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Sequence simulation is an important tool in validating biological hypotheses as well as testing various bioinformatics and
molecular evolutionary methods. Hypothesis testing relies on the representational ability of the sequence simulation
method. Simple hypotheses are testable through simulation of random, homogeneously evolving sequence sets.
However, testing complex hypotheses, for example, local similarities, requires simulation of sequence evolution under
heterogeneous models. To this end, we previously introduced indel-Seq-Gen version 1.0 (iSGv1.0; indel, insertion/
deletion). iSGv1.0 allowed heterogeneous protein evolution and motif conservation as well as insertion and deletion
constraints in subsequences. Despite these advances, for complex hypothesis testing, neither iSGv1.0 nor other currently
available sequence simulation methods is sufficient. indel-Seq-Gen version 2.0 (iSGv2.0) aims at simulating evolution of
highly divergent DNA sequences and protein superfamilies. iSGv2.0 improves upon iSGv1.0 through the addition of
lineage-specific evolution, motif conservation using PROSITE-like regular expressions, indel tracking, subsequence-
length constraints, as well as coding and noncoding DNA evolution. Furthermore, we formalize the sequence
representation used for iSGv2.0 and uncover a flaw in the modeling of indels used in current state of the art methods,
which biases simulation results for hypotheses involving indels. We fix this flaw in iSGv2.0 by using a novel discrete
stepping procedure. Finally, we present an example simulation of the calycin-superfamily sequences and compare the
performance of iSGv2.0 with iSGv1.0 and random model of sequence evolution.

Introduction

The goal of simulating sequence evolution is to real-
istically portray the evolutionarywrestlingmatch between 1)
processes that change a biological sequence through point
mutations, insertion/deletion (indel), as well as more dy-
namic chromosomal rearrangement, and 2) functional con-
straints of a sequence that restrict such changes. Such
processes are intertwined during the course of evolution,
forming the patterns that we see in extant homologous
biological sequences.

When sequence simulation was initiated, simulation
methods mainly dealt with substitution processes, incorpo-
rating information on substitution patterns, relative substi-
tution rates across sites based on the Gamma distribution,
and sites that are invariable throughout the evolutionary his-
tory of a group of sequences (Yang 1994; Rambaut and
Grassly 1997). These simulation methods, however, did
not incorporate processes of insertion and deletion of
sequence positions, that is, indels.

The pioneering sequence simulation application to in-
troduce indel events is randommodel of sequence evolution
(ROSE; Stoye et al. 1998). ROSE extended the Gamma dis-
tribution to encompass indel constraints as well, that is, if
the Gamma substitution rate is below a certain threshold, it
forbids an indel to occur in the region. ROSE also provides
the ‘‘true’’ multiple alignment that reflects the true evolu-
tionary path of the sequences. True multiple alignments
can be used to test the accuracy of multiple sequence align-
ment methods and various hypotheses (Stoye et al. 1997;
Lassmann and Sonnhammer 2002; Subramanian et al.
2005). However, due to the limitations in biological realism
with simulated sequences, benchmark data sets are generated
based on mainly hand-curated or structure-based alignments

of protein sequences (Raghava et al. 2003; Edgar 2004;
Subramanian et al. 2005; Thompson et al. 2005; van Walle
et al. 2005). These data sets also have limitations, such as
their small data set size and ambiguous positional homol-
ogy among others (Notredame 2007). Furthermore, the
benchmark alignments cannot be used for testing phyloge-
netic methods, because the evolutionary history among the
sequences is unknown. The primary advantage of simulated
data sets is that the true evolutionary history of the
sequences is known.

To improve the realism of simulated sequences, two
areas must be addressed: sequence conservation and indel
processes. Table 1 compares the functions of various sim-
ulation methods. Lineage- and site-specific conservation as
well as heterogeneous evolution is needed to improve the
realism of sequence evolution simulators. Homogeneous
sequence evolution, as illustrated in figure 1B, is found
in many simulation methods, including EvolveAGene3
(Hall 2008) and DNA assembly with gaps (DAWG;
Cartwright 2005). Richer representations allow heteroge-
neous evolution among sequence ‘‘partitions,’’ where each
partition can be defined by a different set of substitution and
indel parameters (e.g., fig. 1C, gray lineage). SIMPROT
(Pang et al. 2006) and iSGv1.0 (Strope et al. 2007) include
such ‘‘partition’’wise simulation. For site-specific conserva-
tion, the current state of the art is found in iSGv1.0 and
ROSE (Stoye et al. 1997), implemented by disallowing
sites and subsequences from accepting indels. Site-specific
substitution processes, however, are either constrained to be
either completely invariable or mutable to any other char-
acter. Thus, functional constraints on substitution patterns
within the conserved region cannot be simulated, although
functional regions often depend on the properties of their
residues to maintain their functions. This inability to con-
serve residue sets in the sequences affects the ability to
simulate highly diverged superfamily-level evolution.
Lineage-specific evolution is represented only by MySSP
(Rosenberg 2005), which allows users to set substitution
and indel parameters on each branch of the input guide tree.
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For ROSE, indels are simulated based only upon user-
input probabilities and length distributions. Other sequence
evolution simulators follow similar schemes but add novel
functionalities that fit the developers’ purposes. DAWG
(Cartwright 2005), which simulates noncoding DNA evolu-
tion, introduced indels based on an exponential time distri-
bution that determines the waiting time until the next indel
event. The waiting time is calculated based on the indel
probability as a function of sequence size. DAWG adjusts

the sequence length after each indel event, the effect of
which is described in more detail in Results. DAWG also
introduced an indel length distribution that follows the em-
pirically derived power law distribution of Chang and
Benner (2004). MySSP simulates noncoding DNA and
chooses indel lengths in a normally distributed fashion cen-
tered around a user-input mean length (Rosenberg 2005).
SIMPROT introduced a parameterizedmodel of another em-
pirically determined indel length model, the Qian–Goldstein

FIG. 1.—A comparison of the basic simulation paradigm and more realistic biological sequence evolution. (A) Substitution (H) and indel (K)
parameters used for simulation methods. (B) The basic simulation paradigm. Given a root sequence and a global set of substitution and indel parameters
(HG and KG, respectively), simulation proceeds by applying changes in a Monte Carlo manner over all sequence positions, following the guide tree and
ending with a set of operational taxonomic units (OTUs). (C) More realistic biological sequence evolution. Starting with a root sequence and an initial
level of substitution and indel parameters (HG and KG, respectively), evolution at sites may become constrained by gaining a functional motif (the gray
box shown in the gray lineage), and the substitution and indel parameters may be changed (HL and KL) or the initial parameters are maintained without
gaining any functional motif as shown with OTUX.

Table 1
A Comparison of Sequence Simulation Methods

ROSE DAWG MySSP SIMPROT v1.03 iSGv1.0 EvolveAGene3 iSGv2.0

Data simulated
Noncoding DNA Yes Yes Yes No No Yes Yes
Coding DNA No No No No No Yes Yes
Protein Yes No No Yes Yes Noa Yes

Indel treatment
Continuous Yes Yes Yes Yes Yes Yes No
Dynamic length adjustment No Yes No No No No Yes
Event tracking No No No No No No Yes
Pins, Pdel independent Yes Yes Yes No Yes Yes Yes
Indel placement treated differently No No No No No No Yes
Empirical length distributionb No CB04 No CB04,QG01 CB04 Escherichia coli CB04
Overlapping indels Yes Yes Yes Yes Yes No Yes

Heterogeneous evolution (partitions)
Gamma distribution No Yes No No No No Yes
Invariable site proportion No No No Yes Yes No Yes
Indel probabilities No No No Yes Yes No Yes

Lineage treatment & functional constraints
Lineage options

Parameter changing No No Yes No No No Yes
Pseudogene simulation No No No No No No Yes

Indel modeling
Indel depends on Nins, Ndel No No No No No No Yes

Motif conservation
Lineage-specific No No No No No No Yes
Length-specific Yes No No No Yes No Yes
Site-specific No No No No No No Yes

a EvolveAGene3 can output amino acid sequences. However, simulation is done only at the DNA level. The amino acid sequence outputs are translations of the

resulting DNA sequences.
b CB04: Zipfian distribution (Chang and Benner 2004), QG01: Qian–Goldstein distribution (Qian and Goldstein 2001).

2582 Strope et al.



distribution (Qian and Goldstein 2001), and simulates a con-
tinuous indel model by correcting for multiple indels in the
same position based on the starting branch length (Pang
et al. 2006). EvolveAGene3 simulates coding sequences
and indel frequencies as empirically observed in Escheri-
chia coli evolution (Hall 2008). Recently introduced GSI-
MULATOR directly estimates parameters by training
transducers on a set of pairwise alignments and uses these
transducers to perform the simulations (Bradley and Holmes
2007; Varadarajan et al. 2008). Consequently, users cannot
set indel parameters in GSIMULATOR. indel-Seq-Gen ver-
sion 1.0 (iSGv1.0) (Strope et al. 2007), which used Seq-Gen
(Rambaut and Grassly 1997) as the substitution engine, spe-
cifically addressed functional subsequence conservation
for indels using a novel quaternary invariable array and
also allowed for heterogeneous subsequence parameters.
In this study, we upgrade iSGv1.0 to indel-Seq-Gen ver-
sion 2.0 (iSGv2.0) by 1) further improving the realism of
biological sequence evolution through the introduction of
motif conservation using PROSITE-like regular expres-
sions and lineage-specific evolution and 2) incorporating
the DNA substitution engine of Seq-Gen to add both cod-
ing and noncoding DNA-sequence simulations. We intro-
duce novel functional constraint enforcement in sequence
simulation and formalize how these constraints change the
modeling of substitutions, insertions, and deletions (their
probabilities of occurrence and placement). We demon-
strate a fundamental flaw in simulation of indel processes
in many of the current simulation algorithms and perform
a comparative analysis of the indel schemes among these
methods. In iSGv2.0, we introduce our solution to this
problem by incorporating indel simulation in discrete evo-
lutionary steps. The output of iSGv2.0 includes true mul-
tiple alignments and information on each indel event
including the relative timing and location on the branch
(event tracking). iSGv2.0 allows restrictions on minimum
and maximum lengths of subsequences by constraining in-
del events, as is often the case for protein regions with sec-
ondary structures. Conservation of folds, as well as motif
conservation/gain along different lineages, will be useful
to simulate protein superfamily evolution. In addition to
the ability to conserve subsequence lengths in DNA se-
quences, exon–intron structure can also be incorporated
to coding-sequence simulation.

iSGv2.0 is the first tool that is capable of simulating
complex substitution and indel processes in constrained
evolutionary scenarios. iSGv2.0 incorporates coding
DNA, noncoding DNA, and protein simulation. It allows
for testing problems such as phylogenetic reconstruction,
functional-site inference, joint estimation of alignment
and phylogeny, and multiple sequence alignments. As an
example of a complex evolutionary scenario, we present
a simulation of calycin protein superfamily evolution.

Materials and Methods

We first describe the discrete evolution paradigm in-
troduced in iSGv2.0, along with the implications for sub-
stitution and indel evolution. We formalize the sequence
representation for simulating evolutionary events such as
substitutions and indels for a functionally constrained se-
quence. We then describe iSGv2.0#s other novel mecha-
nisms: 1) lineage-specific models, 2) site-specific
functional constraints, 3) coding DNA-sequence simula-
tion, and 4) indel-event tracking.

Discrete Evolution

The most fundamental structure needed for sequence
simulation is the guide tree, which specifies the branching
order and the expected number of substitutions that will oc-
cur from an ancestral sequence to its descendant. Substitu-
tion processes are generally modeled over continuous time,
allowing multiple substitutions at the same site. No estab-
lished model exists for insertions and deletions. Current se-
quence simulation methods introduce indels in a continuous
fashion (Stoye et al. 1997; Rosenberg 2005; Pang et al.
2006; Strope et al. 2007; Hall 2008), even though indels
alter the sequence length, as shown in figure 2. In order
to keep the indel rate constant along the branch, the number
of expected indels needs to be recalculated based on the
sequence length after each event. The current continuous
model uses the same rate no matter how many positions
are inserted or deleted along the branch. Consequently,
the number of events can be under or overestimated, which
in turn incorrectly decreases or increases the indel rate after
insertion or deletion events, respectively, for the remainder
of the branch until the probability of an indel event is

FIG. 2.—The continuous and discrete-step models of indel events. The continuous model calculates the expected number of indel events based on
sequence length at node i and uses this same value throughout the branch length, BLi/iþ1. This causes either over or underestimating the number of
indels along the branch until recalculating the expected number of indel events at node i þ 1. The discrete-step model reduces the impact of this by
recalculating the expected number of indel events based on the sequence length after each such event.
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recalculated based on the length of the descendant sequence
at the next node. The order and time of events within the
branch are also unknown in the continuous model of se-
quence evolution, because the expected numbers of substi-
tutions and indels are estimated based on the entire branch
length.

To minimize the effects of sequence-length changes
and to allow for event tracking (described later in this sec-
tion), iSGv2.0 simulates sequence evolution with discrete
steps using a sufficiently small step size. The step size e
is defined as

e5
max path

210þ c
; ð1Þ

where max_path is the maximum length of the root-to-tip
paths in the guide tree. The constant c is set such that e is
less than 0.01 substitutions per site or smaller than the min-
imum branch length. If the minimum branch length is less
than 0.00001, which is the minimum value e can take, it is
considered to be a zero branch length. We call this simu-
lation method the ‘‘discrete evolutionary steps’’ (DES)
model.

Substitution and Indel Models

The branch lengths given in the guide tree determine
the rates of evolution, which are expressed as the number of
substitutions per site for the branch and are introduced
based on models of continuous substitution evolution pro-
cesses, for example, Jones–Taylor–Thornton (Jones et al.
1992), PAM (Dayhoff et al. 1978), or BLOSUM (Henikoff
and Henikoff 1992) for proteins, and Hasegawa–Kishino–
Yano (Hasegawa et al. 1985) or general time reversible
model (Yang 1994) for nucleotides. In the current simula-
tion methods, indels are also introduced in a continuous
fashion. As mentioned earlier, this continuous method as-
sumes that the length of the sequence will remain the same
during the evolution along the branch (fig. 2). This is clearly
incompatible with insertion and deletion processes and is
the primary motivation for adopting the DES model. In
the following section, we formalize the model of insertions
and deletions with respect to the sequence and functional

constraints, which will make clear the flaw in the indel rep-
resentation used in current methods.

Formalization of Substitution and Indel Processes

Note that although we refer to our model as ‘‘discrete,’’
our substitution processes are simulated using the continu-
ous evolutionary models described above, the difference
being that substitutions are simulated in multiple e-sized
steps. With respect to insertion and deletion processes, most
simulation methods treat them similarly. However, inser-
tions, deletions, and substitutions all work differently with
respect to the sequence and functional constraints placed on
them. One major difference between insertion and deletion
processes is that insertions occur ‘‘between’’ sites, whereas
deletions occur ‘‘on’’ sites. This fundamental difference not
only affects the number of sites that can accept a deletion
versus an insertion but also introduces maximum and min-
imum length requirements to subsequences in order to en-
force possible selective constraints on such subsequence
length. This in turn restricts the number of acceptable de-
letion and insertion lengths in subsequences. Figure 3 speci-
fies the model of these constraints for realistic sequence
evolution, where the positions X3L to X6, for example, ap-
proximate the ‘‘CXXC’’ motif of Thioredoxin-fold proteins
(Chivers et al. 1996). Although amino acids X3 and X6 can
be neither changed nor deleted, amino acids X4 and X5 can
be substituted but cannot be deleted. Furthermore, the
length from X3 to X6 (four residues) is constrained and
no indel is allowed in this region.

Novel Indel Characterization

Indel modeling requires four parameters: K 5 fPins,
Pdel, kins, kdel}, where Pins and Pdel are the probabilities
of an insertion and a deletion, respectively, and kins and kdel
are the length probability distributions defined as

k5

�
f ðxÞ x 2 f1; 2; . . . ; xmaxg;
0 otherwise;

ð2Þ

where x is the number of residues and xmax is the maximum
insertion or deletion size. kdel is defined similarly as kins.

FIG. 3.—A sequence model that includes substitutions (Sub), insertions (Ins), and deletions (Del) for a length-constrained subsequence
S(X0,X1. . .X7, where Xi is the ith residue of the sequence). The description of the symbols used and their effects are listed in the table below. For
example, positions X3. . .X7 are conserved in a way akin to the CXXC motif of the Thioredoxin sequence motif (Chivers et al. 1996). The maximum
lengths of insertions are shown above the sequence ranging from 0 (no insertion), 1, 2,. . . to iS (upper bound of the subsequence length). The maximum
lengths of deletions are determined by either 1) the number of sequence positions to the first deletion-constrained position (2 for X1 in this figure) or dS,
defined as the number of positions that can be deleted before reaching the minimum subsequence length.
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For convenience, we assume kins5 kdel for the remainder of
this section, although iSGv2.0 does allow for kins and kdel to
be different. f(x) is the probability density function of indel
lengths.

Simulating Indel Occurrence

As shown in figure 3, the maximum number of sites
that potentially accept insertions is equal to the number of
positions plus 1. Therefore, for an unconstrained sequence
at node i with N(i) residues, the number of sites that
accept insertions, Nins(i), is N(i)þ 1, whereas the maximum
number of sites that potentially accept deletions, Ndel(i), is
N(i).

The expected number of residues at node N(i þ 1) is
calculated as

E½Nði þ 1Þ�5NðiÞ þ BLi/iþ 1 � ðNinsðiÞ
� Pins � NdelðiÞ � PdelÞ; ð3Þ

where BLi/iþ1 is the branch length from node i to node iþ
1 and Nins(i) 5 N(i) þ 1, NdelðiÞ5NðiÞ: BLi/iþ1
�NinsðiÞ � Pins and BLi/iþ1 � NdelðiÞ � Pdel are the ex-
pected numbers of insertions and deletions on the branch
i/ iþ 1, respectively. Note that in equation (3), each time
an indel event occurs, Nins(i) and Ndel(i) fluctuate, in turn
changing the expectation of future indel events for the re-
mainder of BLi/iþ1. For brevity, hereafter, we avoid using
the node index (i) unless it is necessary. Thus, for example,
we use Nins instead of Nins(i).

With constraints as shown in figure 3, the number of
sites available for insertion ðN#

insÞ and deletion ðN#
delÞ is sub-

ject to the constraints N#
del � Ndel5N and N#

ins �
Nins5N þ 1. Therefore, under these constraints, equation
(3) becomes

E½Nði þ 1Þ�5NðiÞ þ BLi/iþ 1

� ðN#
ins � Pins � N#

del � PdelÞ:
ð4Þ

Most current simulation methods do not correct for se-
quence-length fluctuation during the evolution with
indels, which causes either the underestimation or overes-
timation of the number of events that will occur for the re-
mainder of the branch as illustrated in figure 2. In Results
and Discussion, we examine the consequences of these
oversights.

Lineage-Specific Evolution

iSGv2.0 accepts guide trees in Newick format with
clade labels. Specifying clades allows lineage-specific pa-
rameters to be set. The sequence parameters (character fre-
quency, proportion of invariable sites, site rates, and
substitution matrix) and indel parameters (maximum indel
size, Pins, Pdel, kins, and kdel) can be changed among sub-
trees (clades). iSGv2.0 also provides a lineage-specific flag
for a lineage evolving as a pseudogene. With this flag, all
constraints to the sequence positions, that is, invariable ar-
ray, positional c parameters, and codon rates are removed. It
causes the lineage to evolve with a uniform rate and uncon-
strained for indel events across all sites.

Functional Constraint Modeling

Site-Specific Constraints

iSGv2.0 introduces site-specific conservation using
regular expression patterns found in PROSITE (Sigrist
et al. 2002). The quaternary invariable array introduced
in iSGv1.0 (Strope et al. 2007) is also retained because
of its simplicity of representation. Because motifs are pre-
served along lineages, sites that correspond with the poten-
tial motif in the ancestral sequences still carry the length
constraints of the motif, that is, motifs cannot be gained
from insertions and potential motif sites cannot be deleted.
Although indels are constrained on these sites, substitutions
are freely accepted until the sites are accepted as the motif.
When the site becomes a part of the motif, which occurs
when the site is mutated into a motif-satisfying residue,
the site becomes constrained based on the patterns specified
in the motif. These constraints on a motif, by definition,
cause a slower evolutionary rate within the motif region.
Thus, iSGv2.0 compensates for the slower evolutionary rate
by increasing the substitution rate in the partition that in-
cludes the motifs so that the resultant sequences will evolve
at the expected rate, on average, based on the input branch
length. For a motif with k characters, m5m0 . . .mk�1; we
calculate the average rate of substitution rejection at each
motif site, ĝn, as follows:

ĝn 5

P
i2anð1 �

P
j2an sijÞ

janj
; ð5Þ

where an is the set of acceptable residues for the motif po-
sition n, janj is the number of acceptable residues in the set,
and sij is the probability of substitution of residue i to res-
idue j (for the chosen substitution matrix and character fre-
quencies) over the DES size e. The term ð1�

P
j2an sijÞ is

the probability of rejected substitutions from residue i. We
then define gn5

Pk�1
i50 ĝn, the amount of reduction in evo-

lutionary rate in the motif. Because the expected number of
substitutions in an unconstrained sequence with N charac-
ters along the branch length BL is N� BL, adjusting for the
reduced evolutionary rate in the motif, we calculate BL# as
follows:

BL# 5
gn þ N � BL

N
5

gn
N
þ BL: ð6Þ

Subsequence-Length Constraints

Protein family sequences are often composed of a set
of domains that define the folding pattern of member se-
quences. Functional domains are often under length con-
straints whose violation could be detrimental to protein
function, such as the destabilization of tertiary structure, im-
proper folding, or removal of functionally important re-
gions. iSGv2.0 represents these constraints through the
introduction of a sequence ‘‘template.’’ The template speci-
fies both the minimum and maximum number of residues or
nucleotides that can occupy a region. Such constraints limit
the number of insertion or deletion events. An example of
sequence templates is given in supplementary figure S1,
Supplementary Material online.
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Nucleotide Sequence Simulation

Coding and noncoding nucleotide sequence simula-
tion has been added to iSGv2.0 using the substitution en-
gine Seq-Gen (Rambaut and Grassly 1997). In the coding-
sequence simulation, exons and introns can be specified as
partitions. Exons are influenced by different rates for codon
positions and restriction of stop codon formation. Introns
can split codons (i.e., phase 1 and phase 2 introns). In in-
trons, elements (such as the lariat formation sites) can be
controlled by the quaternary invariable array and through
motifs. Indel length distributions for exons can be set to
zero for all lengths not divisible by 3 to avoid introducing
frameshifting indel mutations. Although Indels in exons
can be restricted to be between codons, such restrictions
are not mandatory.

Event Tracking

One benefit introduced with the DES model is the abil-
ity to track indel events by the time of the events, affected
taxa, event type (insertion or deletion), and indel length.
The positions of indels can be reported in the true align-
ment. Along with the DES model, iSGv2.0 has added
a new presentation method, ‘‘time-relative steps’’ (TRS).
With the TRS presentation, the tree is rescaled relative
to the time. The resultant tree is ‘‘ultrametric-like,’’ having
equal height (time) from the root to tips, which allows the
mapping of all indel events with respect to the relative time
of occurrence. Supplementary figure S2, Supplementary
Material online, illustrates this TRS presentation. With
the TRS presentation, events are reported as an ordered list
based on the relative time of occurrence as shown in sup-
plementary figure S2C, Supplementary Material online.
When the TRS presentation is not used, events are listed
by partition.

Implementation

iSGv.2.0 is written in ANSI Cþþ. iSGv2.0 calculates
substitution probabilities using the Seq-Gen (Rambaut and
Grassly 1997) formulation. Only rooted trees can be used as

guide trees. It has been tested on Linux, Mac OS X 10.4–
10.5, and also on Windows XP running MinGW (http://
www.mingw.org/), MSYS, and GNU gzip and tar. It is
packaged using GNU autotools and should compile on
most systems with a standard Cþþ compiler. The output
can be in PHYLIP, Nexus, and FASTA formats. iSGv2.0
(executables and source codes) and its user manual describ-
ing the functionalitiesare freelyavailableathttp://bioinfolab.
unl.edu/;cstrope/iSG/.

Indel Simulation Comparison

We compared seven indel-capable simulation meth-
ods, including iSGv1.0 and iSGv2.0. These methods are
listed in table 1. Two tests were performed to examine
the indel formulation of each method. In the first test,
we analyzed the over and underestimation of insertions
and deletions individually for each simulation method using
guide trees with varying numbers of internal nodes. In the
second test, a similar analysis was done, varying the relative
rates of insertions versus deletions.

Note that the indel scheme implemented in EvolveA-
Gene3 (Hall 2008) is very different from other methods.
EvolveAGene3 simulates codon evolution based on empir-
ical models obtained from E. coli. EvolveAGene3 calcu-
lates indel probabilities with two spectra: The first
spectrum determines the event to take place, with probabil-
ities to be 0.6284, 0.0744, or 0.2972 for a substitution, in-
sertion, or deletion, respectively. In the second spectrum,
EvolveAGene3 determines the indel length, rejecting any
event that is not a factor of 3. For the second spectrum,
we summed up the probabilities of all acceptable lengths
to obtain single accepting probabilities for insertions and
deletions: 0.144 and 0.261, respectively, and used them
for each type of event regardless of the length. ‘‘Selection
against deletions and insertions’’ were both set to 1 (no se-
lection). Thus, with EvolveAGene3, the insertion and de-
letion probabilities are 0.0107 5 0.0744 � 0.144 � 1
and 0.0776 5 0.2972 � 0.261 � 1, respectively (‘‘event
probability’’ � ‘‘accepting probability’’ � selection against
insertions or deletions). We also modified the EvolveA-
Gene3 code to allow frameshifting indel mutations, in order

FIG. 4.—The four simple guide trees and their corresponding Newick formats used to test indel simulation schemes. These have 0, 1, 3, and 7
branching points for Trees 1, 2, 3, and 4, respectively. Note that at each branching point (or node), one branch is given a zero length branch, as shown in
the Newick format. The total length of the guide tree is set to eight substitutions per site. Branching points are named from ‘‘node0’’ (at the root) to
‘‘node8.’’ During the simulation, sequences are saved at each internal node as well as terminal nodes and used for indel analysis.
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to create similar indel-generation conditions with other
methods.

Experimental Setup

For our tests, we set the total tree length to be 8 sub-
stitutions per site, with an indel rate of 1 insertion or de-
letion per 50 substitutions. For EvolveAGene3, insertion
and deletion rates were 0.535 and 3.88 per 50 substitu-
tions, respectively, as explained above. We simulated with
random root sequences of 1,000 characters. DNA sequen-
ces were generated by DAWG, EvolveAGene3, and
MySSP, and protein sequences were generated by ROSE,
SIMPROT, iSGv1.0, and iSGv2.0. The difference in char-

acter sets (DNA or protein) is of no consequence in our
tests for two reasons: 1) We used the same indel length
distributions for both sets and 2) we set the probability
of insertion and deletion occurrence equally regardless
of the character set. Figure 4 illustrates the four simple
guide trees with varied numbers of internal nodes. At each
node, the external branch was set to zero length, as shown
in the Newick format in figure 4, effectively making it
a leaf node, so that the direct effect of the different number
of nodes can be examined. We performed two tests: 1)
simulating insertions alone or deletions alone and 2) sim-
ulating both insertions and deletions with varying relative
rates. Test 1 is intended to show the effect of the indel
placement paradigms of each sequence simulation

FIG. 5.—Comparison of indel simulation performance (Test 1) among seven methods. Correct simulations are expected to produce a plot with
a horizontal line. Indel sizes used are (A) size-1 deletions, (B) size-4 deletions, (C) size-1 insertions, and (D) size-4 insertions. The y-axes show the number of
characters left in the leaf sequence (A,B) and the true alignment length (C,D). The average values obtained from 100 simulations are plotted. The table below
summarizes the standard deviations for each data point. Supplementary figure S4, Supplementary Material online, shows all test results in color.
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method. Test 2 is intended to show the effect of the indel
methods when both insertions and deletions are generated.
If insertions and deletions are simulated properly, all sim-
ulation runs are expected to return similar numbers of in-
sertions or deletions regardless of the number of internal
nodes, because all four guide trees have identical lengths.
Differing results between guide trees implies that adding
branching points (nodes) affects the remainder of evolu-
tion, which is clearly undesirable.

Protein Superfamily Comparison

To present the sequence simulation capabilities of
iSGv2.0, we simulated the calycin-superfamily proteins.
We performed the simulation using iSGv2.0, ROSE, and
iSGv1.0, and compared their simulation results.

Overview of the Calycin Superfamily

In the Structural Classification of Proteins database (Lo
Conteetal.2000), theybelongto the‘‘all-betaproteins’’class.

FIG. 6.—Test 2 results with different indel probability ratios. For each method, the total numbers of insertions (dark bars) and deletions (light bars)
generated are shown for simulation experiments using the guide trees with different numbers of segments (see fig. 4). Note that for MySSP, we used the
average expected value of the Zipfian distribution to obtain the results. For all methods, the average values obtained from 100 simulations are used.
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The calycin superfamily consists of a number of beta-barrel
protein families, such as the lipocalins, avidins, andmetallo-
proteinase inhibitors (MPIs).As illustrated infigure7, the lip-
ocalin family proteins have three structurally conserved
regions (SCRs 1, 2, and 3; Flower et al. 2000). Lipocalins
are divided into two groups: kernel lipocalins, which contain
all three SCRs, and outlier lipocalins, which contain at least
oneSCR.Eachgroupof lipocalins is further divided into sub-
families.Theavidinfamilycontainsamotifdifferent fromthe
lipocalins, whereas the MPIs have no motif recorded.

Experimental Setup

We sampled two sequences each from the avidins,
MPIs, two subfamilies of outlier lipocalins, and four sub-
families of kernel lipocalins. The base alignment of these
sequences was obtained using PROMALS3D (Pei et al.
2008) with manual adjustment. The alignment, along with
the annotated beta-strands andmotifs, isgiveninsupplemen-
tary figure S1, Supplementary Material online. Figure 7
shows the phylogeny reconstructed using proml from
PHYLIP version 3.68 (Felsenstein 2008). Based on the
phylogeny, we determined the most likely scenario of mo-
tif gain and loss as follows: 1) SCR1 was gained before
the divergence of the lipocalin family and subsequently
lost in the alpha-1-acid glycoprotein lineage; 2) SCR2
and SCR3 were gained before the divergence of the kernel
lipocalin family; and 3) the avidin motif was gained after
the avidin family was diverged from the MPI family.
SCR1 and the avidin motifs are obtained from PROSITE
regular expressions PS00213 and PS00577, respectively
(Sigrist et al. 2002). For SCR2 and SCR3, we gathered
the motif alignments in the PRINTS database (the lipocalin
family motifs 2 and 3; PR00179: Attwood et al. 1994) and
calculated the percentage of each amino acid in each col-
umn of the alignment. The regular expression patterns were
generated using amino acids with at least 5% representation
as the acceptable residue set for each alignment position.
Figure 7 lists these regular expressions. Using the guide tree
shown in figure 7, we simulated the calycin-superfamily
evolution. We specified the template for the input sequen-
ces based on the secondary structures of the sequence, and
specified four motifs: SCR1, SCR2, SCR3, and the avidin
motif. Because iSGv1.0 and ROSE do not have the ability
to conserve specific lineages, we chose to conserve the mo-
tifs in the global invariable and the I þ c arrays, respec-
tively. We conserved fixed-length regions using the
invariable array option that forbids indels between sites
and held sites with single acceptable states as invariable

for all methods. All specifications are available in supple-
mentary figure S1, Supplementary Material online. We sim-
ulated 100 data sets for each method. Supplementary figure
S3, Supplementary Material online, gives the input files
used for the simulations.

Indel Statistics

To test the minimum and maximum subsequence
constraints (template) in iSGv2.0, we flagged insertions
and deletions in ROSE and iSGv1.0 that broke minimum
and maximum subsequence constraints. In order to do this,
the template constraints needed to be introduced to each
method. It was possible for iSGv1.0 by simulating within
the iSGv2.0 template framework. However, we were un-
able to incorporate ROSE in the iSGv2.0 framework.
For ROSE, to detect template-breaking indels, we in-
spected the true multiple alignment including ancestral
sequences. From this alignment, we traversed all root-
to-tip paths, examining the regions corresponding to the
templated subsequences. When we found an unacceptable
number of residues in a region, we counted one template-
breaking indel. If the descendant sequences had a region
shorter or longer than the corresponding template, we
counted another template-breaking indel only if the indel
pattern (gap columns) was different from the ancestral
sequence.

Results and Discussion
Test 1: Insertions Alone or Deletions Alone

Our first test was to run insertion-only and deletion-
only simulations. Indel lengths were fixed with 1, 2, 4,
and 8 residues or bases. We measured the performance
of each method by 1) the length of the true multiple align-
ment for insertions, where the number of sites inserted is
equal to the alignment length minus 1,000, and 2) the num-
ber of characters remaining in the output sequence for de-
letions.

Figure 5 and supplementary figure S3, Supplementary
Material online, show the test results. The number of inter-

nal nodes in the guide tree had an adverse effect on the per-
formance of SIMPROT, iSGv1.0, ROSE, andMySSP (only
in the case of insertions). As a side effect of their continuous
modeling of indels, overestimation of deletions (fig. 5A and
B) and underestimation of insertions (fig. 5C and D) are
clearly shown with fewer numbers of internal nodes. These
methods calculate the expected number of indel events
without adjusting the sequence length when an event

Table 2
The Effects of Internal-Node Numbers with Varying Insertion and Deletion Rates among Methodsa

r2/l

MySSP SIMPROT DAWG iSGv1.0 iSGv2.0 ROSE

ins del ins del ins del ins del ins del ins del

(A) Pins 5 0.01, Pdel 5 0.03 0.145 0.433 0.003 0.012 0.015 0.004 0.216 0.726 0.021 0.002 0.226 0.734
(B) Pins 5 0.02, Pdel 5 0.02 0.507 0.417 0.380 0.435 0.014 0.002 0.004 0.001 0.022 0.007 0.003 0.000
(C) Pins 5 0.03, Pdel 5 0.01 4.871 1.675 2.736 0.757 0.006 0.003 0.734 0.295 0.005 0.031 0.816 0.265

a ins: insertion, del: deletion.
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occurs. DAWG, iSGv2.0, and EvolveAGene3 show no or
very slight effects in indel numbers. For DAWG and
iSGv2.0, this is because sequence lengths are adjusted dy-
namically along the branch. The unaffected results by Evol-
veAGene3 are likely due to the fact that this method treats
branch lengths as the number of mutation-event tests that
occur along a branch. For our purpose, we set the branch
length to 8,000 mutation-event tests (1,000-character se-
quence with each site undergoing eight substitutions). Evol-
veAGene3 also forbids overlapping insertions and
deletions, effectively reducing the deletion rates with larger
deletions. This effect can be seen in supplementary figure
S3 (I), Supplementary Material online, where ‘‘more’’ char-
acters are left after simulations with larger deletion sizes.
Because of the constant insertion and deletion probabilities
set in EvolveAGene3 and our removal of codon constraints
in EvolveAGene3, the lengths of the alignments are often
shorter than other simulation methods.

These results show that iSGv2.0 and DAWG per-
formed appropriately, producing consistent results regard-
less of the number of internal nodes. EvolveAGene3 also
behaved appropriately according to its own indel model.
iSGv1.0, ROSE, SIMPROT, and MySSP are all affected
by the number of internal nodes, producing artificially high
or low rates for deletions or insertions, respectively.

Test 2: Including Both Insertions and Deletions with
Various Pins and Pdel

To further examine the effect of indel models, we sim-
ulated both insertions and deletions using the Zipfian dis-
tribution (Chang and Benner 2004) with five methods:
DAWG, ROSE, SIMPROT, iSGv1.0, and iSGv2.0. We
simulated three scenarios: 1) Pins 5 0.01 and Pdel 5
0.03, 2) Pins 5 0.02 and Pdel 5 0.02, and 3) Pins 5 0.03
and Pdel 5 0.01, where Pins and Pdel are the number of in-
sertions and deletions per substitution, respectively. We
chose to use the Zipfian distribution because it is an empir-
ically determined length distribution for insertion and de-
letion events. For MySSP, which implements a length
distribution that is normally distributed based on the mean
indel length given by the user, we used the expected indel
length of 2.082, which is based on the Zipfian distribution
with a maximum indel size of 10. EvolveAGene3 was ex-
cluded from this test because changing Pins and Pdel funda-
mentally alters the indel creation method in EvolveAGene3.
In this test, an event counter reporting the numbers of in-
sertions and deletions that occurred during the simulation
was added to each method. Because we were unable to ob-
tain the source code for MySSP, we calculated the number
of events as follows: Each gap in the root sequence in the

true multiple alignment is the effect of an insertion in the
descendant sequences, and likewise, each gap in the tip se-
quence is the result of a deletion in the ancestral sequence.
To obtain the number of insertion and deletion events, we
tallied the total number of gaps in the root and tip sequen-
ces, respectively, and divided that number by the mean in-
del size. We measured the quality of indel simulation by
comparing the numbers of insertions and deletions gener-
ated. We calculated the coefficient of variation (r2/l),
which is dimensionless and makes results from different
simulation methods comparable. If r2/l � 0, it means that
the simulation method behaved similarly between the guide
trees (no effect of different number of nodes). A larger r2/l
suggests that the simulation method performed differently
between the guide trees with different number of nodes.

Figure 6 and table 2 show the results of this test. As
expected, the number of insertions and deletions generated
is affected by the insertion and deletion probabilities. For
iSGv1.0 and ROSE, when Pins 6¼ Pdel, the number of inter-
nal nodes affects both the numbers of insertions and dele-
tions. SIMPROT, as a result of their multiple-hit correction
feature, shows much more drastic effects with the internal-
node numbers than iSGv1.0 and ROSE when the insertion
rate is larger than the deletion rate (Pins 5 0.03 and Pdel 5
0.01). Such effects are not shown when the deletion rate is
larger (Pins5 0.01 and Pdel5 0.03). MySSP shows increas-
ing numbers of indels for each test, with the most drastic
change occurring when Pins 5 0.03 and Pdel 5 0.01. This
behavior can be better understood using the results of Test 1,
where in the case of insertions, the sequence length grows as
more internal nodes are added, but the sequence length is
stable for deletions under the same conditions.

Table 2 summarizes the degree of variation (r2/l) in
the numbers of insertions and deletions amongTest 2 experi-
ments. For iSGv1.0 and ROSE, we note that the variation in
thenumberof insertion anddeletion events is higher trending
toward the dominant event-probability as shown in figure 6,
whereas MySSP shows high variability in all tests, although
it ismost pronouncedwhen the relative insertion rate is high.
SIMPROT also shows high variation when Pins 5 0.03 and
Pdel 5 0.01 or Pins 5 Pdel, although it is comparable with
iSGv2.0 and DAWG when Pins 5 0.01 and Pdel 5 0.03.
When Pins 5 Pdel, the indel models of iSGv1.0 and ROSE
appear to be affected very little by internal-node numbers.
Note that when Pins 5 Pdel, iSGv2.0 and DAWG show
slightly larger r2/l values than iSGv1.0 and ROSE. This
is a consequence of the larger number of steps with indel
events and sequence-length evaluations performed by these
methods. Simulation as a randomwalk increases thevariance
in sequence length at each step. DAWG and iSGv2.0 take
much larger numbers of steps (600 and 1,024, respectively)

 
FIG. 7.—Simulation of the calycin protein superfamily using ROSE and iSGv2.0. The phylogeny at the top is the guide tree used for the

simulation. The signature motifs for each protein sequence (SCR1, SCR2, SCR3, and avidin) are listed by the UniProt protein IDs. Where the motifs are
gained or lost are illustrated on the tree by black or gray symbols, respectively. The regular expression patterns defining these motifs are listed below the
tree. The input specification data used for these simulations are given in supplementary figure S3, Supplementary Material online. In the output
alignments, lowercase letters indicate nonmotif positions, whereas uppercase letters belong to motifs. Each motif is boxed in the alignment, and the
identity of the motif is given by the corresponding symbols at the top of the alignment. See supplementary figure S5, Supplementary Material online for
the results including iSGv1.0.
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compared with at most eight steps taken by all other
simulators. We confirmed this result by varying the number
of steps taken by iSGv2 (data not shown).

Example Application for a Protein Superfamily
Simulation

Figure 7 shows examples of ‘‘true alignment’’ output
obtained from ROSE and iSGv2.0 (see supplementary fig.
S5, SupplementaryMaterial online, for the output including
iSGv1.0). As shown in table 3, iSGv2.0 correctly conserved
80.98% of the sequence positions, whereas iSGv1.0 and
ROSE, both of which cannot conserve sets of characters,
correctly modeled only 61.82% and 61.88% of the posi-
tions, respectively. Of the different motifs, iSGv2.0 per-
fectly conserved all sites of SCR1 (see fig. 7). This is
because this motif was present in the root alignment and
conserved from the beginning of the simulation run along
the lipocalin lineage. For other motifs, all substitutions were
accepted until the motif became effective later in the tree,
after which only substitutions conforming to the position-
specific constraints were accepted.

We observed multiple side effects due to the restric-
tions imposed by the quaternary invariable and Iþ c arrays
of iSGv1.0 and ROSE, respectively. As seen in figure 7 and
supplementary figure S5, Supplementary Material online,
conserved motifs in the multiple alignment appeared as ‘‘is-
lands’’ where indels were absent. Additionally, invariable
sites such as the GXW region of SCR1 were conserved
for the entire column of the alignment, despite the fact that
it should only be conserved among kernel lipocalins and the
outlier lipocalin family of odorant-binding proteins.
iSGv1.0 also simulated fewer indels, which is a side effect
of the number of alignment positions that contain motif
positions, reducing the number of accepting positions for
indels. It appears that ROSE uses the absolute number of
residues in the sequence to calculate the overall probability
of an indel for a branch, regardless of the number of non-
accepting sites for indels. Differences in the indel place-
ments between iSGv1.0 and ROSE versus iSGv2.0 are
also evident. As shown in figure 7, iSGv2.0 has a much
higher number of indels along the N- and C-terminal re-
gions of the alignment. This is because these regions had
only weak constraints on their sizes: The N-terminal was
constrained to 10–43 residues and the C-terminal 10 to
30 residues. During the simulation process, iSGv2.0 deter-
mined the size of the indel, and based on both template and
motif constraints searched the sequences to find regions that

could accept the indel. Most of the larger indels tended to
fall in the least constrained regions. Because neither
iSGv1.0 nor ROSE has such constraint capabilities, indels
were placed wherever they were not forbidden by the qua-
ternary invariable and I þ c arrays. Furthermore, the super-
family fold could not be modeled by either iSGv1.0 or
ROSE. They placed an average of 13.18 and 19.91 tem-
plate-breaking indels, respectively (table 3). iSGv2.0
upheld the template restrictions. On average, 0.35 indels
per simulation run were rejected using iSGv2.0 because
there were limited acceptable positions for indels due to
template constraints.

The input multiple alignment (supplementary fig. S1,
Supplementary Material online) had an average pairwise
sequence identity of 15.65% (table 3). The 20–35% range
of sequence identity or lower is the so-called ‘‘twilight
zone’’ of sequence identity (Rost 1999), which is often seen
among proteins belonging to highly divergent families.
iSGv1.0, ROSE, and iSGv2.0 simulated data sets in this
range, with the average values over 100 runs of 19.78%,
17.72%, and 14.62%, respectively. The difference in se-
quence identities between iSGv1.0 and ROSE versus
iSGv2.0 is explained by the global conservation of invari-
able sites by iSGv1.0 and ROSE, even for sequences with-
out the lineage-specific motifs. iSGv1.0 and ROSE both
showed a lower ‘‘percent motif positions conserved’’ (table 3)
indicating that some positions were conserved by them
even if they did not conform to the residue constraints
for different protein families.

Conclusion

Good sequence evolution simulation requires not only
realistic event simulation through substitution, insertion,
and deletion but also needs realistic constraint enforce-
ment and heterogeneous evolution among between subse-
quences and among subtrees. In this study, we showed that
although many of current simulation methods introduce in-
sertion and deletion events, only iSGv2.0 and DAWG have
robust models. We introduced a formal model of functional
constraints on substitution and indel events. We improved
the modeling of sequence evolution by fixing indel evolu-
tion, incorporating novel functional constraints for motif
conservation and subsequence-length preservation, and
improved heterogeneous sequence evolution and lineage-
specific evolution. iSGv2.0 also added modeling of coding
and noncoding DNA evolutions.

Table 3
Performance Comparison among iSGv1.0, ROSE, and iSGv2.0 for the Calycin Superfamily Simulationa

iSGv1.0 ROSE iSGv2.0 Input Alignment

Percent sequence identity 19.78 17.72 14.62 15.65
Percent motif positions conserved 61.82 61.88 80.98 —
Number of template violating indelsb 13.18 19.91 d 0 —
Number of rejected indelsc NA NA 0.38 —

a Statistics for iSGv1.0, ROSE, and iSGv2.0 are averages from 100 simulations.
b The number of indels that produced subsequences that were larger or smaller than the maximum or minimum values given by the template specified for iSGv2.0.
c A rejected indel occurs when a scan of the sequence returns no positions in which an indel can be placed because of subsequence size constraints imposed by the

template. NA: not available.
d Approximate values inferred from the sequences as given in the true multiple alignment including internal nodes in the guide tree.
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We showed that the majority of indel-simulating pro-
grams incorporate indel models that do not account for se-
quence-length variations during the branch evolution. They
introduce bias into the results of the sequence simulation,
although such biases are not evident when insertion and de-
letion frequencies are equal. We also showed that adding
subsequence-length constraints and motif constraints al-
lows iSGv2.0 to correctly model superfamily evolution
in the twilight zone of sequence similarity.

Supplementary Material

Supplementary figures S1, S2, S3, S4, and S5 are
available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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