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Abstract. Cancer stem cells (CSCs) have been found to play 
a decisive role in cancer recurrence, metastasis, and chemo‑, 
radio‑ and immuno‑resistance. Understanding the mechanism 
of CSC self‑renewal and proliferation may help overcome the 
limitations of clinical treatment. The microenvironment of 
tumor growth consists of a lack of oxygen, and hypoxia has 
been confirmed to induce cancer cell invasion, metastasis and 
epithelial‑mesenchymal transition, and is usually associated 
with poor prognosis and low survival rates. Hypoxia induc‑
ible factor‑1 (HIF‑1) can be stably expressed under hypoxia 
and act as an important molecule to regulate the development 
of CSCs, but the specific mechanism remains unclear. The 
present review attempted to explain the role of HIF‑1 in the 
generation and maintenance of CSCs from the perspective of 
epigenetics, metabolic reprogramming, tumor immunity, CSC 
markers, non‑coding RNA and signaling pathways associated 
with HIF‑1, in order to provide novel targets with HIF‑1 as the 
core for clinical treatment, and extend the life of patients.
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1. Introduction

Cancer stem cells (CSCs), a population of cells with similar 
characteristics to those of stem cells, are associated with the 
occurrence, recurrence, metastasis and chemoradiation resis‑
tance of cancer (1,2). The existence of CSCs is a challenge 
for tumor treatment, but can also provide a novel direction for 
clinical treatment. To date, there have been various speculations 
about the occurrence of CSCs, but it remains unclear. Hypoxia 
in the tumor microenvironment is usually found in advanced 
cancer and is associated with low survival rates and poor 
prognosis (3,4). An increasing number of studies have found 
that hypoxia can induce cancer cell invasion, metastasis and 
epithelial‑mesenchymal transition (EMT), which can promote 
stem‑like characteristics in cancer cells (5,6). Hypoxia induc‑
ible factor‑1 (HIF‑1), as a pivotal molecule in the regulation 
of CSCs by hypoxia, participates in tumor growth, immune 
evasion, metabolic reprogramming and drug resistance by 
regulating the transcription of target genes  (4,6,7). HIF‑1 
seems to play an important, or even core, role in the generation 
and maintenance of CSCs, but the explicit mechanism remains 
to be elucidated. This review attempted to summarize the role 
and mechanism of HIF‑1 in CSCs, in order to provide more 
targets to solve the limitations of clinical tumor treatment.

2. Structural characteristics of HIF‑1

HIF‑1 is a heterodimer composed of HIF‑1α and 
HIF‑1β (Fig. 1) (8,9). Under normoxic (21% O2) conditions, 
HIF‑1 is degraded by intracellular oxygen‑dependent ubiquitin 
protease degradation pathways, which are inhibited during 
hypoxia (8,10). HIF‑1α is a hypoxia inducible transcription 
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factor that contains two transactivation domains  (C‑TAD 
and N‑TAD) (11,12). C‑TAD can interact with co‑activators 
such as CREB binding protein (CBP)/p300 to regulate the 
transcription of HIF‑1α target genes. N‑TAD participates 
in stabilizing HIF‑1α (13,14). The core complex formed by 
HIF‑1α and CBP/p300 mainly depends on the recognition of 
the two short‑helical domains of C‑TAD by CBP/p300 (15‑17). 
In addition, these TADs are also regulatory targets for 
post‑translational modifications, such as acetylation and phos‑
phorylation (18). Under normoxic conditions, factor inhibiting 
HIF‑1 (FIH), an asparaginyl hydroxylase, hydroxylates aspara‑
gine (N)803 residue within C‑TAD in an oxygen‑dependent 
manner to block the cooperative binding of CBP/p300 
and C‑TAD, thereby eliminating HIF‑1α‑mediated target 
gene transcription (18,19). However, the oxygen‑dependent 
hydroxylation of N803 is inhibited in hypoxic conditions to 
promote this binding, leading to the transcriptional activa‑
tion of target genes (13,20). Oxygen‑dependent degradation 
domain, another special structure of HIF‑1α, participates in 
mediating the degradation of HIF‑1 (9). It is worth noting that 
HIF‑1α must form a heterodimer with HIF‑1β before exerting 
its biological function (8). HIF‑1β is stably expressed in cells 
and maintains the stability of HIF‑1 (21,22). The structures 
included in HIF‑1α and HIF‑1β are basic‑helix‑loop‑helix and 
PER‑ARNT‑SIM domain, which promote DNA binding and 
dimerization (9,23). Increasing evidence has indicated that 
HIF‑1α, as the active subunit of HIF‑1, is involved in inducing 
and maintaining the phenotype of various CSCs (12,24,25). 
The present review focused more on the association between 
HIF‑1α and CSCs than of HIF‑1.

3. Role of epigenetic and post‑translational modification of 
HIF‑1 in CSCs

Epigenetic modifications are reversible, heritable changes 
in gene function that do not alter the DNA sequence (26,27). 
HIF‑1α can be used as a key regulator of genomic methylation 
in hepatocellular carcinoma cells (28). The presence of HIF‑1α 
binding sites on methionine adenosyltransferase 2A (MAT2A) 
can promote the transcription of MAT2A to maintain the genome 
of the demethylation state (28). Unfortunately, most currently 
available studies have focused on the genetic modification of 
HIF‑1 downstream target genes or key enzymes (28). Research 
on the epigenetic modification of HIF‑1 in CSCs is rare.

Post‑translational modification is one of the most impor‑
tant regulatory mechanisms for dynamically and reversibly 
regulating proteins that have biological functions  (29). A 
previous study has found that lysine methyltransferase G9a 
can mono‑ or di‑methylate HIF‑1α on lysine  674, which 
reduces the transcriptional activity of HIF‑1α and expression 
of downstream genes by reducing the TAD activity of HIF‑1α; 
meanwhile G9a is reduced in glioblastoma cells, maintaining 
the activity of HIF‑1α and promoting HIF‑1‑dependent cell 
migration (30). As a small ubiquitin‑like modifier (SUMO) 
protease, small ubiquitin‑like modifier protease 1 (SENP1) 
forms a positive feedback loop with HIF‑1α in hepatoma cells, 
which causes HIF‑1α deSUMOylation and stable expression 
during hypoxia, and can promote the production of liver 
CSCs (31). In addition, the SENP1/HIF‑1α positive feedback 
loop promotes hypoxia‑induced cell EMT and invasion in 

osteosarcoma cells (32). Kinase ERK‑mediated phosphoryla‑
tion of HIF‑1α increases its stability and accumulation in the 
nucleus to promote the transcriptional activation of target 
genes (25,33). Protein kinase A in HeLa cells can also phos‑
phorylate threonine 63 and serine 692 of HIF‑1α, inhibiting 
HIF‑1α degradation and increasing HIF‑1α transcription (34). 
The knockout of Y‑box binding protein 1 in gliomas inhibits 
cell proliferation and blocks the cell cycle by downregu‑
lating the phosphorylation level of HIF‑1, which may affect 
the proliferation, differentiation and metastasis of glioma 
cells (35,36). There is not enough information on the epigen‑
etic and post‑translational modification of HIF‑1, thus further 
studies are needed to explore how the proliferation and growth 
of CSCs can be inhibited via the expression of HIF.

4. Role of HIF‑1 in non‑coding RNA associated with CSCs

Non‑coding RNA (ncRNA) is a class of RNA that is tran‑
scribed from DNA but is not translated into a protein, types 
of ncRNA include small interfering RNA  (siRNA), long 
ncRNA (lncRNA) and microRNA (miRNA) (37,38). A previous 
study demonstrated that the interaction between HIF‑1 and 
ncRNA is significant in the self‑renewal and proliferation 
of CSCs. miR‑124 can reverse the resistance of breast CSCs 
to doxorubicin through the inhibition of the STAT3/HIF‑1α 
signaling pathway  (39). miR‑200b can target and inhibit 
the anti‑angiogenic Krüppel‑like factor 2 gene during acute 
hypoxia, thereby stabilizing HIF‑1 signaling to promote 
angiogenesis (40). miR‑200c inhibits the metastasis and inva‑
sion of lung cancer cells by inhibiting HIF‑1α expression (41). 
miR‑18a targets HIF‑1α and inhibits the distant metastasis of 
breast cancer through the HIF‑1α‑dependent hypoxic response; 
miR‑18a‑5p also increases the radiotherapy sensitivity of lung 
CSCs by inhibiting HIF‑1α (42,43). The promoter of miR‑302 
responds to HIF‑1α, which is beneficial for enhancing stem‑like 
characteristics of hypoxic cancer cells (44). The expression of 
miR‑210, an important regulator that inhibits DNA repair, is 
directly regulated by HIF‑1α and promotes the degradation 
of normoxic gene mRNA (45,46). The knockout of miR‑210 
suppresses the self‑renewal capacity and resistance of glioma 
stem‑like cells induced by hypoxia (47). miR‑21 and HIF‑1α 
are positively correlated in multiple tumors, and miR‑126 and 
HIF‑1α are significantly negatively correlated in colon cancer, 
thus indicating that their expression could be used for the early 
diagnosis and screening of cancer  (46,48,49). miR‑21 and 
miR‑130b activate EMT through the phosphatase and tensin 
homolog/Akt/HIF‑1α pathway and promote hepatocellular 
carcinoma metastasis  (50). HIF‑1α binds to the miR‑1275 
promoter, which promotes miR‑1275 expression and main‑
tains the pluripotency of stem cells by activating the β‑catenin 
and Notch signaling pathways in lung adenocarcinoma (51). 
miR‑421 is upregulated by HIF‑1α and promotes gastric cancer 
metastasis and chemotherapy resistance (52). miR‑107 inhibits 
Ewing sarcoma cell proliferation, blocks the cell cycle and 
promotes apoptosis by targeting HIF‑1β (53). miR‑99a, which 
is reduced in breast CSCs, suppresses the stem‑like phenotype 
of breast cancer by inhibiting the mTOR/HIF‑1α signaling 
pathway (54). In addition, under normoxia, the upregulated 
miR‑31 in head and neck squamous cell carcinoma can target 
the 3' untranslated region of the FIH transcript to promote the 



MOLECULAR MEDICINE REPORTS  23:  17,  2021 3

transactivation activity of HIF, leading to increased tumorige‑
nicity (55). Similar results were also found in oral squamous 
cell carcinoma and colorectal cancer (56,57). The upregulated 
lncRNA LOC554202 in non‑small cell lung cancer is positively 
correlated with miR‑31, thereby targeting FIH to promote the 
development of acquired gefitinib resistance (58). miR‑31‑5p, 
which is upregulated in lung cancer, induces glycolytic gene 
expression by regulating the FIH/HIF pathway, and ultimately 
promotes cell proliferation and tumor growth (59). miR‑21 and 
miR‑184, which are also upregulated in head and neck squa‑
mous cell carcinoma, have similar tumorigenic mechanisms to 
those of miR‑31 (60).

Several hypoxia‑related lncRNAs, such as HOTAIR, H19, 
lncRNA‑NUTF2P3‑001, lncRNA‑UCA1, lncRNA‑EFNA3, 
ANRIL, HINCUTs and GAPLINC, are directly regulated 
by HIF‑1α, as their promoters have hypoxic response 
elements (HREs), which are required for HIF‑1α‑mediated 
transcriptional activation  (61,62). The low expression of 
LINC00996 in colorectal cancer cells may participate in the 
occurrence and metastasis of colorectal cancer by regulating 
the HIF‑1 signaling pathway (63). HIF‑1α can promote the 
transcription of lincRNA‑p21 (64). Conversely, hypoxia‑related 
lncRNA‑p21 can bind to HIF‑1α, which can prevent the inter‑
action of HIF‑1α and Von Hippel‑Lindau (VHL) and cause 
the accumulation of HIF‑1α in cells (64). Beyond that, the 
knockout of lincRNA‑p21 can also induce apoptosis through 
the HIF‑1α/Akt/mTOR/P70S6 kinase 1 (S6K)‑pathway and 
increase the sensitivity of radiotherapy (65). By forming a 
complex with HIF‑1α, lncHIFCAR/MIR31HG promotes the 
binding of HIF‑1α to the target promoters and increases the 

sphere‑forming and metastatic ability of oral cancer cells (66). 
lncRNA PCGEM1 may be used as a scaffold to form a complex 
with HIF‑1α and transcription factor Snail homolog 1 (SNAI1) 
and regulate the invasion and metastasis of gastric cancer 
cells (67). Hypoxia‑induced lncRNA CRPAT4 is regulated by 
HIF‑1α and plays a carcinogenic role by promoting the growth 
and migration of cancer cells (68). The presence of siRNA 
targeting HIF‑1α may provide a novel direction for specific 
treatment against HIF‑1α, and it could achieve molecular 
therapy by inducing apoptosis and increasing the sensitivity of 
radiotherapy (69,70).

In the regulation of HIF‑1 expression, the cooperation of 
miRNA and related lncRNA is equally important. The signifi‑
cantly upregulated lncRNA TUG1 in osteosarcoma protects 
the HIF‑1α mRNA 3' untranslated region from miR‑143‑5p, 
thereby promoting osteosarcoma metastasis  (71). lncRNA 
MIR31HG is the host gene of miR‑31, which is located in the 
first intron of MIR31HG and has consistent transcriptional 
regulation  (66,72). Studies have found that MIR31HG is a 
hypoxia‑inducible lncRNA and acts as a HIF‑1α co‑acti‑
vator to regulate the HIF‑1 transcriptional network  (66). 
Mechanistically, MIR31HG directly interacts with HIF‑1α to 
promote the recruitment of HIF‑1α and p300 to target gene 
promoters (66). It is worth noting that, although the expres‑
sion of MIR31HG is positively correlated with miR‑31 in 
certain types of cancer, the knockout of MIR31HG has no 
effect on miR‑31, indicating that the tumor regulatory effect 
of MIR31HG may be independent of miR‑31 (73). A variety of 
lncRNAs serve as competing endogenous RNAs (ceRNAs) to 
inhibit the interaction of miRNAs with their targets, thereby 

Figure 1. Schematic diagram of HIF‑1α and HIF‑1β. Under hypoxic conditions, the PI3K/Akt/mTOR pathway and MAPK (RAF/MEK/ERK) pathway regulate 
HIF‑1α transcriptional activity. The upregulated HIF‑1α and HIF‑1β form a heterodimer to regulate the expression of HIF‑1α target genes with the participation 
of co‑activators CBP/p300. Under normoxia, FIH hydroxylates asparagine (N803) residue within C‑TAD to block the cooperative binding of CBP/p300 and 
C‑TAD. PHD, whose activity depends on ferrous, dioxygen and 2‑oxoglutarate, is involved in the hydroxylation of HIF‑1α. Additionally, VHL, a tumor suppressor, 
regulates the expression of HIF‑1α through ubiquitination and proteasome degradation. HIF‑1, hypoxia inducible factor‑1; CBP, CREB binding protein; FIH, factor 
inhibiting HIF‑1; PHD, prolyl hydroxylase; VHL, Von Hippel‑Lindau; Ub, ubiquitination; HRE, hypoxic response element; TAD, transactivation domain.



ZHANG et al:  HIF-1 AND CANCER STEM CELLS4

forming a lncRNA‑miRNA‑mRNA ceRNA network, which 
can regulate multiple signaling pathways, including the 
HIF‑1α pathway (74,75). In addition, the HIF‑1α‑mediated 
hypoxia‑induced upregulation of lncRNA‑NEAT1 in 
hepatocellular carcinoma regulates the expression of the 
uridine‑cytidine kinase 2 gene, which is associated with low 
survival rates of patients with liver cancer, by suppressing 
miR‑199a‑3p, and ultimately promotes tumor growth (76).

Although there are only a small number of studies on 
HIF‑1‑related ncRNAs, the existing independent studies are 
sufficient to illustrate HIF‑1 as an important regulator or 
participant in CSC‑related ncRNA (Table I), which may eradi‑
cate CSCs and prolong the life of patients by targeting ncRNA 
or HIF‑1.

5. Role of HIF‑1 in CSC markers

Markers of CSCs induce the pluripotency of cancer cells and 
are used to distinguish CSC subpopulations, some of which 
have been found to be associated with metastasis  (77,78). 
Studies have found that HIF‑1 is associated with the generation 
of CSC markers. The data has indicated that HIF‑1α can induce 
the production of multiple stem cell markers, such as OCT4, 
SOX2, NANOG and Krüppel‑like factor 4 (KLF4) (44,79,80). 
In addition, the silencing of HIF‑1α can hinder the progression 
of cancer by inhibiting the expression of stem cell markers (81). 
HIF‑1 was found to bind directly to the CD47 promoter to 
facilitate gene transcription, which helps to escape phago‑
cytosis of macrophages and maintain the stem phenotype of 
breast CSCs (7,82). Endogenous HIF‑1α is recruited to the 
promoter of CD24, which promotes CD24 expression, as well 
as tumor formation and metastasis (83). HIF‑1α appears to bind 
to the CD133 promoter and promote the production of CD133+ 
glioblastoma, and colon and pancreatic CSCs via OCT4 and 
SOX2 (81,84‑87). In addition, a correlation has been found 
between HIF‑1α and CD133 in the cytoplasm, rather than 
other parts of the cell, such as the gland cavity (88). In turn, 
CD133 promotes HIF‑1α expression and its translocation to 
the nucleus under hypoxia (89). However, there is a different 
opinion that hypoxia‑induced HIF‑1α expression leads to 
a decrease in CD133 expression in gastrointestinal cancer 
cells that overexpress CD133. Under normoxic conditions, 
the inhibition of mTOR signaling in CD133‑overexpressing 
gastrointestinal cancer cells suppresses HIF‑1α expression and 
promotes that of CD133 (90). In breast CSCs, HIF‑1 increases 
the stability of NANOG mRNA through the transactivation of 
RNA demethylase ALKBH5, which is involved in encoding 
N6‑methyladenosine demethylase  (7). In prostate cancer 
samples, the co‑localization of HIF‑1α, OCT4 and NANOG 
suggests that HIF‑1α may regulate the production of CSCs 
by regulating stem factors (44). Surprisingly, OCT4 isoform 
OCT4B in cervical cancer cells promotes neovasculariza‑
tion by upregulating HIF‑1α production (91). The subtype of 
aldehyde dehydrogenase, 4‑trimethylaminobutyraldehyde 
dehydrogenase  (ALDH1A1), which is associated with the 
self‑renewal, metastasis and resistance of cancer cells, is 
regulated by HIF‑1α in breast cancer (81). In turn, ALDH1A1 
promotes HIF‑1α expression via retinoic acid signaling (81,92). 
In addition to promoting the production of mesenchymal or 
EMT marker proteins, HIF‑1α also inhibits the expression of 

epithelial marker proteins, which can be confirmed by the use 
of HIF‑1α inhibitors (93‑95). HIF‑1α can be used as a malignant 
marker of chondrosarcoma, due to its association with neovas‑
cularization (96). In conclusion, CSC markers can be used to 
isolate CSC subpopulations, and have been demonstrated to be 
involved in the self‑renewal of CSCs, as well as cancer inva‑
sion and metastasis. Under hypoxic conditions, HIF‑1α, as a 
direct or indirect upstream regulator of the marker protein, may 
become a novel target for the elimination of CSCs.

6. Role of HIF‑1 in tumor immunity of CSCs

Hypoxia not only regulates the production of CSCs, but 
also participates in regulating the immune system. Hypoxia 
promotes the B cell differentiation potential of lymphoid‑primed 
multipotent progenitors through HIF‑1α, resulting in the 
production of B cells (97). Under hypoxic conditions, HIF‑1α 
also regulates innate immune responses, induces regulatory 
T cells (Tregs), and mediates immune escape from cytotoxic 
T lymphocytes and other complex immune responses (98‑100). 
In previous years, HIF‑1α‑mediated tumor immunity has been 
proposed as a direction to solve the problems associated with 
tumor therapy (101‑103), so the immune response of CSCs 
mediated by HIF‑1α is also worth exploring when investi‑
gating antitumor therapies.

During EMT, in addition to the induction of cancer 
stemness, immunosuppression is also observed, which can 
lead to increased malignancy of the tumor, drug resistance 
and metastasis (79). Studies have found that hypoxia further 
increases the production of immunosuppressive factors, 
inhibition of monocyte phagocytosis, inhibition of T  cell 
proliferation, and activation and induction of Tregs in glioblas‑
toma multiforme‑related CSCs, which may be achieved via the 
phoshphorylated STAT3/HIF‑1α/vascular endothelial growth 
factor (VEGF) pathway (104‑106). During HIF‑1α‑induced 
EMT of liver cancer cells, the upregulated cytokine CCL20 
promotes the expression of indoleamine 2,3‑dioxygenase in 
monocyte‑derived macrophages, which inhibits the activation 
and proliferation of T cells and induces Tregs by increasing 
the degradation of tryptophan  (107). Immune escape and 
immunosuppression are equally important for the existence of 
CSCs (108). One of the breast CSC marker proteins, CD47, can 
bind to the signal regulatory protein α on the surface of macro‑
phages to escape macrophage phagocytosis, and the induction 
of CD47 depends on the direct regulation of HIF‑1α (82). 
There are two types of tumor‑associated macrophages, M1 and 
M2, which inhibit or promote tumor growth, respectively. The 
M2 type is more common in the tumor microenvironment and 
promotes tumor invasion (108,109). Hypoxia induces nuclear 
factor‑κB (NF‑κB) and HIF‑1α successively, leading to the 
infiltration of M2 macrophages in the tumor microenviron‑
ment and tumorigenesis (110). As compared with normal cells, 
triple‑negative breast cancer cells have more HIF‑1α‑specific 
IgG, which indicates that HIF‑1α is immunogenic  (111). 
Treatment using a HIF‑1α vaccine recruits type I T cells to the 
tumor tissue and effectively inhibits basal‑like breast CSCs, 
which can inhibit tumor metastasis (111). In order to adapt 
to chronic hypoxia, CD8+ T cells increase the expression of 
active HIF‑1α and increase their own effector functions (112). 
The production of NANOG in hypoxic tumor cells depends 
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on the expression of HIF‑1α, and upregulated NANOG 
reduces the sensitivity of hypoxic tumor cells to the lysis of 
cytotoxic T lymphocytes; however, this process is not caused 
by the increased phenotype of CSCs, but NANOG increased 
the viability of the tumor cells (113). At the same time, some 

studies have proposed that hypoxia‑induced NANOG, which 
also depends on HIF‑1α, promotes the self‑renewal of mela‑
noma cells and induces Tregs and macrophages by directly 
regulating TGF‑β1, but whether this immunosuppression is 
associated with CSCs has not been reported (114). In summary, 

Table I. Association between HIF-1 and non-coding RNA.

Non-coding		  Relationship	 Cancer
RNA	 Category	 with HIF-1	 type	 (Refs.)

miR-124	 miRNA	 Inhibits STAT3/HIF-1α pathway	 Breast cancer	 (39)
miR-200b	 miRNA	 Inhibits KLF2 gene and stabilizes	 Human endothelial cells	 (40)
		  HIF-1α signal
miR-200c	 miRNA	 Inhibits HIF-1α expression 	 Lung cancer	 (41)
miR-18a	 miRNA	 Inhibits HIF-1α expression 	 Breast cancer	 (43)
miR-18a-5p	 miRNA	 Inhibits HIF-1α expression 	 Lung cancer	 (42)
miR-302	 miRNA	 Regulated by HIF-1α	 HeLa cells	 (44)
miR-210	 miRNA	 Regulated by HIF-1α	 Glioma; pancreatic cancer; 	 (45-47)
			   colorectal cancer
miR-21	 miRNA	 Activates PTEN/Akt/HIF-1α	 Hepatocellular carcinoma; 	 (46,48-50)
		  pathway; positive correlation	 breast cancer; colon cancer; 
		  with HIF-1α; targets FIH	 glioma
miR-126	 miRNA	 Negative correlation with HIF-1α	 Colon cancer	 (46)
miR-130b	 miRNA	 Activates PTEN/Akt/HIF-1α pathway	 Hepatocellular carcinoma	 (50)
miR-1275	 miRNA	 Regulated by HIF-1α and activates	 Lung adenocarcinoma	 (51)
		  Notch and β-catenin pathway
miR-421	 miRNA	 Upregulated by HIF-1α	 Gastric cancer	 (52)
miR-107	 miRNA	 Targets HIF-1β	 Ewing sarcoma	 (53)
miR99a	 miRNA	 Inhibits mTOR/HIF-1α signal pathway	 Breast cancer	 (54)
miR-31	 miRNA	 Targets the 3' untranslated region	 Head and neck squamous cell	 (55-58)
		  of FIH transcript	 carcinoma; oral squamous 
			   cell carcinoma;
			   colorectal cancer; lung cancer
miR-31-5p	 miRNA	 Targets the 3' untranslated region	 Lung cancer	 (59)
		  of FIH transcript
miR-184	 miRNA	 Targets FIH	 head and neck squamous	 (60)
			   cell carcinoma
LOC554202	 lncRNA	 Positively correlated with miR-31	 Lung cancer	 (58)
LINC00996	 lncRNA	 Regulates HIF-1α signal	 Colorectal cancer	 (63)
LincRNA-p21	 lncRNA	 Regulated by HIF-1α and induces	 HeLa cells	 (64,65)
		  HIF-1α accumulation
LncHIFCAR/	 lncRNA	 Promotes the binding of HIF-1α	 Oral cancer	 (66)
MIR31HG		  to target genes
PCGEM1	 lncRNA	 Forms a complex with HIF-1α and SNAI1	 Gastric cancer	 (67)
CRPAT4	 lncRNA	 Regulated by HIF-1α	 Clear cell renal cell carcinoma	 (68)
TUG1	 lncRNA	 Protects HIF-1α mRNA 3' untranslated	 Osteosarcoma	 (71)
		  region from miR-143-5p
miR31HG	 lncRNA	 Serves as a HIF-1α co-activator	 Oral cancer	 (66,72,73)
NEAT1	 lncRNA	 Induced by HIF-1α and regulates 	 Hepatocellular carcinoma	 (76)
		  the expression of UCK2 gene
		  through suppressing miR-199a-3p

HIF-1, hypoxia inducible factor-1; miR/miRNA, microRNA; lncRNA, long non-coding RNA; KLF2, Krüppel-like factor 2; PTEN, phospha‑
tase and tensin homolog; SNAI1, Snail homolog 1; FIH, factor inhibiting HIF-1; UCK2, uridine-cytidine kinase 2.
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HIF‑1α‑mediated immunosuppression and immune escape are 
crucial in CSCs. This common regulatory mechanism in the 
tumor microenvironment gives CSCs a new definition and 
provides novel ideas for tumor immunotherapy.

7. Role of HIF‑1 in metabolic reprogramming of CSCs

It is commonly known that cancer cells can metabolize and 
reprogram under hypoxic conditions to complete the conver‑
sion of oxidative phosphorylation (OXPHOS) to glycolysis to 
meet their own energy needs (7,115). However, a study recently 
proposed the concept of metabolic plasticity, that is, even within 
the same cancer cell population, cancer cells can complete the 
conversion of glycolysis to OXPHOS, while maintaining meta‑
bolic reprogramming and energy requirements (116). Indeed, 
hypoxic cells do not metabolize all glucose to lactic acid, and 
non‑hypoxic cells do not metabolize all glucose to carbon 
dioxide and water, which makes metabolic balance particularly 
important (117). Among them, HIF‑1 plays a crucial role as a 
regulator in metabolic reprogramming, and the role of HIF‑1 in 
CSC metabolism is worthy of attention.

HIF‑1, as the main regulator of several glycolytic 
transporters and enzymes, including glucose transporter, 
monocarboxylate transporter, hexokinase and lactate dehydro‑
genase, regulates glycolytic transformation (95,118). HIF‑1α 
also promotes the production of carbonic anhydrases, which 
interact with extracellular acidification to change the pH of the 
intracellular and extracellular environment of the cell, thereby 
affecting the absorption of anticancer drugs and producing 
drug resistance (119,120). Colon CSC clones with liver receptor 
homolog‑1‑overexpression, a target of GATA binding protein 
6, were found to have increased intracellular hypoxia, HIF‑1α 
and reactive oxygen species (ROS); it was further proven that 
glycolysis and OXPHOS co‑exist in the clones but mainly 
mitochondrial respiration (121). The knockout of CSC marker 
protein CD44 induces glycolysis to OXPHOS via a complex 
signaling pathway involving HIF‑1α (115). The loss of ATP 
synthase, especially the D subunit ATP5H, leads to the accumu‑
lation of ROS in cells and the stabilization of normoxic HIF‑1α 
and activation of the HIF‑1α pathway, affecting mitochondrial 
metabolic reprogramming, the production of stem‑like ability, 
and therapeutic resistance (122). The α‑KG analogue dimethyl 
2‑ketoglutarate allows excess succinate/fumarate to be trans‑
ferred from the mitochondria to the cytoplasm, where it can 
impair prolyl hydroxylase and thus stabilize and activate HIF‑1α, 
eventually leading to increased glycolysis and the acquisition 
of the stem‑like characteristics of breast cancer cells (118). In 
addition, the upregulation of HIF‑1α, under hypoxia, inhibits the 
expression of mitochondrial phosphoenolpyruvate carboxyki‑
nase, which leads to a weakened tricarboxylic acid cycle and 
the enrichment of fumarate, ultimately leading to increased 
ROS levels and breast CSC growth (123). In conclusion, HIF‑1 
appears to mainly act as an intermediate participant regulating 
the complex conversion mechanism of glycolysis and OXPHOS 
and the generation and maintenance of stemness in CSCs.

8. Role of HIF‑1 in signaling pathways associated with CSCs

HIF‑1 is regulated by multiple signaling pathways in CSCs 
and also participates in regulating the characteristics of CSCs 

through signaling pathways, such as the Notch, MAPK/ERK 
and Wnt signaling pathways (81). Studies have found that the 
PI3K/Akt/mTOR pathway maintains the transcription, trans‑
lation and biological activity of HIF‑1α (54,124). Hypoxia 
also induces tuftelin  1 in a HIF‑1α‑dependent manner; 
subsequently, tuftelin1 activates the Ca2+/PI3K/Akt pathway 
to induce EMT and metastasis in hepatocellular carci‑
noma (50). HIF‑1α promotes the survival of prostate CSCs 
by inhibiting mTOR and activating Akt phosphorylation, 
which may be accomplished by the feedback regulation of 
PI3K via P70‑S6K‑mediated insulin receptor substrate  1 
phosphorylation (125). The mitochondrial autophagy regu‑
lator NIX interacts with Ras homolog enriched in the brain to 
activate mTOR/Akt/HIF signaling, and subsequently increase 
the self‑renewal capacity of glioma stem cells  (126). The 
Wnt/β‑catenin signaling pathway activates the transcription 
of HIF‑1α, inhibits the apoptosis of hepatocellular carcinoma 
and promotes the occurrence of EMT, and then triggers the 
metastasis of hepatocellular carcinoma  (50). Conversely, 
HIF‑1α maintains the stemness of esophageal squamous 
cell carcinoma by activating the Wnt/β‑catenin signaling 
pathway (127). HIF‑1α induces the generation of breast CSCs 
and the enhancement of self‑renewal capacity by upregu‑
lating the expression of yes‑associated protein (YAP) and 
tafazzin (TAZ) in the Hippo pathway (7,86). HIF‑1α, which 
can also function as a bidirectional co‑activator of TAZ, is 
recruited by TAZ to the promoter of encoding connective 
tissue growth factor (CTGF) to activate the transcription of 
CTGF, which is involved in promoting the onset of EMT and 
maintaining the stem‑like phenotype of breast CSCs (6,128). 
In addition, high‑mobility group box 1 (HMGB1) released 
from injured or dying cells following X‑ray radiation 
induces the dedifferentiation of CD133‑ pancreatic cancer 
cells, and promotes pancreatic CSC production and 
pancreatic cancer metastasis via the HMGB1/toll‑like 
receptor 2 (TLR2)/YAP/HIF‑1α axis, in which HMGB1‑TLR2 
promotes HIF‑1α and YAP nuclear localization and HIF‑1α 
DNA binding ability (129). The ROS‑mediated transition of 
breast CSCs from a quiescent mesenchymal state to a prolif‑
erative epithelial state is promoted by the activation of the 
Notch pathway and AMP‑activated protein kinase/HIF‑1α 
axis (130,131).

HIF‑1α maintains the stemness of leukemia and glioblas‑
toma stem cells through the Notch signaling pathway (81,86). 
Studies have also suggested that the hypoxia/Notch1/SOX2 
axis is essential for the development of ovarian CSCs (81). The 
combination of HIF‑1α and notch intracellular domain acti‑
vates Notch‑responsive promoters and increases the expression 
of Notch downstream genes, such as Hes1 and Hey2, and Hes1 
is important in the stemness maintenance and self‑renewal of 
leukemia stem cells (50,81). In addition, studies have suggested 
that there is negative feedback regulation of the Hes1 expres‑
sion, which is completed by the combination of Hes1 and 
N‑boxes on the Hes1 promoter (132). Furthermore, HIF‑1α 
may enhance the Notch pathway‑induced Hes1 expression by 
inhibiting the negative feedback regulation of the Hes1 gene, 
and ultimately promote the maintenance of the stemness of 
mouse cholangiocarcinoma CSCs (132,133). STAT3 induced by 
HIF‑1α through the JAK or adenylate receptor 2B pathway can 
upregulate interleukin‑6 and Nanog, which can maintain the 
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CSC phenotype (81). Under hypoxic conditions, the increased 
HIF‑1α in glioma stem‑like cells activates the JAK1/2‑STAT3 
signaling pathway by promoting the production of VEGF, a 
HIF‑1α target, and ultimately enhances the self‑renewal ability 
of glioma stem‑like cells (134). HIF‑1α inhibits the expression 
of E‑cadherin and promotes EMT in hepatocellular carcinoma 
via the SNAI1 signaling pathway, in which HIF‑1α binds to 
two HREs on the SNAI1 promoter to upregulate SNAI1, a 
transcriptional inhibitor of E‑cadherin (50,135). At the same 
time, researchers found that HIF‑1α promotes EMT in gastric 
CSCs by activating the Snail signaling pathway, and the same 
result was found in ovarian cancer (136,137). Dual‑specificity 
phosphatases (DUSPs) negatively regulate MAPK pathway 
activity  (138). Chemotherapy induces an increase in 
DUSP9 expression and a decrease in that of DUSP16 in a 
HIF‑1‑dependent manner; it then upregulates NANOG and 
KLF4 through the reduction of ERK activity and the increase 
of P38 activity, respectively, finally promoting the develop‑
ment of breast CSCs (138). Studies have found that hypoxia 
activates the Sonic Hedgehog signaling pathway to induce the 
production of CSC markers in cholangiocarcinoma cells in a 
HIF‑1α‑dependent manner, which can be blocked by HIF‑1α 
inhibition (139). The expression level of glioma‑associated 
oncogene homolog 1 (Gli1) in the Hedgehog pathway in pros‑
tate cancer was higher in the HIF‑1α+ group, indicating that 
hypoxia promotes the expression of Gli1 and that the increased 
Gli1 expression is significantly associated with EMT of pros‑
tate cancer cells (140). Under hypoxia, upregulated HIF‑1α 
promotes the expression of its downstream target gene, sirtuin 
type 1 (SIRT1), by activating the NF‑κB signaling pathway, 

and increased SIRT1 promotes the maintenance of stem‑like 
characteristics of ovarian cancer cells (141). Of note, studies 
have suggested that hypoxia‑related factors switch HIF‑1α 
to HIF‑2α by activating the NF‑κB pathway to increase the 
malignancy of bladder cancer and maintain the expression of 
stem cell markers (142).

In addition, some signaling pathways also regulate the 
HIF‑1α‑related complex. NF‑κB‑mediated inflammatory 
signaling can prevent the HIF‑1α transcription network by 
directly competing for the binding of p300 to the promoter 
of HRE‑encoding genes (143). Raf Kinase Trapping to Golgi 
in clear‑cell renal cell carcinoma prevents the formation of 
the HIF‑1α/p300 complex and transactivation of HIF‑1α by 
inhibiting the MAPK pathway (144). Since PI3K promotes the 
induction of HIF‑1α levels and there is a protein kinase B (PKB) 
phosphorylation site on p300, the PI3K/PKB pathway can 
boost the binding of HIF‑1α/phosphorylated p300 to glucoki‑
nase gene (GK)‑HRE, thereby promoting insulin‑mediated GK 
gene expression (145). LB‑1, a triptolide derivative, prevents 
the formation of the HIF‑1α/p300/p‑STAT3 complex by down‑
regulating the PI3K/Akt/mTOR pathway that regulates HIF‑1α 
at the translation level, and ultimately exerts anti‑tumor prop‑
erties (146). In turn, the increase in the Wnt signaling pathway 
mediated by CBP plays an important role in hypoxia‑induced 
leukemia stem cells (147,148). In fact, multiple factors in the 
HIF‑1α signaling pathway can also interfere with the formation 
of the HIF‑1α/p300 complex. CBP/p300‑interacting transac‑
tivator with an ED‑rich tail 2 in hypoxia signaling was also 
found to prevent p300 from recruiting to N‑TAD and C‑TAD, 
thereby inactivating HIF‑1α (149). The ferritin heavy chain in 

Figure 2. Hypoxia regulates CSCs with HIF‑1 as the core. HIF‑1α and HIF‑1β form a heterodimer and bind to HRE on the target genes to activate transcription, 
which can be suppressed by acriflavine, a HIF‑1α inhibitor. This chart attempts to show the role and regulation of HIF‑1 in CSCs from multiple directions, 
including epigenetic modification, signaling pathway, non‑coding RNA, stem cell marker, immunity and metabolic reprogramming. CSCs, cancer stem cells; 
HIF‑1, hypoxia inducible factor‑1; SUMO, small ubiquitin‑like modifier; Ub, ubiquitination; P, phosphorylation; Met, methylation; HRE, hypoxic response 
element; OXPHOS, oxidative phosphorylation; CBP, CREB binding protein; NK, natural killer; Klf4, Krüppel‑like factor 4; ALDH1A1, 4‑trimethylaminobu‑
tyraldehyde dehydrogenase; SHH, Sonic Hedgehog.
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the hypoxia signaling pathway has also been demonstrated 
to interfere with p300 recruitment to HIF‑1α by promoting 
FIH‑mediated hydroxylation of N803 (150). In prostate cancer, 
N‑myc downstream‑regulated gene 3 regulates Akt‑dependent 
HIF‑1α hypoxia signaling through dissociating the p300 from 
HIF‑1α (151).

In conclusion, HIF‑1α promotes self‑expression by inter‑
acting with multiple signaling pathways and participates in the 
maintenance of stem‑like characteristics of CSCs (Table II).

9. Potential targets for CSC therapy

It is worth noting that the regulatory effect of HIF‑1 is 
also different in specific types of cancer  (Table  III). As 
HIF‑1/HIF‑1α is a key factor regulating CSCs, its inhibitor 
may be used for adjuvant therapy. Acriflavine, a HIF‑1 
inhibitor, prevents the dimerization of HIF‑1α and HIF‑1β, 

leading to undimerized HIF‑1α degradation and inhibi‑
tion of hypoxia‑induced gene expression  (82). Acriflavine 
can effectively inhibit the stemness and growth of chronic 
myeloid leukemia cells (81). Digoxin, also a HIF‑1 inhibitor, 
or acriflavine can prevent glioblastoma stem cells from 
responding to hypoxia by reducing the expression of 
receptor for advanced glycation end products, which is a 
membrane receptor that senses the necrotic stimulation of 
cells that die due to hypoxia (152). The targeted inhibition 
of HIF‑1 by siRNA can increase the radiotherapy sensitivity 
of malignant gliomas, but the limited delivery efficiency 
of siRNA still needs to be resolved (153,154). The HIF‑1α 
vaccine is proposed to inhibit breast cancer metastasis from 
the perspective of tumor immunity (111). Not only that, the 
combination of HIF‑1α and co‑activators can also become a 
potential therapeutic target. Even under hypoxic conditions, 
3‑(5'‑hydroxymethyl‑2'‑furyl)‑1‑benzyl indazole can stimulate 

Table II. Association between HIF-1 and signaling pathways.

Signaling pathway	 Relationship with HIF-1	 Cancer type	 (Refs.)

PI3K/Akt/mTOR	 Maintains the transcription, 	 Breast cancer; hepatocellular 	 (50,54,124,
	 translation and biological activity of HIF-1α;	 carcinoma; prostate cancer;	 125,146)
	 activated by HIF-1α-dependent tuftelin1;	 pancreatic cancer
	 regulated by HIF-1α; involved in regulating
	 the formation of HIF-1α/p300 complex
Wnt/β-catenin 	 Activates the transcription of	 Hepatocellular carcinoma; 	 (50,127)
	 HIF-1α; also activated by HIF-1α	 esophageal squamous cell carcinoma
Hippo 	 Regulated by HIF-1α; TAZ recruits	 Breast cancer	 (6,7,86,128)
	 HIF-1α to promote CTGF expression
Notch 	 Regulated by HIF-1α	 Leukemia; glioblastoma; 	 (50,81,86)
		  ovarian cancer
JAK/STAT	 Activated by HIF-1α	 Glioma	 (81,134)
SNAI1	 Regulated by HIF-1α	 Hepatocellular 	 (50,135)
		  carcinoma 
Snail	 Activated by HIF-1α	 Gastric cancer;	 (136,137)
		  ovarian cancer
MAPK	 Regulated by DUSPs in a HIF-1-dependent	 Breast cancer; 	 (138,144)
	 manner under chemotherapy	 clear-cell renal 
	 conditions; involved in regulating	 cell carcinoma
	 the formation of HIF-1α/p300 complex
Sonic Hedgehog	 Activated by hypoxia in	 Cholangiocarcinoma;	 (149,140)
	 a HIF-1-dependent way	 prostate cancer
NF-κB	 Activated by HIF-1α; also activated by	 Bladder cancer;	 (141-143)
	 hypoxia-related factors to switch 	 ovarian cancer
	 HIF-1α to HIF-2α; competes for the
	 binding of p300 to the promoter
	 of HRE-encoding genes
PI3K/PKB pathway	 Promotes the binding of HIF-1α/ 	 Hepatocytes 	 (145)
	 phosphorylated p300 to GK-HRE
pSTAT3/HIF-1α/	 Promotes the occurrence of.	 Glioblastoma multiforme	 (104-106)
VEGF pathway	 immunosuppression

HIF-1, hypoxia inducible factor-1; TAZ, tafazzin; CTGF, connective tissue growth factor; DUSPs, dual-specificity phosphatases; VEGF, vas‑
cular endothelial growth factor; SNAI1, Snail homolog 1; GK, glucokinase; HRE, hypoxic response element; p, phosphorylated.
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FIH to bind to C‑TAD and reduce the recruitment of p300 
to inhibit HIF‑1α in a N803 hydroxylation‑independent 

manner (155). Bortezomib, which is used for clinical testing 
of multiple tumors, has similar FIH‑mediated anticancer 

Table III. Potential effects of HIF-1 modulation in specific types of cancer.

Cancer type	 Potential effect of HIF-1	 Refs.

Brain tumor	 Promotes CD133+ glioblastoma production and maintains self-renewal; 	 (30,35,36,47,81,86,
	 regulates tumor immune microenvironment; 	 87,104-106,128,
	 also regulates cell proliferation and metastasis	 134,152-154)
Liver cancer	 Promotes CSC production and EMT occurrence; 	 (28,31,50,76)
	 regulates genomic methylation
Osteosarcoma 	 SENP1/HIF-1α positive feedback loop promotes EMT	 (32,71)
	 occurrence and cell invasion
Breast cancer	 Participates in the regulation of breast CSC chemotherapy	 (6,7,39,43,54,81,82,
	 resistance, self-renewal, and breast cancer metastasis; 	 86,92,111,118,123,
	 promotes immune escape	 128,130,138)
Lung cancer	 Participates in the regulation of lung CSC radiotherapy resistance	 (41-43, 51,58,59)
	 and lung cancer invasion and metastasis; also maintains stemness
Gastric cancer	 Promotes gastric cancer metastasis and chemotherapy	 (52,67,136)
	 resistance; promotes EMT occurrence
Ewing sarcoma	 Participates in the regulation of cell proliferation and survival	 (53)
Colorectal cancer	 Participates in colorectal cancer occurrence	 (46,48,49,57,
	 and metastasis; promotes CSC production	 63,81,84,121)
Oral cancer	 Regulates sphere formation, metabolism and metastasis	 (56,66)
Pancreatic cancer	 Promotes CSC production	 (85,129)
Prostate cancer	 Regulates CSC production and survival; 	 (44,125,140,
	 also related to EMT occurrence	 151,142,146)
Cervical cancer	 Participates in regulating neovascularization	 (91)
Melanoma 	 Promotes melanoma cell self-renewal and regulates	 (114)
	 tumor immune microenvironment
Esophageal cancer	 Maintains stemness	 (127)
Leukemia	 Maintains stemness and self-renewal	 (50,81,86,147,148)
Ovarian cancer	 Maintains stemness and promotes EMT occurrence	 (81,136,137,141)
Cholangiocarcinoma 	 Participates in regulating CSC stemness	 (132,133,139)
Bladder cancer	 The switch of HIF-1α to HIF-2α is related to the malignancy	 (142)
	 and stemness maintenance of bladder cancer

HIF-1, hypoxia inducible factor-1; CSC, cancer stem cell; EMT, epithelial-mesenchymal transition; SENP1, small ubiquitin-like modifier proteases 1.

Table IV. Potential therapeutic targets associated with HIF-1.

Potential targets	 Possible mechanism	 (Refs.)

MAT2A	 Maintains the demethylation status of genes	 (28)
SENP1	 Serves as a SUMO protease and forms a positive feedback loop with HIF-1α 	 (31,32)
ERK	 Phosphorylates HIF-1α and increases its expression and stability	 (25,33)
PKA	 Prevents HIF-1α degradation	 (34)
YB-1	 Participates in regulating HIF-1 phosphorylation 	 (35,36)
Indoleamine 2,3-dioxygenase	 Breaks down tryptophan and regulates tumor immunity	 (107)
Carbonic anhydrase 	 Regulates intracellular PH	 (119,120)

HIF-1, hypoxia inducible factor-1; MAT2A, methionine adenosyltransferase 2A; SENP1, small ubiquitin-like modifier proteases 1; PKA, pro‑
tein kinase A; YB-1, Y-box binding protein 1; SUMO, small ubiquitin-like modifier.
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effects (156). Osmium metal complex 1 can be used as an 
inhibitor to directly interfere with the interaction between 
HIF‑1α and p300 to stop the HIF‑1α expression and inhibit 
cell proliferation (157). Chetomin, discorhabdin L (2) and 
melatonin play a similar role (153,158‑160). The combination 
of enzalutamide, an androgen receptor antagonist, and chet‑
omin effectively inhibits the growth of castration‑resistant 
prostate cancer cells (158). TEL03, a perylene derivative, acts 
as a dual targeted inhibitor of STAT3 and HIF‑1α, interrupts 
the phosphorylation of STAT3 and inhibits its transcription; 
it also inhibits the combination of HIF‑1α and CBP/p300 to 
induce HIF‑1α degradation, thereby inducing apoptosis and 
suppressing tumor growth (161). LB‑1 also prevents the forma‑
tion of the HIF‑1α/p300/p‑STAT3 complex by targeting both 
the HIF‑1α and STAT3 pathways to inhibit the growth of pros‑
tate cancer cells (146). Minnelide, a pro‑drug of triptolide, has 
shown clinical prospects in a recent phase I trial of advanced 
gastrointestinal malignancies, with the phase II trial in prepa‑
ration (162). In addition, the inhibition of key enzymes and 
signaling pathways (Table II), key gene knockout, as well as 
CSC‑related immune and metabolic regulation, all comprise 
potential targets (Table IV) for CSC therapy.

10. Conclusions and perspectives

CSCs are a population with the potential for differentiation 
and self‑renewal, and participate in tumor metastasis, recur‑
rence and treatment resistance (81,163). Understanding the 
mechanisms through which CSCs produce and maintain 
stemness may help overcome the limitations of clinical 
cancer treatment. Hypoxia regulates angiogenesis, tumori‑
genesis, immune response, cancer recurrence and metastasis, 
and participates in EMT progression and CSC produc‑
tion  (81,82,164). HIF‑1 stably expressed under hypoxic 
conditions binds to HRE on the promoter of key genes and 
regulates glycolysis, angiogenesis, cell apoptosis, tissue 
invasion and PH regulation (165,166). HIF‑1α, as the active 
subunit of HIF‑1, is a primary transcription regulator in 
hypoxic adaptive responses (81,82). Therefore, the present 
review focused more on the role of HIF‑1α in CSCs instead 
of HIF‑1, in order to propose novel methods for the eradica‑
tion of CSCs from various perspectives, including epigenetic 
modification, immune response, metabolic reprogramming, 
stem cell marker, and ncRNA and signaling pathways associ‑
ated with CSCs (Fig. 2).

The current tumor treatment methods, combined with 
adjuvant therapy with HIF‑1/HIF‑1α as the core, may prevent 
the recurrence and metastasis of cancer cells, and ultimately 
improve the cure rate and prolong the life of patients.
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