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Abstract

Background: The rapid development of next-generation sequencing (NGS) technology has continuously been refreshing
the throughput of sequencing data. However, due to the lack of a smart tool that is both fast and accurate, the analysis
task for NGS data, especially those with low-coverage, remains challenging.

Results: We proposed a decision-tree based variant calling algorithm. Experiments on a set of real data indicate that our
algorithm achieves high accuracy and sensitivity for SNVs and indels and shows good adaptability on low-coverage data. In
particular, our algorithm is obviously faster than 3 widely used tools in our experiments.

Conclusions: We implemented our algorithm in a software named Fuwa and applied it together with 4 well-known
variant callers, i.e., Platypus, GATK-UnifiedGenotyper, GATK-HaplotypeCaller and SAMtools, to three sequencing data
sets of a well-studied sample NA12878, which were produced by whole-genome, whole-exome and low-coverage
whole-genome sequencing technology respectively. We also conducted additional experiments on the WGS data of 4
newly released samples that have not been used to populate dbSNP.
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Background
Next-generation DNA sequencing (NGS) technologies
have made great progress in both improving throughput
and lowering cost in recent years. Today, NGS technol-
ogy can finish a whole-genome sequencing task in a
single day for merely one thousand dollars [1]. The
massive data sets generated by NGS in research projects
such as 1000 Genomes are counted in terabases [2], and
it is predicted that in the next decade, approximately
one hundred million to two billion human genomes will
be sequenced [1]. Facing challenges from the explosive
growth of sequencing data, faster and more efficient data
analysis tools are required.
Variant calling is a key link in the NGS data analysis

workflow. The quality of call sets directly affects down-
stream analysis such as disease-causing gene detection.

To call variants from sequencing data, an aligner such as
BWA should be used to map and align short reads
generated by NGS platforms to the reference genome
first; then, a variant caller is applied to the aligned re-
sults to produce high-quality variant calls as well as
genotyping. Early on, tools such as MAQ [3] handled
both steps. Since the SAM/BAM format [4] was devel-
oped in 2009, researchers were able to concentrate on
developing better algorithms for variant calling, leaving
out the mapping step. So far, many excellent variant cal-
lers have been springing up, including SAMtools [4],
Genome Analysis Toolkit (GATK) [2] and Platypus [5].
Variant calling algorithms aim to address technical

difficulties such as homopolymer errors, random muta-
tions, insertions and deletions (indels), mis-alignments,
and PCR bias. Generally, there are two paradigms [6].
The first paradigm is the Bayesian approach. This
paradigm generates candidate variants directly from the
results of independently mapping each read to the refer-
ence sequence, succeeded by using Bayesian methods to
model sequencing errors and identify variants. This
paradigm is very powerful for detecting SNVs but may
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get confused when aligning reads to the region beside
candidate indels. The second paradigm is an assembly-
based approach. This paradigm first performs de novo
assembly of short reads within a fixed-length window to
construct candidate haplotypes and then calculates their
likelihoods comparing to the reference sequence. The
candidate haplotype with the highest likelihood is
regarded as the true sequence within that window, and
variants contained by that haplotype will be called. This
paradigm can address incorrect alignments surrounding
indels as well as identify large indels, improving accuracy
and recall compared to the first paradigm. However, be-
cause of the extremely high computational complexity
and huge number of candidate haplotypes, this paradigm
requires much a longer runtime. Among the most popu-
lar callers, SAMtools and GATK-UnifiedGenotyper [7]
follow the first paradigm, while GATK-HaplotypeCaller
follows the second paradigm. There is another method
that combines the two paradigms, which can also be
considered a Bayesian haplotype method, including Free-
Bayes, PyroHMMvar and Platypus.
However, there are two main shortcomings of the par-

adigms mentioned above: first, they are not fast enough
(as will be shown in our experiments); second, they can-
not easily adapt variations in input data type, such as
low-pass sequencing data, because they have many de-
fault parameters that are difficult to adjust for non-
experts. To find another way, some researchers have set
their sights on machine learning, such as SNooPer [8],
which is a random-forest-based somatic variant caller.
SNooPer’s variant detection procedure involves two
phases: in the training phase, it trains a random forest
model from an orthogonally validated dataset; and in the
calling phase, it generates candidate variants and calcu-
lates related features from inputted mpileup files and
then applies the trained model to classification. As is
known, the prediction ability of machine learning algo-
rithms heavily depends on the size and representative-
ness of the training set. To ensure that machine learning
algorithms work well, the training set must be carefully
selected. The largest and most authoritative dataset of
SNVs and indels is the single nucleotide polymorphism
database (dbSNP) [9]. It is reported that over 90% of
human genome SNVs and indels have been catalogued
in dbSNP [7], so we have confidence in hypothesizing
that an unreported variant should be somehow similar
to those in dbSNP if it is a true positive and distinct if it
is a false positive. Based on this hypothesis, we propose
a new method that trains a decision tree from dbSNP
and candidate variant set, merging the training and
calling phases into one step so that the time cost can be
significantly reduced, while other key indicators such as
accuracy and recall also have satisfactory results in
our experiments.

We have implemented our algorithm in a programme
named “Fuwa”. Comparison with 4 currently popular
variant callers indicates that when processing whole-
genome sequencing data, Fuwa is obviously faster than
its competitors, while other key performance indicators
also improve or stay comparable, even for variants not
in dbSNP. For processing exome-capture and low-pass
sequencing data, Fuwa also shows its outstanding cap-
ability and flexibility for data type diversity.

Methods
Overview of Fuwa
Fuwa accepts single sample alignment data in Binary
Sequence Alignment/Mapping (BAM) format and out-
puts calls for SNVs and short indels in Variant Call For-
mat (VCF) [10]. As shown in Fig. 1, the workflow of
Fuwa can be divided into three phases: candidate vari-
ants generating, decision-tree building, and variant call-
ing. First, the programme generates candidate variant set
by pile-up at each candidate variant locus marked by the

Fig. 1 Workflow of Fuwa. Fuwa is designed to translate single BAM
file into high quality variants calling output in VCF format. At first,
aligner such as BWA maps reads to reference genome and provides
BAM file to Fuwa. Then, at each locus of genome, candidate variants
are generated from the CIGAR field of piled up reads covering that
locus. Each candidate variant is assigned a 0/1 value named dbSNP
quality (qual), according to whether it is included in dbSNP. Next,
the candidate set is used to build a decision tree. After the tree is
build, qual values of variants in the same leaf will be replaced with
the average qual value of that leaf. Finally, Candidate variants with
low qual (default threshold 0.8) are filtered out, while the rest are
called and genotyped. Final call set is output in VCF format
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CIGAR field. Each candidate variant is marked with a
quality metric “qual” valuing 1 or 0 according to whether
the candidate variant is in dbSNP. Then, a decision-tree
model is trained using the feature vectors of candidate
variants as the training set. After the model is trained,
candidate variants with similar feature values are
grouped into a same leaf node and are treated as a unit.
For all the candidates in a leaf, if their average qual is
higher than the threshold, they are called out; otherwise,
they are identified as false positives. Finally, a simple and
effective genotyper is applied.

Generating and labelling candidate variants
Fuwa walks through the whole-genome sequence, gener-
ating candidate variants at each locus. Designed for high
sensitivity, Fuwa considers all 6 possible candidate
variants (i.e., A, T, G, C, insertion, deletion), and only
those with too low a proportion of read depth at their
loci are excluded. Feature values of these candidates are
also calculated. At the same time, the programme
searches dbSNP and labels each candidate with dbSNP
quality, or “qual” in short. Qual is set to 1 if the candi-
date exists in dbSNP and 0 if not. To improve search
speed, Fuwa preloads dbSNP into RAM and transforms
it into a hash table so that any searching can be finished
in a constant time. After this step, all candidate variants
are obtained and labelled.
To date, most common human variants have already

been catalogued in dbSNP. The high coverage rate of
SNVs and short indels qualifies dbSNP as a powerful
benchmark in alignment result recalibration [7] and final
call set quality assessment [5, 7, 11] as well as in training
machine learning models.

Decision tree and feature selection
Classification and regression tree (CART) [12] is a
widely used training algorithm of decision tree that can
be applied to either classification or regression problems.
It assumes the decision tree to be binary, and each non-
leaf node is measured by a Boolean expression so that
the input samples could be transferred into two
branches: the left branch if the Boolean expression is
“true” or the right branch otherwise. We chose CART
because it is simple and fast, and the decision procedure
can be easily understood.
Twelve features were selected to train the CART

model, which were divided into four categories, shown
as follows.

Category I. Read depth
Features under this category measure the absolute depth
and depth ratio of reads that are “effective” to be a spe-
cific candidate variant. “Effective” means that the read

shares the same base as the candidate variant at the can-
didate’s locus.

Feature 1: effective base depth Effective Base Depth
(EBD) is the sum of the depths of effective reads. For
indel reads, the EBD equals the mapping quality, while
for SNV reads, the EBD is the value of the mapping
quality multiplied by the base quality.

Feature 2: effective base depth ratio The EBD ratio, i.
e., the EBD of one candidate variant divided by the sum
of the EBDs of all candidate variants at that locus. If this
indicator is very low, the related candidate variant tends
to be a random error.

Feature 3: DeltaL DeltaL is a statistic describing the
difference between optimal and suboptimal genotypes.
Fuwa first hypothesizes that the variant is true, so the
reads covering this locus obey an almost ideal variant
model: 0/1 or 1/1. The logarithms of likelihood under
these two ideal models are calculated separately, and the
bigger one is selected as L1. Then, Fuwa calculates the
second likelihood logarithm, L2, under another hypoth-
esis that the variant is false and that reads covering this
locus follow the binomial distribution model. Thus, L1-
L2, or DeltaL, is the logarithm of the ratio of the first
and second likelihoods. If DeltaL is close to 0, which
means the likelihoods of the ideal model and the bino-
mial model are nearly equal, we empirically judged the
variant to be false positive; otherwise, the variant tends
to be true.

Category II. Base quality
This category focuses on the accuracy of a base
sequenced by the sequencing machine, which has con-
siderable impact on variant calling.

Feature 4: Sum of Base Quality (SumBQ) This feature
is the sum of the base quality of effective reads for one
candidate variant. For indel reads, this value is set to 30
empirically.

Feature 5: Average Mapping Quality (AveBQ) By div-
iding SumBQ by the number of effective reads, we ob-
tain the average mapping quality.

Feature 6: Variance of Position (VarPos) Here, “pos-
ition” means the offset of the pile-up site from the 3′
end of a read. We use this statistic considering that, gen-
erally, sequencing quality declines towards the end of a
read; thus, candidate variants that are close to the 3′
end are more likely to be sequencing errors.
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Category III. Mapping/alignment quality
This category considers how well a read is mapped and
aligned to its current locus. Mismatches lead to a higher
possibility of false positives.

Feature 7: Average Mapping Quality (AveMQ) The
average of the mapping quality of effective reads at the
candidate variant’s locus.

Feature 8: Worst Mapping Quality (WorMQ) The
worst mapping quality of all reads at the candidate vari-
ant’s locus.

Feature 9: Poor Mapping Quality Ratio (PoorMQR)
The ratio of reads with mapping quality lower than 15 at
the candidate variant’s locus.

Feature 10: Average Alignment Score (AveAS) The
alignment score is a different metric than mapping qual-
ity, and its computing methods vary from aligner to
aligner. Briefly speaking, the alignment score measures
the similarity between a read and the reference genome,
while mapping quality reflects the specificity that a read
tends to be mapped to its current locus instead of other
loci. AveAS is the average of the alignment scores of all
reads at the candidate variant’s locus.

Category IV. Strand Bias
This category assumes that effective reads of true posi-
tives from positive and negative strands of DNA should
be approximately equal.

Feature 11: Variance of Strands (VarStr) Assuming
that the numbers of effective reads from positive/nega-
tive strands obey the binomial distribution, the variance
can be calculated through the formula D(n) = np(1-p). If
VarStr is small, it means that reads of the candidate vari-
ant cluster in one direction, suggesting a sequencing
error or other false positive situations.

Feature 12: Bias of Strands (BiasStr) BiasStr is a χ 2

value measuring the significance of correlation between
“whether a read is effective” and the direction of strand
that the read comes from. It is calculated by using a 2 ×
2 contingency table (see Table 1):

x2 ¼ n ad−bcð Þ2
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ

where n = a + b + c + d.
If BiasStr is too high, which means the effective reads

of the candidate variant cluster in one strand, the candi-
date tends to be caused by sequencing error.

Modelling, calling and genotyping
When the training set is ready, Fuwa trains a decision
tree using CART training algorithm. Once the tree is
built, all candidate variants in each leaf node are
assigned a new qual value, which is the mean qual of all
candidate variants in that leaf node. Candidates with a
qual higher than the threshold are reported as true vari-
ants in the final call set. The default threshold is set to
0.8 for SNPs and 0.6 for indels empirically.
Fuwa adopts a simple but effective genotyping strat-

egy: if the effective depth of alternative reads is more
than ten times the effective depth of reference reads, the
genotype is considered homozygosity; otherwise, it is
considered heterozygosity. This strategy is sufficient for
most demands, and more precise (also slower) genotyp-
ing methods such as population-based genotyping can
be applied if needed.

Results
Application 1: calling variants from whole-genome, exome-
capture and low-coverage whole-genome sequencing data
of NA12878
A well-studied sample, NA12878 (CEU cohort from
Utah of northern and western European ancestry)
from the 1000 Genomes Project [13], was analysed to
evaluate the performance of Fuwa. We started from
HiSeq WGS (75~ 86× 101-bp paired-end) data, exome-
capture (average 210× 100-bp paired-end) data and low-
coverage (~ 4×) whole-genome sequencing data, con-
ducted read alignment with BWA (version 0.7.12), and
applied preprocessing steps including duplicate removal,
local realignment and base quality recalibration before the
calling step. After the call sets were generated, we used
the Axiom chip, high-quality haploid fosmid data and the
NIST Genome in a Bottle integrated calls v0.2 (GIAB)
[14] as benchmarks to evaluate these call sets. We com-
pared Fuwa to 4 well-known DNA variant callers: SAM-
tools, GTAK-UnifiedGenotyper, GATK-HaplotypeCaller
and Platypus, using all their latest version (SAMtools 1.3.
1, GATK 3.7, and Platypus 0.8.1), default settings and ap-
plying their official “best practices”. We noticed that
GATK 4 just released a beta version. In GATK 4, Unified-
Genotyper has been removed, while HaplotypeCaller for
germline variants is directly inherited from GATK 3.7,
and the experimental results of HaplotypeCaller from
GATK 3.7 and GATK 4 are very close.

Table 1 Contingency table for calculating BiasStr

Strand Direction Effective Positive Negative

Yes a b

No c d
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Calling variants from HiSeq whole-genome data
The experimental result indicates that Fuwa achieves
fast speed and high precision in calling both SNVs and
indels, with no obvious shortcomings (Table 2). The
transition /transversion ratio of 2.03 is close to that in a
previous study [15], which suggests good specificity for
SNVs. Axiom SNP chip data offered strong support: Fuwa
achieved the highest genotype concordance (99.32%) and
lowest mono rate (0.04%). Although Fuwa called
3,820,377 SNVs, which was not as many as GATK-
UnifiedGenotyper (4441130), GATK-HaplotypeCaller
(4034309) or SAMtools (3959135), its recall against
Axiom data (96.81%) and fosmid data (93.5%) is close to
the three callers mentioned above.
Using orthogonal technology such as Axiom and

fosmid to estimate quality metrics has many limitations
because microarray sites are not randomly distributed
among the whole genome, as they only have genotype
content with known common SNVs in regions that can
be accessed by the technology. To overcome these
limitations, we introduced the integrated call set of
NA12878 from the Genome in a Bottle Consortium as
benchmark, which combines 14 data sets from 5 sequen-
cing technologies, 7 read mappers, and 3 variant callers:
GATK-UnifiedGenotyper, GATK-HaplotypeCaller and
Cortex. The source of the GIAB data suggests this
benchmark in favour of GATK and may not be friendly
to new callers. However, Fuwa still performs well: both
recall and precision of GIAB are only slightly lower than
the best values of corresponding metrics, further

providing powerful evidence of Fuwa’s high sensitivity
and accuracy on SNV calling in genome-wide data.
Indel calling is a more challenging task than SNV call-

ing, but Fuwa can also perform well at this task. Frame-
shift indels in coding regions of DNA nearly always lead
to the loss of function of proteins, so the frameshift frac-
tion of indels is considered to be lower in coding regions
than in non-coding regions. A previous study showed
that approximately 50% of coding indels cause frameshift
[16]. In the results of NA12878 whole-genome data call-
ing, Fuwa called 649,387 indels with an in-frame fraction
(fraction of indels that do not lead to frameshift) of 0.47,
indicating high quality of the call set. Fuwa achieves the
highest precision on GIAB (95.93%), while its recalls
against fosmid data (68.4%, average 68.18%) and GIAB
(87.48%, average 84.48%) are acceptable; from these data,
we can estimate a low false-positive rate. Platypus
achieved the highest fosmid recall (75.69%) with the
smallest call set size (575350), which made it appear to
have the highest precision, but indicators from GIAB
showed the opposite result. We infer that this situation
occurred because the fosmid chip only covers a small
number of sites (1057) and the algorithm of Platypus
may be more specific for these sites than other callers.
To evaluate Fuwa’s ability to call variants not in

dbSNP, we excluded variants that are in dbSNP from
Fuwa, Axiom, Fosmid, and the 1000 Genomes call sets,
and then we recalculated the same metrics. The results
are shown in Table 3. Specifically, Axiom called 299
non-reference sites, and Fuwa rediscovered 289 of them;

Table 2 Comparison of four variant callers on whole-genome sequencing data

Whole genome

Fuwa Platypus GATK-UG GATK-HC SAMtools

SNPs 3,820,377 3,271,282 4,441,130 4,034,309 3,959,135

Ti/tv 2.03 2.13 1.84 1.94 2.01

Axiom GT concordance (%) 99.32 98.29 97.3 98.52 99

Sensitivity (%) 96.81 94.34 97.41 97.16 96.88

Mono rate (%) 0.04 0.13 0.22 0.11 0.07

Fosmid Recall (%) 93.5 90.7 95.03 94.56 93.79

GIAB Recall (%) 98.41 89.34 98.65 98.44 97.89

Precision (%) 99.26 99.69 97.72 98.79 99.47

Indels 649,387 575,350 711,045 884,204 765,800

In-frame fraction 0.47 0.47 0.46 0.51 0.45

Fosmid Recall (%) 68.04 75.69 64.31 72.25 60.59

GIAB Recall (%) 87.48 69.49 89.74 94.7 80.98

Precision (%) 95.93 78.49 95.59 94.08 92.32

Runtime (real time, min) 127 233 1058 2545 1546

Ti/tv, transition/transversion rate; GT concordance, concordance of genotypes at Axiom-called loci; Sensitivity, ratio of non-reference calls at Axiom-called loci;
Mono rate, fraction of monomorphic Axiom sites that are called as variants; In-frame fraction, fraction of indels (limited to coding regions) whose length are
integer multiples of 3; Runtime, CPU minutes needed to process the input bam file; Recall = TP/(TP + FN); Precision = TP/(TP + FP); TP true positive, FN false
negative, FP false positive
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Fosmid called 495 variants, and Fuwa rediscovered 315
of them; the 1000 Genomes confident call set contains
285,095 variants not in dbSNP, and Fuwa called 251,095
of them. We observed that Fuwa can still predict most
variants, indicating that Fuwa has gained power to infer
new variants through the model training process. Thus
our basic assumption that, real variants not in dbSNP
and variants in dbSNP should have similar characteris-
tics for the 12 features, is supported.
Since calling rare variants is the challenging but yet

important component, we specifically evaluated Fuwa’s
ability to call rare variants. According to Table 4, we
estimated that Fuwa’s sensitivities for variants with an
allele frequency lower than 5% (73.21%), 1% (62.87%),
0.5% (60.26%) and 0.1% (63.08%) are very similar to
those of Platypus, GATK and SAMtools (average 73.
19%, 62.77%, 60.12% and 62.87%). Further study
showed a high coincidence of the rare variants (AF ≤
5%) callsets of the 4 callers, specifically over 99% rare
variants called by Fuwa are also called by GATK, sug-
gesting good specificity of Fuwa for calling rare
variants.
As for run time, Fuwa only spends approximately

2 h (127 min) on the calling process and reduces the
CPU time cost by an order of magnitude when com-
pared with GATK (UnifiedGenotyper 1058 min, Hap-
lotypeCaller 2545 min) or SAMtools (1546 min) and
by nearly half when compared with Platypus
(233 min). The ultra-fast calling speed allows Fuwa to
achieve high throughput.

Calling variants from exome-capture data
Exome-capture sequencing is more efficient and cost-
effective than whole-genome sequencing because the
time and monetary costs of exome-capture sequencing
are much lower than those of whole genome sequencing,
and most clinically explicable variants occur in coding
regions. We called exome-capture data of NA12878, and
then used SNP chips and GIAB integrated calling set to
evaluate the sensitivity and accuracy of callers. The ana-
lysis results are shown in Table 5. Note that the compu-
tation of all the metrics in this table was limited in the
coding regions.
As shown in Table 5, the overall results are quite simi-

lar to those of whole-genome data. Fuwa ranks first in
SNV recall against GIAB (87.59%) and second in all
other quality metrics, among which most are very close
to the best values of the same rows: Axiom genotype
concordance (0.33%), Axiom mono rate (0.02%), GIAB
SNP precision (0.44%) and GIAB indel recall (0.06%),
indicating good specificity for exome sequencing data.
Again, Fuwa finished variant calling process at time cost
of an order of magnitude less than that of GATK and
six-sevenths less than that of SAMtools. Although Platy-
pus ran somewhat (4 min) faster than Fuwa, it produced
the worst results for half of the metrics. Overall, Fuwa
achieves high speed with a well-balanced performance
with regard to accuracy and recall, making it a good
choice for exome-capture data analysis.

Calling variants from low-coverage sequencing data
Low-coverage data pose a great challenge for variant
detection because there may not be enough reads at each
locus for making the right judgement. To evaluate the 5
calling algorithms’ adaptation for such kind of data, we
applied them to NA12878 low-coverage sequencing data
(average ~ 4×). The results are shown in Table 6. Conse-
quently, Fuwa’s performance is stable compared to experi-
ments with WGS data and exome-capture sequencing
data. Some callers encounter a much sharper reduction in
some aspects of performance than others, such as

Table 3 Comparison of Fuwa’s callsets on NA12878 WGS data
before and after variants in dbSNP are removed

All non-dbSNPs

Axiom GT concordance(%) 99.32 100.00

Sensitivity(%) 96.81 96.66

Mono Rate(%) 0.04 0.00

Fosmid Recall(%) 88.11 63.63

1KG confident call set Recall(%) 95.31 88.07

Table 4 Comparison of four variant callers for calling rare variants

AF benchmark
(high-conf)

Fuwa Platypus GATK-UG GATK-HC SAMtools

≤5% count 282,869 207,098 201,577 210,190 209,119 207,187

ratio (%) – 73.21 71.26 74.31 73.93 73.24

≤1% count 128,661 80,895 78,908 81,758 81,417 80,956

ratio (%) – 62.87 61.33 63.55 63.28 62.92

≤0.5% count 92,309 55,630 54,280 56,137 55,928 55,646

ratio (%) – 60.26 58.80 60.81 60.59 60.28

≤0.1% count 37,563 23,695 23,112 23,863 23,795 23,688

ratio (%) – 63.08 61.53 63.53 63.35 63.06

AF allele frequency
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Platypus for SNV recalls (12%~ 17% below average) and
GATK-UnifiedGenotyper for indel discovery (4 indel
metrics of GATK-UG rank last); these reductions do not
occur with Fuwa. In contrast, Fuwa ranks first or second
in 7 of 11 comparable items, while the performance on
the remaining 4 items is higher or slightly lower than the
average level.
To further measure Fuwa’s specificity for low-

coverage data, we compared the overlap of call sets
of WGS high-coverage and low-coverage data (Fig. 2)
for each caller. The Venn diagrams in Fig. 2 indicate

that the call sets of Fuwa have a significantly higher
overlap ratio against the union set both for SNVs (76.
82%) and indels (52.16%) than other callers. The
Venn diagram of SAMtools SNV looks similar to that
of Fuwa, but its overlap ratio is actually 71.43%, lower
than that of Fuwa by 5.39%. For indel, the difference
is even more obvious: the second-ranking overlap
ratio, which is also from SAMtools, is 39.64%, drop-
ping 12.52% below the value of Fuwa. The result sup-
ports that Fuwa has outstanding specificity for low-
pass data.

Table 5 Comparison of four variant callers on whole-exome sequencing data

Whole exome

Fuwa Platypus GATK-UG GATK-HC SAMtools

SNPs 22,119 21,260 24,777 21,774 20,938

Ti/tv 2.65 2.97 2.36 2.59 2.7

Axiom GT concordance (%) 96.82 92.83 90.83 95.65 97.15

Recall (%) 91.09 86.55 92.37 90.34 89.8

Mono rate (%) 0.1 0.28 0.37 0.16 0.08

Fosmid Recall (%) NA NA NA NA NA

GIAB Recall (%) 87.59 77.39 87.02 86.37 86.78

Precision (%) 98.44 99.88 93.06 96.28 97.61

Indels 478 773 405 440 680

In-frame fraction 0.39 0.28 0.35 0.44 0.35

Fosmid Recall (%) NA NA NA NA NA

GIAB Recall (%) 64.41 51.42 55.35 64.47 52.37

Precision (%) 92.79 68.87 91.71 96.4 78.24

Runtime (real time, min) 13.5 9.8 93.6 170.5 85.3

NA not available. Fosmid call set failed to act as a benchmark on exome data analysis results because it rarely covers sites of exome regions

Table 6 Comparison of four variant callers on low-coverage WGS data

Low coverage

Fuwa Platypus GATK-UG GATK-HC SAMtools

SNPs 3,023,581 2,233,580 3,121,470 2,494,546 2,846,019

Ti/tv 2.02 2.08 1.95 1.98 1.99

Axiom GT concordance (%) 92.94 94.25 92.02 93.28 91.29

Recall (%) 75.88 57.74 77.22 62.89 72.58

Mono rate (%) 0.03 0.01 0.05 0.02 0.03

Fosmid Recall (%) 77.68 59.62 78.45 65.59 73.87

GIAB Recall (%) 79.09 51.32 66.87 66.99 75.78

Precision (%) 98.94 99.62 99.41 99.48 99.37

Indels 428,290 441,861 108,233 340,404 386,158

In-frame fraction 0.41 0.43 0.37 0.43 0.48

Fosmid Recall (%) 42.75 42.45 12.75 33.73 35.88

GIAB Recall (%) 59.33 46.62 16.77 48.5 52.69

Precision (%) 95.2 79.9 97.79 95.8 94.06

Runtime (real time, min) 37.7 24 138 427.8 312.3
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Application 2: calling variants from data which have not
been used to populate dbSNP
Due to the fact that NA12878 has been well studied and
almost all of its variants are in dbSNP, we conducted
additional experiments on 4 other samples to further
evaluate Fuwa’s performance under more general condi-
tions. Three of these samples (NA24149, NA24143, and
NA24385) are an Ashkenazim trio and the other one
(NA24631) is a Chinese male. These samples are newly
released by GIAB and have not been used to populate
dbSNP. We used the high-confidence callsets of these
samples provided by GIAB as benchmarks for estimating
sensitivities of Fuwa and other callers. About 8% variants

in these benchmarks are not in dbSNP. The analysis
results are shown in Table 7. The results show that Fuwa
is a top hunter for SNPs (highest recall 99.91%, highest
precision 84.92%), while its ability for calling indels
(highest recall 93.52%, highest precision 60.87%) stay
comparable to other callers. Although Fuwa is somehow
weaker in discovering more indels, its specificity for
indel calling is often the highest.
We compared the ability of the four callers to call

rare and novel variants as is shown in Tables 8 and 9.
The results of calling variants from the four samples
are all very similar, so for convenience we will take the
data of Tables 8a and 9a respectively in the following.

Fig. 2 Overlap between WGS high-coverage and low-coverage call sets
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We still used high-confidence callsets provided by
GIAB as benchmarks, and the values of allele frequen-
cies were obtained from gnomAD. The results in
Table 8a show that Fuwa discovered over 98.63%
known rare variants of the high-confidence callsets,
which is higher than Platypus (95.57%) and is very close
to GATK (99.51%). Such results provided more evi-
dence of Fuwa’s specificity for calling rare variants.
Meanwhile, we noticed that Fuwa performed weaker
than GATK and Platypus in calling variants that are not
in gnomAD. Further study showed that Fuwa found
about 95.4% non-gnomAD SNPs, which is close to
GATK (about 96.2%). But indels are the majority of

non-gnomAD variants (average ratio 89.5%) and Fuwa
found only 87.8% of them. In Table 9 we compared the
performance of the four calling programmes on non-
dbSNP variants. The results showed that Fuwa has the
highest precisions for both SNPs (78.03%) and indels
(31.33%), a very high recall for SNPs (99.26%) and a
higher recall for indels (78.23%) than SAMtools. Con-
sidering that more sensitive indel calling requires
much more complex algorithms and Fuwa achieved
such specificities and sensitivities at much higher
speed than other callers (see below), we think the
weaker performance of Fuwa on discovering novel
indels are acceptable.

Table 7 Comparison of SNP and indel calls on the WGS data of the Ashkenazim Trio and the Chinese sample for the four callers

benchmark Fuwa Platypus GATK-UG GATK-HC SAMtools

a. NA24149

Total 3,600,577 4,596,629 4,936,516 5,078,361 4,962,252 5,121,162

SNP 3,062,103 3,773,197 3,741,864 4,222,373 4,073,476 4,052,727

Indel 538,474 823,432 1,194,652 855,988 888,776 1,068,435

SNP Recall(%) – 99.64 94.10 99.88 99.88 99.55

SNP Precision(%) – 80.86 77.00 72.44 75.08 75.22

Indel Recall(%) – 91.99 97.26 95.51 96.66 80.30

Indel Precision(%) – 60.16 43.84 60.08 58.57 40.47

b. NA24143

Total 3,638,487 4,683,584 5,047,869 5,185,325 5,069,960 5,231,986

SNP 3,089,689 3,848,083 3,818,763 4,304,521 4,153,126 4,127,152

Indel 548,798 835,501 1,229,106 880,804 916,834 1,104,834

SNP Recall(%) – 99.65 94.12 99.89 99.90 99.55

SNP Precision(%) 80.01 76.15 71.70 74.32 74.53

Indel Recall(%) – 91.86 97.29 95.73 96.92 80.38

Indel Precision(%) 60.34 43.44 59.64 58.01 39.92

c. NA24385

Total 3,650,031 4,765,697 4,425,266 4,839,691 4,685,838 5,191,731

SNP 3,101,709 3,942,411 3,452,047 3,987,637 3,803,199 4,123,595

Indel 548,322 823,286 973,219 852,054 882,639 1,068,136

SNP Recall(%) – 99.91 88.60 99.88 99.92 99.67

SNP Precision(%) 78.60 79.60 77.69 81.49 74.97

Indel Recall(%) – 91.39 90.14 95.98 98.21 81.96

Indel Precision(%) 60.87 50.79 61.77 61.01 42.07

d. NA24631

Total 3,655,030 4,599,648 4,935,176 4,987,136 4,871,278 4,667,766

SNP 3,195,050 3,743,038 3,647,691 4,079,102 3,901,018 3,900,109

Indel 459,980 856,610 1,287,485 908,034 970,260 767,657

SNP Recall(%) – 99.48 93.98 99.93 99.92 99.67

SNP Precision(%) 84.92 82.32 78.27 81.84 81.65

Indel Recall(%) – 93.52 97.53 97.53 99.54 12.48

Indel Precision(%) 50.22 34.84 49.41 47.19 7.48
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Table 8 Rare and novel variants called by each of the four callers from the WGS data of the Ashkenazim Trio and the Chinese sample

AF benchmark Fuwa Platypus GATK-UG GATK-HC SAMtools

a. NA24149

≤ 5% Count 182,482 179,986 174,392 181,248 181,586 179,514

Recall (%) – 98.63 95.57 99.32 99.51 98.37

≤ 1% Count 72,585 71,636 69,736 72,098 72,090 71,434

Recall (%) – 98.69 96.07 99.33 99.32 98.41

≤ 0.5% Count 54,448 53,757 52,379 54,096 54,041 53,603

Recall (%) – 98.73 96.20 99.35 99.25 98.45

≤ 0.1% Count 32,831 32,473 31,607 32,637 32,567 32,402

Recall (%) – 98.91 96.27 99.41 99.20 98.69

= 0%
(novel)

Count 298,984 265,501 285,754 282,165 282,348 211,935

Recall(%) – 88.80 95.58 94.37 94.44 70.89

b. NA24143

≤ 5% Count 189,494 187,013 180,969 188,308 188,644 186,607

Recall (%) – 98.69 95.50 99.37 99.55 98.48

≤ 1% Count 74,701 73,773 71,681 74,253 74,215 73,646

Recall (%) – 98.76 95.96 99.40 99.35 98.59

≤ 0.5% Count 55,428 54,744 53,241 55,104 55,023 54,664

Recall (%) – 98.77 96.05 99.42 99.27 98.62

≤ 0.1% Count 33,113 32,711 31,816 32,918 32,831 32,705

Recall (%) – 98.79 96.08 99.41 99.15 98.77

= 0%
(novel)

Count 304,746 269,764 291,681 288,547 288,978 215,956

Recall(%) – 88.52 95.71 94.68 94.83 70.86

c. NA24385

≤ 5% Count 187,589 185,929 163,225 186,412 186,909 185,048

Recall (%) – 99.12 87.01 99.37 99.64 98.65

≤ 1% Count 74,132 73,539 64,827 73,693 73,720 73,241

Recall (%) – 99.20 87.45 99.41 99.44 98.80

≤ 0.5% Count 55,153 54,748 48,305 54,851 54,811 54,551

Recall (%) – 99.27 87.58 99.45 99.38 98.91

≤ 0.1% Count 32,722 32,516 28,673 32,547 32,487 32,443

Recall (%) – 99.37 87.63 99.47 99.28 99.15

= 0%
(novel)

Count 303,456 267,728 259,920 289,030 294,058 222,433

Recall(%) – 88.23 85.65 95.25 96.90 73.30

d. NA24631

≤ 5% Count 241,718 239,035 230,265 240,706 241,089 222,774

Recall (%) – 98.89 95.26 99.58 99.74 92.16

≤ 1% Count 112,774 111,568 108,087 112,284 112,308 104,437

Recall (%) – 98.93 95.84 99.57 99.59 92.61

≤ 0.5% Count 88,884 87,972 85,370 88,521 88,467 82,493

Recall (%) – 98.97 96.05 99.59 99.53 92.81

≤ 0.1% Count 47,358 46,889 45,557 47,135 47,045 44,078

Recall (%) – 99.01 96.20 99.53 99.34 93.07

= 0%
(novel)

Count 231,303 208,579 220,259 224,747 227,952 66,392

Recall(%) – 90.18 95.23 97.17 98.55 28.70

AF, allele frequency; novel, the variant is not in gnomAD
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Finally, we compared the time, RAM and CPU
costs of the four callers when calling NA24149 in
Table 10 (the hardware and system environments for
experiments are listed in Table 11). Fuwa finished the
task in an hour and a half, while Platypus spent half
a day, and the slowest caller, GATK-HC, ran two days
and a half. Fuwa achieved such a high speed using
only one CPU thread and no more than 1.6G RAM,
saving much CPU and RAM resources compared to

GATK. Moreover, when calling variants from NA24385
(BAM size 284GB after preprocessing), Fuwa finished
in 3 h, but GATK predicted itself to run over 8 days,
so we had to split the BAM file into 4 ones and ran
4 GATK processes to call them in parallel, each
process with 8 threads. Even so GATK still fell be-
hind Fuwa by about 10 h. With the fast increase of
the size of single NGS data file, the advantages of
Fuwa will be more prominent.

Table 9 Recalls and precisions of the four callers for non-dbSNPs

benchmark Fuwa Platypus GATK-UG GATK-HC SAMtools

a. NA24149

non-dbSNPs SNP 235,880 300,076 473,231 644,589 568,941 543,132

Indel 41,779 104,329 398,110 125,147 158,748 416,411

non-dbSNPs in benchmark SNP 235,880 234,135 230,167 235,362 235,506 234,330

Recall (%) – 99.26 97.58 99.78 99.84 99.34

Precision(%) – 78.03 48.64 36.51 41.39 43.14

Indel 41,779 32,682 37,472 34,926 38,036 29,766

Recall(%) – 78.23 89.69 83.60 91.04 71.25

Precision (%) – 31.33 9.41 27.91 23.96 7.15

b. NA24149

non-dbSNPs SNP 235,889 306,323 486,914 659,433 582,136 551,555

Indel 42,960 105,352 412,520 131,903 167,074 437,377

non-dbSNPs in benchmark SNP 235,889 233,881 230,076 235,251 235,477 234,184

Recall (%) – 99.15 97.54 99.73 99.83 99.28

Precision(%) – 76.35 47.25 35.67 40.45 42.46

Indel 42,960 33,262 38,642 36,128 39,354 30,455

Recall(%) – 77.43 89.95 84.10 91.61 70.89

Precision (%) – 31.57 9.37 27.39 23.55 6.96

c. NA24385

non-dbSNPs SNP 235,666 337,194 405,643 420,580 335,917 510,292

Indel 43,316 101,414 287,205 111,591 133,827 393,173

non-dbSNPs in benchmark SNP 235,666 234,975 216,620 235,010 235,227 234,147

Recall (%) – 99.71 91.92 99.72 99.81 99.36

Precision(%) – 69.69 53.40 55.88 70.03 45.88

Indel 43,316 32,730 32,728 36,766 40,921 31,719

Recall(%) – 75.56 75.56 84.88 94.47 73.23

Precision (%) – 32.27 11.40 32.95 30.58 8.07

d. NA24631

non-dbSNPs SNP 238,105 279,070 339,514 426,948 353,943 344,006

Indel 29,923 108,105 436,409 124,443 160,437 491,021

non-dbSNPs in benchmark SNP 238,105 236,336 232,361 237,545 237,664 236,804

Recall (%) – 99.26 97.59 99.76 99.81 99.45

Precision(%) – 84.69 68.44 55.64 67.15 68.84

Indel 29,923 22,869 26,652 26,007 28,970 6885

Recall(%) – 76.43 89.07 86.91 96.82 23.01

Precision (%) – 21.15 6.11 20.90 18.06 1.40
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Discussion
The following command line is a typical invocation of
Fuwa:
fuwa -i sample.bam -d dbsnp141.gz -r ref-

erence/ -o sample.fuwa.
The input file dbsnp141.gz provides variants in dbSNP,

and the input directory reference provides all the DNA
reference sequences. To cut down the cost of I/O opera-
tions and the memory usage, we divided hs37d5.fa into
multiple files according to chromosomes, and these files
must be put in the same directory, i.e., the reference
directory.
In a single run, besides the VCF file Fuwa also outputs

a “tree” file that records all the nodes as well as their
relevant decisions of the decision tree. Each node of the
tree is written in a separate line. Below is an example of
a node:
1395 0.91798 SumBQ> 329 VarPos> 118,520

AveBQ> 16.4222 AveMQ> 47.1515 \.
Depth> 87.9315 AveAS> 68.8356 Ratio> 0.

818494 DeltaL>− 0.0100506 \.
AveAS> 93.4468 AveMQ> 69.9913 AveBQ> 23.

6107 VarPos> 320,454 \.
AveAS> 123.286 AveMQ> 71.1475.
The first item is the number of candidate variants in

this node. The second item is the qual value of this
node. And the rest items of this line record the decision
process that ends up with this node.

Conclusions
We proposed a decision-tree-based method Fuwa for
fast calling variants. Although decision tree is not a very
sophisticated algorithm, Fuwa is expected to achieve
good performance with regard to accuracy, recall and
speed simultaneously. The results of applying Fuwa to a

well-studied sample from 1000 Genomes met our expec-
tations on whole-genome sequencing data, whole-exome
capture data and low-coverage data. Comparison be-
tween high-coverage and low-coverage WGS call sets
demonstrates that Fuwa is capable of handling sequen-
cing depth insufficiency, benefiting from the usage of
dbSNP and the self-adaption property of machine learn-
ing algorithms. Further experiments on 4 samples that
have not been used to populate dbSNP added more evi-
dence to Fuwa’s specificity on calling common and rare
variants, and the runtime records suggested that Fuwa is
not only a fast caller, but also a resource-conserving
programme, making Fuwa a competitive choice in pro-
cessing NGS data that are getting larger every year.
One advantage of machine learning algorithms is that

their working parameters do not rely on user settings.
Among those popular callers such as SAMtools, there
exist many parameters for setting thresholds. Although
most parameters have default values that usually work
fine, these values are mostly obtained empirically, and
when applied to unusual data sets such as low-coverage
sequencing data, they are not as useful as they are in
common situations. In contrast, Fuwa can automatically
learn to adapt to different datasets and keep performing
well. We believe that Fuwa is a good choice for signifi-
cantly improving the throughput of the NGS data ana-
lysis pipeline for both high-pass and low-coverage data.
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Below are the detailed parameters for preprocessing raw BAM files and
calling variants in the experiment.

1) BAM files preprocessing

Step 1. Marking Duplicates
java -jar ${gatkDir}/picard.jar MarkDuplicates \
TMP_DIR= /tmp
I=${raw_bam}
O=${sample}.dedup.bam \
M=marked_dup_metrics.txt
Step 2. Adding read groups

Table 10 Runtime comparison of the four calling programs using
NA24149 WGS data as input

Fuwa Platypus GATK-UG GATK-HC SAMtools

Time(min) 96.97 796 1434.6 3617.4 3025.68

RAM max(M) 1638.4 3174.4 4710.4 6656 284

RAM average(M) 1299.85 1217.72 1092.03 1935.76 192.67

CPU max(%) 100 100 257.2 1336.1 100

CPU average(%) 98.9 98.57 104.23 112.21 98.85

Table 11 Hardware and system environments for the experiment

RAM 64GB

CPU 2 physical CPUs, each with 8 cores

CPU model 2.60GHz Intel(R) Xeon(R) CPU E5–2670

Logical Processor 32

OS Ubuntu14.04.5 LTS x86_64

Java version 1.8.0_121, Java(TM) SE Runtime Environment
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java -jar ${gatkDir}/picard.jar
AddOrReplaceReadGroups \
TMP_DIR=/tmp
I=${sample}.dedup.bam \
O=${sample}.headed.bam \
RGID=b37ID RGLB=b37ID RGPL=illumina RGPU=b37PU RGSM=20
samtools index ${sample}.headed.bam
Step 3. Local realignment around indels
java -jar ${gatkDir}/GenomeAnalysisTK.jar -T
RealignerTargetCreator \
-R ${refDir}/hs37d5.fa \
-I ${sample}.headed.bam \
-o ${sample}.realn.intervals \
-known ${refDir}/
Mills_and_1000G_gold_standard.indels.b37.vcf \
-known ${refDir}/1000G_phase1.indels.b37.vcf
java -jar ${gatkDir}/GenomeAnalysisTK.jar -T
IndelRealigner \
-R ${refDir}/hs37d5.fa \
-I ${sample}.headed.bam \
-o ${sample}.realn.bam \
-targetIntervals ${sample}.realn.intervals \
-known ${refDir}/
Mills_and_1000G_gold_standard.indels.b37.vcf \
-known ${refDir}/1000G_phase1.indels.b37.vcf
Step 4. Base quality score recalibration
java -jar ${gatkDir}/GenomeAnalysisTK.jar -T
BaseRecalibrator \
-R ${refDir}/hs37d5.fa \
-I ${sample}.realn.bam \
-o ${sample}.recalibration_report.grp \
-knownSites ${refDir}/dbsnp_138.b37.vcf \
-knownSites ${refDir}/
Mills_and_1000G_gold_standard.indels.b37.vcf \
-knownSites ${refDir}/1000G_phase1.indels.b37.vcf
java -jar ${gatkDir}/GenomeAnalysisTK.jar -T
PrintReads \
-R ${refDir}/hs37d5.fa \
-I ${sample}.realn.bam \
-o ${sample}.realn.recal.bam \
-BQSR ${sample}.recalibration_report.grp
Note:

1. The downloaded NA12878 WGS and exome-capture BAM files have
already been preprocessed through the 4 steps above.

2. We applied the full preprocessing pipeline on NA12878 low-
coverage WGS data, and before that we used BWA to convert the
raw FASTQ into a BAM file.

3. We failed to apply marking duplicates to NA24149, NA24143,
NA24385 and NA24631 because some information required by
Picard doesn’t exist in the raw BAM files downloaded from GIAB.
So we skipped the first preprocessing step and conducted the
remaining 3 steps on those 4 samples.

4. To save time we split the NA24385 BAM file into 4 ones, then we
preprocessed and called them in parallel. After variants calling we
merged the VCF files from the same caller using BCFtools. We also
split the NA24631 raw BAM file into 9 ones for parallel.

2) Variant calling

Fuwa
${fuwaDir}/fuwa -d ${fuwaDir}/dbsnp141.gz -r
${fuwaDir}/reference/ -i ${sample}.bam -o
${sample}.fuwa
Platypus
python ${platypusDir}/Platypus.py callVariants
–bamFiles=${sample}.bam –refFile=${refDir}/hs37d5.fa
–output=${sample}.platypus.vcf
GATK-HaplotypeCaller
java -jar ${gatkDir}/GenomeAnalysisTK.jar \
-R ${refDir}/hs37d5.fa \
-T HaplotypeCaller \

-I ${sample}.bam \
-o ${sample}.gatk.HC.vcf
GATK-UnifiedGenotyper
java -jar ${gatkDir}/GenomeAnalysisTK.jar \
-R ${refDir}/hs37d5.fa \
-T UnifiedGenotyper \
-I ${sample}.bam \
-o ${sample}.gatk.UG.vcf \
-glm BOTH \
-rf BadCigar
SAMtools
samtools mpileup -ugf ${refDir}/hs37d5.fa
${sample}.bam | bcftools call -vmO z -o
${sample}.samtools.vcf.gz
Note: we added “–nct 8” parameters when running GATK-HaplotypeCaller
and GATK-UnifiedGenotyper on NA24385 and NA24631 BAM files.

3) URL list of data and benchmarks

NA12878 WGS BAM:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/
20120117_ceu_trio_b37_decoy/
CEUTrio.HiSeq.WGS.b37_decoy.NA12878.clean.dedup.recal.20120117.bam
NA12878 Exome-capture BAM:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/
20120117_ceu_trio_b37_decoy/
CEUTrio.HiSeq.WEx.b37_decoy.NA12878.clean.dedup.recal.20120117.bam
NA12878 Low-coverage WGS data FASTQ:
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.fastq.gz
Axiom Chip callsets:
ftp://ftp.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/supporting/
axiom_genotypes/ALL.wex.axiom.20120206.snps_and_indels.genotypes.vcf.gz
Fosmid Chip callsets:
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/
20120627_NA12878_fosmid_data/
NA12878.fosmid.ABC12.cleaned.decoy.indel_snp.vcf.gz
NA24149 raw BAM:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
HG003_NA24149_father/NIST_Illumina_2x250bps/novoalign_bams/
HG003.hs37d5.2x250.bam
NA24149 high-conf:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HG003_NA24149_father/latest/GRCh37/HG003_GRCh37_GIAB_highconf_CG-
IllFB-IllGATKHC-Ion-10X_CHROM1-22_v.3.3.2_highconf.vcf.gz
NA24143 raw BAM:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
HG004_NA24143_mother/NIST_Illumina_2x250bps/novoalign_bams/
HG004.hs37d5.2x250.bam
NA24143 high-conf:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HG004_NA24143_mother/latest/GRCh37/
HG004_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-
22_v.3.3.2_highconf.vcf.gz
NA24385 raw BAM:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/
HG002_NA24385_son/NIST_Illumina_2x250bps/novoalign_bams/
HG002.hs37d5.2x250.bam
NA24385 high-conf:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-
IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-
22_v.3.3.2_highconf_triophased.vcf.gz
NA24631 raw BAM:
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/
HG005_NA24631_son_HiSeq_300x/
NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.hs37d5.300x.bam
NA24631 high-conf:
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/ChineseTrio/
HG005_NA24631_son/latest/GRCh37/HG005_GRCh37_highconf_CG-IllFB-
IllGATKHC-Ion-SOLID_CHROM1-22_v.3.3.2_highconf.vcf.gz
GnomAD:
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ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/latest/GRCh37/HG004_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X_CHROM1-22_v.3.3.2_highconf.vcf.gz
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ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh37/HG002_GRCh37_GIAB_highconf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-22_v.3.3.2_highconf_triophased.vcf.gz
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/ChineseTrio/HG005_NA24631_son/HG005_NA24631_son_HiSeq_300x/NHGRI_Illumina300X_Chinesetrio_novoalign_bams/HG005.hs37d5.300x.bam
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https://storage.googleapis.com/gnomad-public/release/2.0.2/vcf/genomes/
gnomad.genomes.r2.0.2.sites.chr1.vcf.bgz
(To get all the VCF files of the whole genome, replace chr1 with ch2, chr3…,
chrX)
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