly 
but transmission post-symptom onset declined dramatically. 
These results suggest that “post-onset” interventions, such 
as case isolation, may have been more effective than other 
control measures at limiting transmission of SARS-CoV-2.

Results

We compiled published data, including symptom onset 
dates, for 873 infector-infectee case pairs from China (see 
Methods) [27–30]. Among these case pairs, the majority of 
transmission events occurred outside Hubei, with 84% of 
the secondary cases reported to be infected in other prov-
inces (Supplemental Table S1). Symptom onset dates ranged 
from January 7 to February 29, 2020, a period that spans the 

rollout of nonpharmaceutical interventions in China. The 
mean serial interval, defined as the time between onset of 
symptoms in infector and infectee, was 4.64 days over the 
entire period, similar to published estimates [27, 28, 31, 32], 
but this distribution shifted markedly over time. A linear 
regression of serial intervals vs. symptom onset dates of 
primary cases reveals a significant decrease in the length of 
serial intervals (p = 4 × 10–34, Fig. 1a), an observation also 
made by Ali et al. [26].

We divided case pairs into two time periods using the 
symptom onset dates of the primary cases. January 23 
marked the lockdown of Wuhan and the start of a national 
rollout of nonpharmaceutical interventions (NPIs); cases 
with symptom onset prior to Jan. 23 were therefore denoted 
pre-NPI (n = 207) and the rest designated post-NPI (n = 666). 
Serial intervals were significantly different between the 
two time periods (p = 4 × 10–19, Fig. 1b), with a mean of 
7.57 days (standard deviation 5.13 days) before the NPI roll-
out and a mean of 3.73 days (standard deviation 4.93 days) 
afterward.

Next, we used a Markov chain Monte Carlo (MCMC) 
approach to estimate the distribution of the generation 
interval for each time period by fitting to serial interval data 
(Whereas the serial interval is the time between consecutive 
symptom onset events, the generation interval is the time 
between consecutive transmission events). We replicated 
the analysis using three different priors for the incubation 
period distribution (Supplemental Table S2), based on work 
by Lauer et al. [33], Zhang et al. [30]; and Backer et al. [34]; 
we also used two different models for the generation inter-
val distribution. Under the incubation-independent model, 
all generation intervals are drawn from a single gamma 
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Fig. 1   Serial intervals of infector-infectee pairs in China. a Serial 
interval vs. date of symptom onset in the primary case of each pair. 
Shading reflects the number of overlapping points, with darker 
colors indicating higher numbers. Dashed vertical line indicates 
Jan 23, when the rollout of nonpharmaceutical interventions (NPIs) 

began. b Serial interval histograms and best-fit normal distributions 
for primary cases with symptom onset before Jan 23 (pre-NPI; blue, 
hatched bars and dashed line) and on/after Jan 23 (post-NPI; red, 
solid bars and solid line)
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distribution; under the incubation-dependent model, the gen-
eration interval is still gamma-distributed but the probability 
distribution for a given case is horizontally “stretched” in 
proportion to the incubation period, which means that cases 
with longer incubation periods will tend to have longer gen-
eration intervals. We used a modified deviance information 
criterion [35] to assess model fit (Supplementary Informa-
tion) and found that the best model for both time periods was 
the incubation-independent model—which, somewhat sur-
prisingly, suggests generation intervals do not increase with 
incubation period—paired with the prior based on Lauer 
et al. (Supplemental Table S3).

As expected, the fitted generation interval distributions 
had similar means but smaller variances than the serial inter-
val distributions [36]. Under the best model, pre-NPI gen-
eration intervals had a mean of 7.50 days (standard devia-
tion 3.95 days) while post-NPI generation intervals had a 
mean of 3.90 days (standard deviation 3.15 days). Under the 
remaining models, mean generation intervals ranged from 
7.49 to 7.64 days for the pre-NPI period and from 3.84 to 
4.04 days for the post-NPI period (Supplemental Table S4).

Using the inferred generation interval distributions, we 
estimated the relative frequency of presymptomatic trans-
mission under each model by calculating the probability of 
the generation interval being shorter than the incubation 
period. Under the best model, the frequency of presymp-
tomatic transmission was estimated to be 34.4% in the pre-
NPI period (95% credible interval 28.3%–41.3%) and 71.0% 

in the post-NPI period (95% CI 67.6%–74.2%) (Fig. 2). 
Across all models, the estimated frequency of presymp-
tomatic transmission ranged from 30.7% to 47.0% for the 
pre-NPI period, with 95% CIs collectively extending from 
24.0% to 53.7% (Supplemental Table S5). For the post-NPI 
period, estimates ranged from 68.1% to 80.6%, with 95% CIs 
extending from 64.5% to 83.5%. We note that the estimates 
for the pre-NPI period are lower than many published esti-
mates of the frequency of presymptomatic transmission [27, 
29, 37–40], which raises the possibility that many estimates 
might have been inflated by the effects of nonpharmaceutical 
interventions.

The shift toward presymptomatic transmission following 
the rollout of NPIs suggests a disproportionate reduction 
in transmission following symptom onset. We therefore 
estimated the change in transmission during each phase of 
the infection (before and after symptom onset) following 
the implementation of control measures. To do so, it was 
first necessary to estimate the overall reduction in trans-
mission of SARS-CoV-2. For this, we used province-level 
incidence data for all of China, combining the numbers for 
all provinces except Hubei because the transmission events 
represented in the case-pair data mostly occurred outside 
Hubei. We calculated the daily case reproduction number 
(Rt) , shown in Fig. 3, using a version of the Wallinga-Teunis 
method [41] which was modified to allow for time-varying 
serial intervals, as changes in the serial interval distribu-
tion have been shown to affect inference of reproduction 
numbers [26].

We used the estimated Rt values to calculate the mean 
reproduction numbers for the pre- and post-NPI periods; 
estimates past February 20 were not used due to the potential 
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Fig. 2   Estimated relative frequency of presymptomatic transmis-
sion before and after the rollout of nonpharmaceutical interventions 
(NPIs). Points and lines show posterior means and 95% credible 
intervals, respectively. Colors denote time periods (blue, pre-NPI; 
red, post-NPI), shades denote generation interval distribution mod-
els (light, incubation-dependent model; dark, incubation-independent 
model), and symbols denote sources for incubation period prior dis-
tributions (squares, Lauer et  al. [33]; circles, Zhang et  al. [30]; tri-
angles, Backer et  al. [34]). Estimates from the best model are high-
lighted in gray

Jan. 13 Jan. 27 Feb. 10 Feb. 24

0.0

0.5

1.0

1.5

2.0

date

Rt

Fig. 3   Daily reproduction numbers estimated using incidence data 
from all Chinese provinces except Hubei. Dashed vertical line, start 
of nonpharmaceutical intervention (NPI) rollout on Jan 23; gray shad-
ing, region in which R

t
 is likely to be underestimated due to right-

truncation



432	 M. Bushman et al.

1 3

for underestimation of Rt as a result of right-truncation 
(Fig. 3) [42]. The mean reproduction numbers were esti-
mated to be 1.64 for the pre-NPI period and 0.666 for the 
post-NPI period, corresponding to a 59.4% reduction in 
overall transmission. Treating this net change as a weighted 
average of the changes in presymptomatic transmission and 
transmission post-symptom onset, we calculated the change 
in the absolute frequency of transmission during each phase 
of the infection. Under the best model, we estimate that 
presymptomatic transmission decreased by 15.5% (95% 
CI: − 30.6% to + 2.56%) while transmission post-symptom 
onset decreased by 82.0% (95% CI: − 84.5% to − 79.0%; 
Fig. 4). Across all models, estimates of the change in pre-
symptomatic transmission ranged from − 29.9% to − 8.62%, 
with 95% CIs extending from − 39.4% to + 16.3% (Supple-
mental Table S6). Estimates of the change in transmission 
post-symptom onset ranged from -85.1% to -81.3%, with 
95% CIs extending from − 87.9% to -78.3%.

One hypothesis to explain the disproportionate reduction 
in transmission post-symptom onset is that “post-onset” 
interventions, such as case isolation, were highly effective 
at preventing transmission in the later stages of infection; 
however, several alternative explanations must be consid-
ered. One possibility is that travel restrictions reduced the 
frequency of case pairs in which the primary and secondary 
cases were infected in different cities; if such case pairs had 
longer-than-average serial intervals, then a reduction in the 
frequency of such case pairs might cause the average serial 
interval to decrease. Although the proportion of case pairs 

with the primary and secondary cases infected in different 
cities decreased after the rollout of nonpharmaceutical inter-
ventions (p = 1 × 10–4; Supplemental Table S7), there was no 
significant effect of being infected in different cities on serial 
intervals (p > 0.05; Supplemental Fig S1).

Another possibility is that social distancing increased 
time spent at home, with more frequent exposure leading to 
earlier transmission between family members or household 
contacts, similar to the relationship between force of infec-
tion and age of first infection. The proportion of transmission 
events occurring between family members increased follow-
ing the NPI rollout (p = 3 × 10–5; Supplemental Table 7), 
although there was no change in the proportion of trans-
mission events taking place within households (p > 0.05). 
However, neither familial relationship nor household contact 
had a significant effect on serial intervals (p > 0.05 in both 
instances; Supplemental Figs S2-S3).

Finally, it is possible that NPIs shifted the demographics 
of the infectees and/or infectors in such a way as to favor 
shorter serial intervals, e.g. with earlier transmission from 
infectors or earlier symptom onset in infectees. Potential 
confounders include age and sex, both of which can influ-
ence the severity and/or infectiousness of COVID-19. How-
ever, neither age nor sex differed significantly between the 
periods preceding and following the introduction of NPIs 
(p > 0.05 in both instances; Supplemental Figs S4-S5), 
although age and sex were associated with one another 
(p = 0.01; Supplemental Fig S6) and both were associated 
with position in a case pair (primary vs. secondary) (effect 
of case pair position on sex ratio, p = 4 × 10-10; effect on age, 
p = 0.01; Supplemental Figs S5, S7). In addition, there was 
no significant association between serial intervals and age 
or sex of either primary or secondary cases (p > 0.05 in all 
cases; Supplemental Fig S8).

Discussion

Following the implementation of nonpharmaceutical inter-
ventions in China, the transmission of SARS-CoV-2 changed 
in two key ways. Compared to the period preceding the 
rollout of nonpharmaceutical interventions, the post-NPI 
period was characterized by a significant reduction in the 
reproduction number 

(
Rt

)
 , indicating decreased transmis-

sion, and a decrease in the length of generation intervals, 
reflecting earlier transmission. Specifically, we found that 
overall transmission of SARS-CoV-2 declined by 59.4% 
after the NPI rollout, while presymptomatic transmission 
increased from 34% to 71% of all transmission events. The 
shift toward earlier transmission implies a disproportion-
ate reduction in transmission following symptom onset; we 
estimate that presymptomatic transmission decreased by 
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roughly 16% after the rollout of NPIs, whereas transmis-
sion post-symptom onset decreased by approximately 82%.

Several factors might contribute to the observed shift 
toward earlier transmission: a reduction in the proportion of 
case pairs infected in different cities, eliminating a potential 
delay in transmission; increased time at home, resulting in 
more frequent exposure to infectious household contacts 
or family members; shifts in demographics of cases that 
alter the timing of transmission and/or symptom onset; and 
interventions that disproportionately reduce transmission in 
the later stages of infection. Our results do not support the 
first three possibilities: whether a linked pair of cases were 
infected in the same city was not a significant predictor of 
the serial interval, nor was the existence of a shared house-
hold or familial relationship, nor the age or sex of either 
the primary or secondary case. The final possibility is indi-
rectly supported by observed correlations between isolation 
delays and serial intervals, which suggest that case isolation 
is capable of shifting the serial interval distribution [25, 26, 
43].

Our findings therefore suggest that “post-onset” interven-
tions, such as case isolation, may have been responsible for 
the dramatic reduction in transmisson post-symptom onset 
which followed the implementation of NPIs in China. If so, 
given that post-onset transmission comprised an estimated 
two-thirds of total transmission at baseline, this would sug-
gest that post-onset interventions, especially rapid isolation 
of COVID-19 cases, were among the largest contributors 
to rapid control of SARS-CoV-2 in China. In contrast, the 
comparatively modest reduction in presymptomatic trans-
mission, combined with the fact that approximately a third 
of transmission was presymptomatic before NPIs were intro-
duced, suggest that reductions in presymptomatic transmis-
sion, e.g. from quarantine of asymptomatic exposed con-
tacts, likely had a smaller impact on overall transmission. 
However, it does not follow that control could be achieved 
through post-onset interventions alone, since the reductions 
in transmission may not be sufficient to bring the effective 
reproduction number (Rt) below the threshold for control 
[25]. Interventions that specifically limit presymptomatic 
transmission are likely to provide modest additional benefits, 
while the impact of interventions that reduce transmission 
at all stages of the infection, such as social distancing, may 
be appreciable but could not be quantified in this analysis, 
although this question has been explored elsewhere [9, 11, 
14, 16–19].

A key limitation of this work is the lack of information 
regarding transmission from asymptomatic infections (those 
that never develop symptoms) which are believed to com-
prise 40–45% of all SARS-CoV-2 infections [44]. Because 
the serial interval is defined by symptom onset dates, alter-
native methods would be required to examine the impact 
of NPIs on asymptomatic transmission. For instance, data 

on exposure windows could be used to estimate the time of 
infection for primary cases, similar to the approach used 
for estimating incubation periods [30, 33, 34, 45, 46]; in 
conjunction with exposure or symptom onset dates for sec-
ondary cases, an approach similar to the one employed here 
could then be used to infer generation intervals for transmis-
sion pairs with asymptomatic primary cases.

Another limitation is the fact that case pairs, especially 
those found through passive surveillance, may represent a 
non-random sample of all infections. Even when only symp-
tomatic cases are considered, those with milder symptoms 
may be more likely to go unreported, and it has been sug-
gested that severe disease is associated with shorter incuba-
tion periods [47], although this effect may be the result of 
confounding by other factors known to influence incuba-
tion period, such as age [48]. Many estimates of the serial 
interval and generation interval of SARS-CoV-2 could be 
affected by the biases of passive surveillance, and this work 
is no exception; however, the fact that age distributions and 
sex ratios were consistent before and after the rollout of 
NPIs suggests that case detection biases are unlikely to be 
responsible for the shift in transmission timing following the 
introduction of control measures.

In summary, we find that the implementation of nonphar-
maceutical interventions in China was followed not only by a 
rapid decrease in the rate of SARS-CoV-2 transmission, but 
a significant shift in the timing of transmission, with more 
transmission occurring in the presymptomatic (incubation) 
period. The leading hypothesis to explain these observa-
tions is that interventions, particularly case isolation, were 
highly effective in limiting transmission in the later stages 
of infection, while other measures, such as quarantine of 
exposed contacts, had a more limited impact on transmission 
in the earlier stages. These findings suggest that rapid case 
detection and isolation, if rigorously implemented, may be 
a highly effective strategy for interrupting transmission of 
SARS-CoV-2.

Methods

Data sources

We obtained data on serial intervals for infector-infectee 
pairs reported in China in January and February 2020. We 
combined data that were previously collected and published 
by the following sources: Xu et al. with 679 case pairs, com-
piled from provincial and urban health commission reports 
[27]; Du et al. with 468 case pairs, compiled from provincial 
health agency reports [28]; He et al. with 41 case pairs, com-
piled from government and media reports [29]; and Zhang 
et al. with 35 case pairs, compiled from health agency and 
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media reports [30]. We cross-checked all datasets and elimi-
nated suspected duplicate case pairs, which we identified as 
those with matching sex, age, and symptom onset date for 
both cases. This left a total of 873 unique case pairs for use 
in parameter estimation.

Among the compiled data, age, sex, and date of symp-
tom onset were reported for all cases (asymptomatic cases, 
meaning those which remained asymptomatic throughout 
the entire infection, were not included in any of the datasets). 
Infection locations (the cities and provinces in which each 
case was presumed to be infected) were reported for 782 
case pairs; the relationship between infector and infectee was 
reported for 660 case pairs, and the type of contact (house-
hold vs. non-household) was reported for 121 case pairs.

Among all case pairs, a plurality of primary cases (45.5%) 
were infected in Hubei province, which is home to the city of 
Wuhan; however, 84.2% of secondary cases were infected in 
other provinces (Supplemental Table S1), indicating that the 
majority of transmission events took place outside Hubei. 
We therefore assume that the transmission events captured 
in the case pair data are most representative of the dynamics 
outside Hubei province.

Analysis of serial intervals

Since dates of transmission were unknown, we dated each 
case pair using the date of symptom onset in the primary 
case. We used simple linear regression (serial interval ver-
sus date) to test the hypothesis that serial intervals declined 
over time. We then divided serial intervals into two time 
periods based on the date of symptom onset in the primary 
case of each pair. Case pairs were designated “pre-NPI” if 
the primary case developed symptoms before the rollout of 
nonpharmaceutical interventions beginning on Jan 23 (i.e. 
symptom onset occurred on or before Jan 22) and “post-
NPI” otherwise. We used a two-sided Student’s t-test to test 
the hypothesis that the mean serial intervals differed between 
the pre- and post-NPI periods.

Generation interval distributions

Consider a linked pair of cases, with the secondary case 
arising by transmission from the primary case. The time 
between symptom onset in the primary case and symptom 
onset in the secondary case is termed the serial interval. 
A related term, the generation interval describes the time 
from infection of the primary case to infection of the sec-
ondary case. The time between infection and symptom onset 
is called the incubation period. In what follows, we denote 
the serial interval by � , the generation interval by � , and the 
incubation periods of the primary and secondary cases by �1 
and �2 , respectively. The relationship between these quanti-
ties is given by � = � + �1 − �2 (Fig. 5).

We assumed that the generation interval � followed a 
gamma distribution f� with unknown parameters � and � . 
Due to uncertainty regarding the relationship between the 
incubation period and the generation interval, we used two 
different models for the generation interval distribution. In 
the incubation-independent model, we assumed that a sin-
gle generation interval distribution, with shape parameter � 
and rate parameter � , applied to all individuals, regardless 
of incubation period. In the “incubation-dependent” model, 
we assumed that individuals with longer incubation periods 
would tend to have longer generation intervals; specifically, 
for a primary case with incubation period �1 , we assumed 
that the generation interval followed a gamma distribu-
tion with shape parameter � and rate parameter �∕�1 . This 
is equivalent to defining a new random variable X = �∕�1 
where X follows a gamma distribution with shape � and rate 
� . This formulation causes the generation interval distribu-
tion to be horizontally “stretched out” in proportion to �1 
– for instance, it results in the expected generation interval 
being a fixed multiple of �1 , rather than a fixed length of 
time.

Parameter estimation

We used a Markov chain Monte Carlo (MCMC) algorithm 
to estimate the parameters of the pre- and post-NPI genera-
tion interval distributions by fitting to serial interval data 
from each time period. Because an observed serial interval 
depends on the incubation period of each infection as well 
as the generation interval, we also estimated posteriors for 
the unobserved incubation periods �1 and �2 for each pair 
of cases (data augmentation). The model assumed that the 
incubation periods were drawn from a prior f� ; we used three 
different priors drawn from the literature (see below). The 
generation interval was assumed to be drawn from a gamma 

Fig. 5   Diagram showing incubation period (�) , serial interval (�) , and 
generation interval (�) for a linked pair of cases. Closed circle, time of 
infection; open circle, time of symptom onset; dot-dash arrow, trans-
mission from primary case to secondary case
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distribution f� with unknown parameters � and � , with mini-
mally informative priors f� and f� , respectively (Supplemen-
tal Table S2). We can express the joint posterior density of 
the unknown parameters as follows:

We estimated the unknown quantities using a Metropo-
lis–Hastings algorithm, with each iteration taking place in 
two parts. The parameters � and � were updated first, with 
proposed values �′ and �′ being accepted with probability 

min

�
1,

∏N

i=1
f���,� (�i+�1(i)−�2(i)���,��)f�(��)f�(��)∏N

i=1
f���,� (�i+�1(i)−�2(i)��,�)f� (�)f� (�)

�
 . The incubation 

periods �1 and �2 for each case pair were then updated, with 
proposed values ��

1(i)
 and ��

2(i)
 being accepted with probability 

min

(
1,

f�|�,� (�i+�
�
1(i)

−��
2(i)

|�,�)f�
(
��
1(i)

)
f�

(
��
2(i)

)

f�|�,� (�i+�1(i)−�2(i)|�,�)f�(�1(i))f�(�2(i))

)
.

We ran the algorithm for 250,000 iterations, discarded 
the first 50,000 and thinned the remainder by keeping every 
10th iteration. The resulting set of 20,000 observations was 
used to approximate the joint posterior distribution of the 
parameters of interest. The aggregated posterior distribu-
tions of the incubation periods �1 and �2 for each model 
are illustrated in Supplemental Figs S9-S12, while poste-
rior means and 95% credible intervals for the generation 
interval parameters are reported in Supplemental Tables 
S3-S4. We report the mean and standard deviation of the 
generation interval distribution alongside the parameters 
� and � , since these latter quantities are difficult to inter-
pret. For the incubation-independent model, the mean and 
variance are simply �∕� and �∕�2 , respectively. For the 
incubation-dependent model, the mean generation interval 
is given by E[X]E[�] , where X = �∕� follows a gamma dis-
tribution with shape � and rate � . The variance is given by (
Var[X] + E[X]2

)(
Var[�] + E[�]2

)
−
(
E[X]2

)(
E[�]2

)
 . We 

calculated the mean and variance of the generation interval 
for each iteration in the converged and thinned Markov chain 
in order to approximate posterior distributions, which we 
used to obtain posterior means and 95% credible intervals.

Incubation period distributions

Since the incubation period distribution affects the inferred 
generation interval distribution, we replicated our analy-
sis using three different priors ( f� ) for the incubation 
period. The distributions and their sources are as follows: 

f
�,�|�

(
�, �|�

)
∝

N∏

i=1

f�|�,�
(
�i|�, �

)
f�(�)f�(�)

=

N∏

i=1

(
∞

∫
0

∞

∫
0

f�|�,�
(
�i|�, �, �1, �2

)
f�(�)f�(�)f�

(
�1
)
f�
(
�2
)
d�1d�2

)

=

N∏

i=1

(
∞

∫
0

∞

∫
0

f�|�,�
(
�i + �1 − �2|�, �

)
f�(�)f�(�)f�

(
�1
)
f�
(
�2
)
d�1d�2

)

a lognormal distribution with mean 5.52 days and standard 
deviation 2.41 days, based on Lauer et al. [33]; a lognormal 
distribution with mean 5.21 days and standard deviation 
2.59 days, based on Zhang et al. [30]; and a Weibull distribu-
tion with mean 6.49 days and standard deviation 2.35 days, 
based on Backer et al. [34]. The parameters for these distri-
butions can be found in Supplemental Table S2.

Model fit

We assessed model fit using a modified deviance information 
criterion (DIC) for data-augmented models (Supplementary 
Information) [35]. Broadly speaking, DIC is a generaliza-
tion of the Akaike information criterion (AIC); it penalizes 
model complexity as well as poor model fit (low likelihood 
of observing the data under the specified model). As with 
AIC, the “best” model is the one with the lowest DIC value.

Presymptomatic transmission

We next used the joint posterior distribution of the genera-
tion interval parameters to approximate the distribution of 
the percentage of transmission expected to take place prior 
to symptom onset, which we denote � . For the incubation-
independent model, given � and � , the proportion of trans-
mission expected to occur before symptom onset is given by 
� =

∞

∫
0

u

∫
0

f�(u)f�(v)dvdu , where f� is a gamma distribution 

with shape � and rate � . For the incubation-dependent 
model, the expected proportion of transmission occurring 

before symptom onset is given by � =
�

∫
0

f�(u)du , where f� is 

a gamma distribution with shape � and rate �∕� . We calcu-
lated � for each iteration in the converged and thinned 
Markov chain in order to approximate the posterior distribu-
tion of � , which we use to obtain posterior means and 95% 
credible intervals.

Method to estimate reproduction numbers 
(
R
t

)
 

with time‑varying serial intervals

We introduce a modified version of the Wallinga-Teunis 
method of estimating the reproduction number at time t 
(denoted Rt ). In the basic method described by Wallinga 
and Teunis (2004), the probability that case i was infected 
by case j is given by

where ti is the time at which case i developed symptoms, and 
w the serial interval distribution. The reproduction number 
for case j is therefore given by

pij =
w
�
ti − tj

�

∑
k≠i w

�
ti − tk

�



436	 M. Bushman et al.

1 3

and the reproduction number at time t  
(
Rt

)
 is equal to the 

reproduction number for any case with symptom onset at 
time t.

We now present a modification of this approach, which 
allows for time-varying serial interval distributions. Rather 
than a fixed serial interval distribution w , let wt be the dis-
tribution of serial intervals for primary cases with symptom 
onset in the time window [t − z, t + z] . Then the probability 
case i was infected by case j is given by

and the reproduction number for case j is similarly given by 
Rj =

∑
i≠j pij , which we can rewrite as follows:

where tmin and tmax are the first and last dates of symptom 
onset, nt is the number of cases with symptom onset at time 
t , and �ij is the Kronecker delta function, with

such that case j is subtracted from the set of potential infect-
ees with symptom onset at time tj . With Rt assumed to be 
equal to the reproduction number for any case with symptom 
onset at time t  , we can modify the above to get the final 
expression for Rt:

Estimation of time‑varying serial interval 
distributions

We used the serial interval data described above to estimate 
the time-varying serial interval distributions; we assumed 
serial intervals for primary cases with symptom onset at time 
t  followed a normal distribution with mean and standard 
deviation calculated using serial intervals for primary cases 
with symptom onset in the window [t − z, t + z] with z = 3 
(corresponding to a 7-day moving window). For time win-
dows extending beyond the range of primary case symptom 
onset dates, the nearest 7-day window falling within this 
range was used to estimate the serial interval distribution.

Rj =
∑

i≠j

pij

pij =
wtj

�
ti − tj

�

∑
k≠i wtk

�
ti − tk

�

Rj =

tmax�

x=tmin

�
nx − �xtj

�
wtj

�
x − tj

�

∑tmax

y=tmin

�
ny − �xy

�
wy(x − y)

�ij =

{
1 if i = j

0 if i ≠ j

Rt =

tmax�

x=tmin

�
nx − �xt

�
wt(x − t)

∑tmax

y=tmin

�
ny − �xy

�
wy(x − y)

Estimation of reproduction numbers 
(
R
t

)
 using case 

incidence data

The incidence data based on reported case pairs are less than 
ideal for estimation of Rt due to small daily case numbers 
(median of 9 cases per day) as well as potential sampling 
biases. We therefore compared case pair incidence data to 
the incidence data for all of China minus Hubei province. 
Incidence curves for the two datasets were similar, although 
the non-Hubei curve was shifted to the right (Supplemental 
Fig S13), presumably due to the delay between symptom 
onset and case reporting (nationwide data did not include 
symptom onset dates). After shifting the non-Hubei inci-
dence data back by 7 days to align the peaks of the two 
curves, we find good agreement between the case pair data 
and non-Hubei data (Supplemental Fig S14).

We estimated Rt using both the case pair incidence data 
and the time-shifted non-Hubei incidence data, and find 
good agreement between the two sets of estimates (Sup-
plemental Figure S15). However, because the non-Hubei 
data feature larger case numbers, and presumably smaller 
sampling error, we use the Rt estimates based on the these 
data for subsequent analysis.

Estimating mean reproduction numbers 
before and after rollout of nonpharmaceutical 
interventions

We used Rt estimates from before and after the rollout of 
nonpharmaceutical interventions (before Jan. 23 and on/
after Jan. 23, respectively) to estimate the mean reproduc-
tion numbers for the pre- and post-NPI periods. In order to 
reduce the effects of sampling error, we only used Rt esti-
mates for days with at least 10 cases. In addition, because the 
Wallinga-Teunis method uses future case incidence to esti-
mate the reproduction number, it will tend to underestimate 
Rt toward the end of a time series due to right-truncation. 
We therefore calculated the probability of a secondary case 
developing symptoms by tmax if the primary case developed 
symptoms at time t , given the serial interval distribution at 
time t (Supplemental Figure S16). We discarded Rt estimates 
beyond the time point at which this probability dropped 
below 90%.

Estimating reductions in transmission 
before and after symptom onset

Let Rpre and Rpost denote the mean reproduction numbers for 
the pre-NPI and post-NPI periods, respectively. Similarly, 
let �pre and �post denote the relative frequency of presymp-
tomatic transmission for each time period. Then the change 
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in the absolute frequency of presymptomatic transmission 
(from pre-NPI to post-NPI) is given by

and the change in the absolute frequency of transmis-
sion post-symptom onset is given by

Posterior distributions for the changes in presymptomatic 
and (post)symptomatic transmission were obtained using the 
posterior distributions for the relative frequency of presymp-
tomatic transmission for each time period.

Alternative hypotheses to explain shift in serial 
intervals

We considered three alternative hypotheses that might 
explain the shift toward shorter serial intervals following 
the introduction of NPIs. We first considered that lock-
downs in Hubei province may have reduced the proportion 
of case pairs in which the primary and secondary cases 
were infected in different cities; such case pairs might be 
expected to have longer serial intervals.We classified case 
pairs as having “matched” or “mismatched” infection loca-
tions and used a two-sided chi-squared test to determine 
whether the frequency of mismatched case pairs changed 
following NPI rollout. We then used a two-way analysis 
of variance (ANOVA) to examine the effects of infection 
location matching and time period (pre-NPI vs. post-NPI) 
on serial intervals. With this and all other linear models, 
we started with the maximal model (main effects and all 
interaction terms) followed by stepwise model simplifica-
tion, eliminating terms with deletion p-values greater than 
0.05, starting with the highest-order interactions. Finally, 
we confirmed that the residual sum of squares did not differ 
significantly between the maximal model and the minimal 
adequate model.

We next considered that the introduction of NPIs may 
have coincided with an increase in the proportion of trans-
mission events between relatives or household members, 
which might have shorter serial intervals. We used data 
on contact type, described as either “household” or “non-
household,” as well as relationships between infectors and 
infectees, which we classified as either “family” or “non-
family.” As described above, we used two-sided chi-squared 
tests to determine whether the frequencies of contact type 
or relationship type changed following introduction of NPIs, 

rpresym =
�postRpost − �preRpre

�preRpre

rpostsym =
(1 − �post)Rpost − (1 − �pre)Rpre

(1 − �pre)Rpre

and two-way ANOVAs to explore the effects of these factors 
(in conjunction with time period) on serial intervals.

Finally, we considered the hypothesis that the demo-
graphics (age, sex, or both) of infectors and/or infectees may 
have shifted in such a way as to favor shorter serial inter-
vals. We first explored whether age and/or sex of infectees 
or infectors changed following the introduction of NPIs. We 
used a multi-way ANOVA to characterize the associations 
between age and three explanatory variables: sex, position 
in the case pair (primary or secondary), and time period. We 
also used a generalized linear model with binomial errors to 
characterize the effects of age, position in case pair, and time 
period on sex ratio. Finally, we used analysis of covariance 
(ANCOVA) to explore the associations between serial inter-
val and five explanatory variables: age and sex of primary 
case, age and sex of secondary case, and time period. For all 
of these analyses, we followed the process of starting with 
the maximal model and eliminating nonsignificant terms 
until arriving at the minimal adequate model.

Software

All of the analysis for this study was conducted in R (ver-
sion 3.6.1).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10654-​021-​00746-4.
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