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Depression is a highly prevalent disorder, and its treatment is far from satisfactory. There 
is an urgent need to develop a new treatment for depression. Although still at its early 
stage, transcutaneous auricular vagus nerve stimulation (taVNS) has shown promising 
potential for treating depression. In this article, we first summarize the results of clinical 
studies on the treatment effect of taVNS on depression. Then, we re-analyze a previous 
study to identify the specific symptoms taVNS can relieve as indicated by subscores 
of the 24-item Hamilton Depression Scale in patients with depression. We found that 
taVNS can significantly reduce multiple symptoms of depression patients, including 
anxiety, psychomotor retardation, sleep disturbance, and hopelessness. Next, we pose 
several hypotheses on the mechanism of taVNS treatment of depression, including 
directly and indirectly modulating the activity and connectivity of key brain regions 
involved in depression and mood regulation; inhibiting neuro-inflammatory sensitization; 
modulating hippocampal neurogenesis; and regulating the microbiome–brain–gut axis. 
Finally, we outline current challenges and lay out the future directions of taVNS treatment 
of depression, which include (1) intensively comparing stimulation parameters and “dose 
effect” (treatment frequency and duration) to maximize the treatment effect of taVNS;  
(2) exploring the effect of taVNS on disorders comorbid with depression (such as chronic 
pain disorders, cardiovascular disorder, and autism) to provide new “two-for-one” 
treatment approaches for patients with these disorders; and (3) applying multiple scale 
methods to explore the underlying mechanism of taVNS.

Keywords: vagus nerve, transcutaneous vagus nerve stimulation, transcutaneous auricular vagus nerve 
stimulation, depression, brain network, anti-inflammation

iNtrODUctiON

The vagus nerve (VN) is the longest cranial nerve in the human body and is involved in the regulation 
of multiple systems (1). Due to this wide influence on multiple systems and its important role in 
maintaining homeostasis, stimulating the VN to modulate the function of related organs has long 
drawn the attention of investigators (2). As a slow-acting therapy, cervical vagus nerve stimulation 
(VNS) has been approved by the US Food and Drug Administration for managing treatment-
refractory epilepsy in 1997 and for chronic treatment-resistant depression in 2005 (1). However, 
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tAble 1 | Pre- and post-treatment differences in HAMD subscores between real and sham transcutaneous auricular vagus nerve stimulation (taVNS) cohorts; p values 
indicating significant difference after Bonferroni correction (p = 0.05/7 = 0.007) are marked in bold.

HAMD item Group N Pre-treatment (Mean ± sD) Post-treatment (Mean ± sD) Post–Pre (Mean ± sD) effect size p-value

Anxiety taVNS 88 7.2 ± 2.6 5.4 ± 2.4 −1.7 ± 2.4 0.565 0.001
staVNS 60 6.6 ± 1.9 6.0 ± 2.1 −0.6 ± 1.7

Weight taVNS 88 0.3 ± 0.6 0.1 ± 0.4 −0.1 ± 0.7 0.025 0.888
staVNS 60 0.4 ± 0.6 0.3 ± 0.5 −0.1 ± 0.5

Cognitive disturbance taVNS 88 4.0 ± 2.7 2.3 ± 1.8 −1.8 ± 2.3 0.458 0.010
staVNS 60 3.6 ± 1.9 2.7 ± 1.4 −0.9 ± 1.4

Diurnal variation taVNS 88 1.2 ± 1.1 0.7 ± 0.9 −0.5 ± 1.2 0.412 0.017
staVNS 60 0.9 ± 1.0 0.9 ± 1.0 −0.0 ± 1.0

Psychomotor retardation taVNS 88 4.9 ± 1.7 3.1 ± 1.7 −1.8 ± 1.8 0.717 <0.001
staVNS 60 4.6 ± 1.3 3.9 ± 1.4 −0.7 ± 1.1

Sleep disturbance taVNS 88 4.0 ± 1.9 2.3 ± 1.7 −1.7 ± 1.7 0.575 0.001
staVNS 60 4.1 ± 1.9 3.4 ± 1.9 −0.8 ± 1.5

Hopelessness taVNS 88 3.6 ± 1.6 2.0 ± 1.3 −1.5 ± 1.8 0.635 <0.001
staVNS 60 4.1 ± 1.4 3.5 ± 1.6 −0.6 ± 1.2
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surgical risks, technical challenges, and potential side effects have 
limited the application of VNS (3, 4).

To overcome such barriers of applying invasive VNS (iVNS), 
non-invasive transcutaneous vagus nerve stimulation (tVNS) 
methods have been developed. Currently, there are two main 
ways to apply tVNS. One is to superficially apply stimulation 
on the cervical nerve using a specially designed device, such as 
GammaCore, and the other is to apply stimulation on the ear. 
In this paper, we will focus on the latter. The rationale of tVNS 
on the ear (transcutaneous auricular VNS, taVNS) is based on 
anatomical studies demonstrating that certain parts of the ear 
area (concha and lower half of the back ear over the mastoid 
process) have afferent VN distribution (5–7). According to the 
“bottom-up” mechanism of the central nervous system (CNS), 
electrical stimulation of these areas may produce activity changes 
in the VN pathway in the brain stem and central structures (8), 
producing a modulation effect similar to iVNS (9–11). taVNS 
has been used to treat disorders, such as epilepsy (12, 13), pre-
diabetes (14), depression, and chronic tinnitus (15), as well as to 
boost associative memory (16).

In this manuscript, we summarize the findings of clinical 
studies on taVNS treatment of depression, re-analyze a previous 
data set to explore the specific symptoms tVNS can relieve in 
patients with depression [as indicated by Hamilton Depression 
Rating Scale (HAMD) subscores] (17), and discuss the potential 
underlying mechanism, limitations, and future direction of 
taVNS. Please also see recent review articles on iVNS treatment 
of depression (2), iVNS/taVNS treatment of chronic pain (18), 
clinical application (19), and efficacy and tolerability (20).

POteNtiAls OF tavNs treAtMeNt OF 
DePressiON AND its siDe eFFects

Major depressive disorder (MDD) is a highly prevalent dis-
order that can significantly reduce quality of life (21). Current 
treatments for MDD are far from satisfactory (22–24), thereby 

calling for new treatments for MDD. As a non-invasive peripheral 
neuromodulation method, taVNS may be a promising treatment 
option for patients with MDD.

The first taVNS clinical trial on individuals with MDD was 
performed by Hein and colleagues (9). They investigated the 
treat ment effect of bilateral taVNS on MDD patients using an 
add-on design (antidepressant therapy with real or sham taVNS). 
They found that compared to the sham group, the real taVNS 
group showed significant improvement on the Beck Depression 
Inventory after a 2-week treatment (five times per week). How-
ever, there was no significant difference on the HAMD between 
the two groups.

In a subsequent non-randomized clinical study with 160 MDD 
patients (17), we investigated the taVNS treatment effect by train-
ing the patients to apply bilateral taVNS at home. The first cohort 
of patients (n  =  91) received taVNS for 12  weeks; the second 
cohort (n = 69) first received 4 weeks of sham taVNS followed 
by 8 weeks of real taVNS. After the fourth week, patients in the 
taVNS group had greater decreases in the 24-item HAMD score 
and higher rates of good responders than those of the sham taVNS 
group. The clinical improvements continued until week 12.

In a recent single-arm study (25), Trevizol and colleagues 
recruited 12 patients with MDD and tested the effect of taVNS 
on the bilateral mastoid process (10-session taVNS over 2 weeks). 
The results showed that 17-item HAMD scores were reduced 
significantly after the 2-week treatment. All patients exhibited a 
clinical response, defined as a reduction of HAMD scores of at 
least 50%. The effect remained 1 month after treatment.

Although the above studies suggest that taVNS can reduce 
the symptoms of MDD, no study has reported how it can 
modulate the specific symptoms of MDD patients. To address 
the question, we re-analyzed the data of our previous study 
(17) and explored how taVNS can modulate HAMD subscores 
of patients with MDD (Table  1) by performing a repeated 
measurement analysis with Bonferroni correction to adjust 
the p-value (0.05/7 =  0.007 significance level). We found that 
compared with sham taVNS, 1-month taVNS can significantly 
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reduce multiple symptoms of MDD patients, including anxiety, 
psychomotor retardation, sleep disturbance, and hopelessness. 
We also observed a downward trend in cognitive disturbance 
and diurnal variation (Table 1).

Transcutaneous auricular vagus nerve stimulation is a quite 
safe and well-tolerable treatment method (20). Reported mild/
moderate side effects include tinnitus or acceleration of original 
tinnitus and local problems at stimulation sites, such as pain, 
paresthesia, or pruritus during or after stimulation (17, 26). 
Since there are no direct fibers connecting the ear VN to the 
heart (27, 28), both left and right ears should be safe for apply-
ing taVNS. In a recent study (28), Kreuzer et al. measured EKG 
changes after 24 months of taVNS and found that taVNS has no 
arrhythmic effects on cardiac function in tinnitus patients with 
no known pre-existing cardiac pathology. In another study on 
taVNS treatment of MDD (9), investigators also found that heart 
rate, blood pressure, and blood test values did not change over 
the 2-week treatment period.

Interestingly, applying taVNS on the bilateral mastoid 
process (25) seems to be associated with more severe side 
effects as compared to taVNS applied on the concha (9, 17). 
In the Trevizol study (25), of the total 12 patients, 10 patients 
reported mild to moderate diurnal sleepiness after stimulation, 
six reported mild to moderate tension headaches with no need 
for medication, and four reported mild to moderate nausea. 
We speculate this may be due to the electrical current flowing 
across the whole brain during bilateral stimulation. Further 
study is needed to explore the side effects of taVNS on the 
bilateral mastoid process.

MecHANisMs/HYPOtHesis ON tavNs 
treAtMeNt OF DePressiON

tavNs can Modulate the brain Network 
Associated with the Neuropathology of 
Depression
A growing body of evidence has shown that depression is 
associated with structural and functional abnormalities in 
multiple brain regions involved in emotional processing, self-
representation, reward, and external stimulus (stress, distress) 
interactions (29–37). Based on the limbic-cortical dysregula-
tion hypothesis (38–40), the brain regions involved in MDD 
are associated with two components: the vegetative-somatic 
component, including the subgenual cingulate cortex, anterior 
insula, hippocam pus, hypothalamus, and amygdala, and the 
attention-cognition com ponent, including the dorsal frontal 
area, dorsal cingulate cortex, inferior parietal cortex, and pos-
terior cingulate cortex. Located between the two components 
are the basal ganglia and thalamus, which closely communicate 
with the two components (Figure 1A).

Neural anatomy has shown that the auricular branch of the 
vagus nerve (ABVN) projects to the nucleus tractus solitari (NTS), 
which is further connected with other brain regions, such as the 
locus coeruleus, parabrachial nucleus, hypothalamus, thalamus, 
amygdala, hippocampus, anterior cingulate cortex (ACC), 
anterior insula, and lateral prefrontal cortex (19, 41). Thus, the 

VN has direct and indirect connections to the depression-related 
cortical–limbic-thalamic–striatal neural circuits, influencing the 
activity of these regions (42–46) (Figure 1A).

Recent neuroimaging studies (47–53) found that compared 
with a control condition, taVNS stimulation can produce activa-
tion of the “classical” central vagal projections, e.g., widespread 
activity in the NTS, dorsal raphe, locus coeruleus, parabrachial 
area, hypothalamus, amygdala, ACC, anterior insula, and nucleus 
accumbens. For instance, in a recent study (53), we found that 
taVNS produced fMRI signal increases in the anterior insula 
compared to sham stimulation in patients with MDD. The insula 
activation level during the first stimulation session in the taVNS 
group was significantly associated with clinical improvement 
after 4  weeks, as shown by the reduction of HAMD scores. In 
addition, we found that after 1  month of taVNS treatment, 
resting-state functional connectivity (rsFC) between the default 
mode network (DMN), a key network involved in depression 
(54–60), and the anterior insula and parahippocampus decreased, 
while the FC between the DMN and the orbital prefrontal cortex 
and precuneus increased compared with sham taVNS (61). In 
another study using the same dataset, we found that taVNS can 
significantly increase rsFC between the right amygdala and left 
dorsolateral prefrontal cortex compared with sham taVNS (62). 
These results further endorse the extensive modulation effect of 
taVNS on brain regions involved in depression.

tavNs May relieve symptoms of 
Depression by Modulating the 
inflammation system
Literature suggests that stress initiates cognitive, affective, and 
possibly biological processes that increase risk for depression  
(63, 64). Inflammation may play an important role in this pro-
cess. Specifically, neuro-inflammatory sensitization provoked by 
stress elicits profound changes in behavior, including common 
symptoms of depression such as sad mood, anhedonia, fatigue, 
psychomotor retardation, and social–behavioral withdrawal 
(63–66). In this process, the hypothalamus, anterior insula, and 
ACC play an important role (63).

Studies have suggested that the VN plays a crucial role in 
bidirectionally connecting the brain and immune system, 
reducing exacerbated inflammation processes outside the 
CNS (67). Specifically, the VN may participate in the modu-
lation of the inflammation system through two pathways:  
(1) activating the hypothalamic–pituitary–adrenal axis and 
suppressing peripheral inflammation via glucocorticoids (68) 
and (2) through the mechanism of the “inflammatory reflex”  
(67, 69–72) (Figure 1A). In the inflammatory reflex, accumula-
tion of inflammatory cytokines activates VN fibers from which 
afferent signals ascend to the NTS (69). The NTS projects 
to efferent vagal neurons in the dorsal motor nucleus of the 
VN, which projects to intrinsic ganglia in the viscera such as 
in the spleen and liver. Then, acetylcholine is released in the 
parenchyma of target organs, activating local nAChRa7 mac-
rophages. Production of inflammatory cytokines is inhibited, 
attenuating the activity of the immune system (73). In addition, 
VNS may also trigger the vago-sympathetic pathway, i.e., vagal 
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FiGUre 1 | (A) Transcutaneous auricular vagus nerve stimulation (taVNS) can modulate the brain network associated with the neuropathology of depression and 
inhibit inflammation response. Stimulation of the auricular branch of the vagus nerve (VN, indicated in red), which projects to the nucleus tractus solitari (NTS), 
continuing to the locus coeruleus and parabrachial nucleus. From the parabrachial nucleus, it propagates to various brain regions involved in depression (39, 40). 
taVNS may inhibit inflammation response to relieve stress and depressive symptoms. HTh, hypothalamus; PBN, parabrachial nucleus; LC, locus coeruleus; NTS, 
nucleus tractus solitary; DMNV, dorsal motor nucleus of the vagus nerve. (b) Auricular acupuncture points used for treating depression and other mental disorders 
at area with VN distribution.
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afferents in the NTS trigger the dorsal motor nucleus of the 
vagus nerve to modulate the sympathetic outflow by inner-
vating preganglionic sympathetic neurons in the spinal cord  
(74, 75) (Figure 1A).

Other Potential Mechanisms
Recently, accumulating evidence has demonstrated that microbe 
interactions are crucial in maintaining homeostasis in humans. 
Studies (76–79) have suggested that gut microbiota can influ-
ence brain function, mood, and behavior by interacting with the 
central nervous system through neural, endocrine, and immune 
pathways. Particularly, studies have shown that the microbiota 
is crucial in modulating the stress response and stress-related 
behaviors, such as depression and anxiety (76, 78–80). It is well-
known that the VN can significantly modulate the gastrointesti-
nal, immune, and endocrine systems (1). Thus, taVNS may also 
regulate the functions of the above systems and achieve a treat-
ment effect in depression by adjusting the microbiome–brain–gut 
axis (80) (Figure 1A).

Also, based on the neurogenic theory of depression 
(81), depression results from impaired adult hippocampal 

neurogenesis, and restoration of adult hippocampal neuro-
genesis leads to recovery. Studies have shown that VNS may 
stimulate hippocampal neurogenesis, providing another 
possible mechanism for depression treatment. For instance, 
studies have shown that VNS can alter the transmission of 
neurotransmitters, such as serotonin and norepinephrine, 
which can modulate hippocampal cell proliferation (2). Thus, 
taVNS may also relieve depression symptoms by modulating 
hippocampal neurogenesis (2).

tavNs and Auricular Acupuncture—Old 
Wine in a New bottle
Stimulating certain areas on the ear to treat disorders is not 
something new. Acupuncture, an ancient therapeutic method, 
has a long history of applying stimulation on different parts of the 
body, including the ear, to treat disorders. Nowadays, auricular 
acupuncture has become a crucial school of acupuncture and 
is widely used in acupuncture practice (82). Nevertheless, the 
underlying mechanism of auricular acupuncture remains unclear.

Transcutaneous auricular vagus nerve stimulation provides 
a new angle to understand auricular acupuncture (83). For 
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instance, the auricular acupoints used for depression are also 
located at the area with VN distribution (Figure  1B), Thus, 
auricular acupuncture and taVNS perform the same or similar 
treatment procedure guided by different theories. Usichenko et al. 
found that the analgesic effects of auricular acupuncture may be 
explained by stimulation of ABVN (83). Further study to verify 
the specificity of auricular acupuncture will not only deepen our 
understanding of auricular acupuncture, but also facilitate the 
development of taVNS and peripheral neuromodulation.

cHAlleNGes AND FUtUre DirectiONs

Where to stimulate and How to stimulate
A neural anatomy study (6) showed that the auricular branch 
of the VN is mainly distributed on the concha (including the 
outer auditory canal) and lower half of the back ear. Thus, these 
areas should be the target of taVNS. Nevertheless, given that the 
branching of the nerve in the concha is variable across individuals 
and there are other nerve branches in the area, it remains a chal-
lenge to stimulate VN consistently across different individuals.

In a recent study, Kraus et al. (49) compared taVNS-evoked 
fMRI signal changes at the anterior and posterior sides of 
the left outer auditory canal. Many brain regions excluding 
the insular cortex showed fMRI signal changes. The fMRI 
signals were notably decreased in the parahippocampal gyrus, 
posterior cingulate cortex, and right thalamus (pulvinar) 
following anterior auditory canal wall stimulation (49). In 
another brain imaging study (84), the authors compared the 
fMRI signal changes evoked by 25 Hz stimulation at the inner 
tragus, inferoposterior wall of the ear canal, cymba concha, 
and earlobe (control location without VN distribution). The 
results showed that stimulation at the inner tragus and cymba 
concha produced significantly greater activation in the NTS 
and LC compared with the control location (earlobe). Further 
ROI analysis showed that only stimulating the cymba concha 
produced a significantly stronger activation in both the NTS 
and LC than stimulating the control location.

These results suggest that taVNS at different locations of the 
ear with VN innervation may modulate different brain pathways, 
which may be associated with different modulation effects. More 
studies are needed to systemically investigate the linkage between 
the brain regions and different ear areas.

Stimulation frequency and intensity are both crucial param-
eters in taVNS. One may imagine that low-frequency stimulation 
(2–10  Hz) is not as efficient as higher frequency stimulation 
(20–30  Hz) which is currently used in iVNS for epilepsy and 
depression. In reality, investigators have used different frequen-
cies in previous studies with wide ranges [1.5 Hz (9), 20 Hz (17), 
and 120 Hz (25)].

Studies suggest that different stimulation frequencies could 
produce different brain changes and neurotransmitter releases 
(85, 86). In an animal study (87), investigators found that the 
anti-epileptic effect of 20  Hz taVNS was significantly longer 
than those of 2 and 100  Hz as measured by the duration of 
seizure suppression. A recent study (88) on taVNS treatment 
of drug-resistant epilepsy showed a significant reduction in 

seizure frequency in patients of the 25 Hz group as compared 
to the 1 Hz group. However, in another study (26) on migraine 
patients, investigators found that 1 Hz taVNS produced greater 
improvement than 25 Hz taVNS. Taken together, these studies 
imply that the optimal stimulation frequency may vary depend-
ing on the disorder.

Likewise, there are few systematic studies on the optimal 
intensity of taVNS. Previous studies have suggested that stimula-
tion intensity could be set to a level that could arouse a tingling 
but tolerable sensation (17, 61, 62). In addition, the intensity may 
interact with frequency [individuals with low frequency stimula-
tion tend to be able to tolerate higher stimulus intensities than 
those who receive high frequency stimulation (88)]. However, 
investigators (9) have applied subthreshold taVNS (the patients 
could not feel the sensation) and relieved symptoms in patients 
with MDD, which calls for further research on this topic.

Finally, very few studies have been carried out to explore the 
“dose effect” of taVNS, i.e., how long and how frequently we should 
apply taVNS. iVNS stimulation usually lasts for many hours per 
day. Such durations are unrealistic for taVNS. Current studies 
range from 30-min stimulation durations two times per day (17) 
to 15-min stimulation durations five times per week (9). Also, if 
the patients were trained to apply the taVNS by themselves, the 
problem of compliance is difficult to evaluate and may somehow 
counterbalance the interest for such a technique.

In summary, investigators have used a wide range of stimula-
tion parameters in taVNS treatment of depression. Identifying 
the optimal stimulation parameters and “dose” may represent the 
crucial next step for taVNS research.

Future Directions
 (1) Although previous studies have suggested that taVNS 

holds potential for patients with MDD, the key parameters 
and “dose” that can maximize the treatment effect remain 
unknown. Studies to directly compare different stimula-
tion parameters (frequency and intensity), duration, and 
frequency of treatment are needed. In addition, large ran-
domized clinical trials are also needed to test the treatment 
effect of taVNS on patients with different age ranges (from 
children and teenagers to older adults), as well as different 
depression severities, so that we can have a better idea of the 
target population for taVNS.

 (2) Depression can be comorbid with many other disorders, 
such as chronic pain (89, 90), cardiovascular disorder  
(91, 92), inflammatory bowel disease (93), irritable bowel 
syndrome (94), and autism (95). Thus, it may also provide a 
new treatment option for “two-for-one” treatment approaches 
for patients with disorders comorbid with depression.

 (3) Multiple scale mechanism studies incorporating brain 
imaging tools, inflammation markers, vagal tone measure-
ments, and neural transmitters are needed to deepen our 
understanding of taVNS and facilitate development of new 
treatment methods for depression and disorders comorbid 
with depression.

In summary, taVNS can significantly reduce anxiety, retarda-
tion, sleep disturbance, and hopelessness symptoms in patients 
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with depression. Current literature suggests that it may relieve 
the symptoms of MDD through multiple mechanisms. Further 
research is needed to identify the optimal stimulation parameters 
and “dose” of taVNS, testing its effect on MDD patients of dif-
ferent ages and severities, as well as on disorders with comorbid 
depression.
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