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Background: Aging is usually accompanied by functional declines of the

immune system, especially in T-cell responses. However, little is known

about ways to alleviate this.

Methods:Here, 37middle-aged healthy participantswere recruited, amongwhich

32 were intravenously administrated with expanded NK cells and 5 with normal

saline. Then, wemonitored changes of peripheral senescent and exhausted T cells

within 4 weeks after infusion by flow cytometry, as well as serum levels of

senescence-associated secretory phenotype (SASP)-related factors. In vitro co-

culture assays were performed to study NK-mediated cytotoxic activity against

senescent or exhausted T cells. Functional and phenotypic alteration of NK cells

before and after expansion was finally characterized.

Results: After NK cell infusion, senescent CD28-, CD57+, CD28-CD57+, and

CD28-KLRG1+ CD4+ and CD8+ T-cell populations decreased significantly, so

did PD-1+ and TIM-3+ T cells. These changes were continuously observed for 4

weeks. Nevertheless, no significant changes were observed in the normal saline

group. Moreover, SASP-related factors including IL-6, IL-8, IL-1a, IL-17, MIP-

1a, MIP-1b, and MMP1 were significantly decreased after NK cell infusion.

Further co-culture assays showed that expanded NK cells specifically and

dramatically eliminated senescent CD4+ T cells other than CD28+CD4+ T

cells. They also showed improved cytotoxic activity, with different expression

patterns of activating and inhibitory receptors including NKG2C, NKG2A,

KLRG1, LAG3, CD57, and TIM3.
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Conclusion: Our findings imply that T-cell senescence and exhaustion is a

reversible process in healthy individuals, and autologous NK cell administration

can be introduced to alleviate the aging.

Clinical Trial Registration: ClinicalTrials.gov, ChiCTR-OOh-17011878.
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Introduction

Aging is characterized by a progressive loss of physiological

function, and is a risk factor for several of the world’s most

prevalent diseases (1–3). According to the World Health

Organization, there will be more than 30% of the population

aged 60 years or older in China, America, and several European

countries by 2050 (https://www.who.int/ageing/en/), and the

incidence of related diseases, including cancer, T2DM (type 2

diabetes), neurodegenerative disorders, and cardiovascular

disease, will increase with aging.

Normally, aging is associated with a progressive decline in the

function of immune system, among which natural killer (NK) cells

and T cells are key components in innate and adaptive immunity,

respectively (4, 5). NK cells, characterized by expressing CD16 and

CD56, play critical roles as the first line of defense against virus

infection and cancer cells (6, 7). Young individuals have high levels

of functional NK cells. However, the NK-related activities decline

with aging, leading to an increased incidence and severity of viral

infections (8, 9). In addition, Liu et al. have found that primary NK

and CAR-NK cells have superior expansion capability and in vivo

cytotoxicity after optimizing the cultural condition, which broaden

cell therapy application (10). Moreover, due to repeated antigenic

stimulation throughout life, aging is always accompanied by

increased accumulation of senescent and exhausted T cells,

which, in turn, leads to impaired T cell-mediated responses (11).

This decline is largely responsible for the increased susceptibility to

infection, reduced effectiveness of vaccination, and higher

incidences of diseases including cancer in the elderly (12).

Recent findings from several clinical studies have shown that

markers of T-cell senescence (i.e. the loss of CD28 and/or gain of

CD57 among CD4+/CD8+ T-cell) (13, 14) and T-cell exhaustion

(i.e. high expression of PD-1 among CD4+/CD8+ T-cell) (15) are

usually higher in patients with HIV infection, breast cancer or

myeloid leukemia (AML) than in healthy controls (16). Of note,

the population and/or numbers of senescent and exhausted T

cells are reversed following anti-viral treatment and

chemotherapy (17–19). Importantly, these declining changes

are mostly restricted to complete remission patients other than
02
non-responders, implying that they are highly predictable and

positively related to clinical outcomes (20). Natural killer cells

play critical roles in immune clearance of aging-related

senescent cells, which may modulate T-cell dysfunction (21,

22). However, whether NK cells could boost immune system in

sub-health population is still unknown.

Accumulation of senescent cells in aging may promote

immune senescence by developing a senescence-associated

secretory phenotype (SASP) and generating damage signals

(23, 24). Given the critical roles of NK cells in immune

clearance of senescent cells and their declining activities with

aging (25), here we firstly explored whether the administration

of autologous NK cells would affect the peripheral population of

senescent and exhausted T cells in middle-aged healthy

individuals. Accordingly, the CD28-, CD57+, CD28-CD57+,

and CD28-KLRG1+ expressing CD4+ and CD8+ T cells were

assessed as senescent T cells, while the PD1+ and TIM3+

expressing CD4+ and CD8+ T cells were assessed as exhausted

T cells here. Results showed that senescent T cells, including

CD28-, CD57+, CD28-CD57+, and CD28-KLRG1+ subsets,

decreased significantly in both CD4+ and CD8+ T cells

following a single infusion of autologous NK cells. In addition,

the PD1+ and TIM3+ population within CD4+ and CD8+ T cells

also dramatically declined after the infusion. Declines were

continuously observed in senescent and exhausted T cells for 4

weeks after the intervention. Meanwhile, the concentrations of

chemokines, inflammatory cytokines, tumor necrosis factors,

and growth factors in the serums were assayed. We found that

SASP-related factors including IL-6, IL-8, IL- 1a, IL-17, MIP-

1a, MIP-1b, and MMP1 were significantly decreased after NK

cell infusion. Of note, expanded NK cells dose-dependently

reduced the population of CD28- and CD28-CD57+ CD4+ T

cells in vitro during co-culture assay, strongly suggesting NK

cells’ ability to recognize and remove senescent cells. They also

showed improved cytotoxic activity against K562. Furthermore,

different expression patterns of activating and inhibitory

receptors including NKG2C, NKG2A, KLRG1, LAG3, CD57,

and TIM3 were observed after in vitro expansion procedure,

probably contributing to their functional alteration.
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Methods

Subjects

This study (ClinicalTrials.gov identifier: ChiCTR-OOh-

17011878) was approved by the Ethical Committee of Changzheng

Hospital. Subjects were eligible for this study if they were 45–55 years

old and disease-free. Subjects with a positive serology for human

immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C

virus (HCV), Epstein–Barr virus (EBV), cytomegalovirus (CMV),

and syphilis were excluded, as were those with two ormore abnormal

testing results in the liver function tests including alanine

aminotransferase (ALT), aspartate aminotransferase (AST), total

bilirubin (TBil), indirect bilirubin (I-TBil), direct bilirubin (DBIL),

and g-GT. Also, subjects with tumor marker alpha fetoprotein (AFP)

and carcinoembryonic antigen (CEA) were excluded.
Study description

All subjects had physical examinations and medical

questionnaires to assess the health status. Then, eligible

subjects signed the informed consent form before entering the

group where they received a dose of autologous NK cells in two

infusions in 2 days. Peripheral blood samples were collected

before cell infusion as baseline and at the first and fourth weeks

after cell infusion to evaluate the effects of NK cell

administration on T-cell senescence and exhaustion, as well

as SASP.
In vitro natural killer cell amplification
and cell infusion

Leukapheresis was carried out to collect peripheral blood

mononuclear cells (PBMCs) from subjects by Spectra Optia

(TERUMO, USA). NK cells from fresh or cryopreserved

PBMCs were amplified in vitro using a feeder cell free culture

system with the Natural killer cells culture kit (DAKEWE,

China). In brief, cells were seeded into activator-coated flasks

at 1–2 × 10 (6) cells/ml and incubated in a 37°C–5% CO2

incubator (Thermo fisher, USA). Fresh NK medium was

changed every 2–3 days until sufficient amounts of cells were

obtained about 14 days later. Quality control was conducted by

assessing samples taken during the entire culture period and the

final cell product. The BacT/ALERT (bioMerieux, Durham, NC,

USA) microbiological detection system was used for sterility,

and the gel-clot technique using amoebocyte lysate from the

horseshoe crab was used for endotoxin test. Mycoplasma

contamination tests were performed by PCR method using

specific primers of mycoplasma (Yise Medical, China). Trypan

staining was used to calculate the number and viability of NK

cells. NK cells, determined by the expression of CD56 or CD16
Frontiers in Immunology 03
and the absence of CD3 (Supplementary Figure 1A), were

quantified using flow cytometry with antibodies purchased

from BD Biosciences including anti-CD3 antibody (HIT3,

FITC), anti-CD56 antibody (B159, APC), and anti-CD16

antibody (B73.1, APC) (26). We also determined the

population of C56-CD16+CD3- in expanded NK cells, and it

turned out that less than 2% of this subset was contained, as

indicated in one representative result out of three individual

expanded NK cells in Supplementary Figure 1B. NK cells were

resuspended in saline solution containing human serum

albumin and were intravenously injected into subjects at the

first drip rate of 1 ml/min following 2–3 ml/min in two equal lots

in 2 days. At the end of every infusion, another 60–70 ml of

saline solution was used to flush the pipeline of the disposal

transfusion set.
Immuno-phenotypic analysis of
peripheral T cells

PBMCs were isolated using Ficoll-Paque (GE Healthcare,

USA), and the cellular phenotypic of senescent and exhausted T

cells was analyzed by flow cytometry. For surface markers

analysis, cells were stained in PBS containing 2% fetal bovine

serum (FBS, Thermo fisher, USA) with antibodies as indicated.

Then, flow cytometric analysis was carried out in BD LSRFortessa

X20. The gating strategy to identify T cell subsets was applied as

described previously (27). Antibodies used in this study were

purchased from BD Biosciences and eBioscience, including anti-

CD4 (GK1.5, 1:100), anti-CD8 (53-6.7, 1:100), anti-CD25 (PC61,

1:100), anti-CD45RA (HI100, 1:100), anti-CXCR3(G025H7,

1:100), anti-CCR4 (L291H4, 1:100), anti-CCR6 (G034E3, 1:100),

anti-CCR7 (G043H7, 1:100), anti-CD127 (A019D5, 1:100), anti-

CXCR5 (RF8B2, 1:100), anti-CD28 (CD28.2, 1:100), anti-CD57

(NK-1, 1:100), anti-KLRG1 (2F1, 1:100), anti-PD-1 (EH12.2H7,

1:100), anti-TIM3 (F38-2E2, 1:100), and fixable viability dye

eFluor 780 (eBioscience, Cat#65-0865-14, 1:1,000).
Cytokine determination

Cytokines, MMP-1, MIP-1b, MIP-1a, IL-8, IL-1a, IL-6, IL-
17A, and IFN-g, in blood plasma were detected by Luminex

xMAP technology with the multiplex assay kit (ProcartaPlex 8

Plex, Thermo Fisher, PPX-08).
In vitro co-culture assay of NK cells
with PBMCs or senescent and exhausted
T cells

To determine the effect of expanded NK cells on senescent T

cells, PBMCs were harvested, washed, counted, and diluted to
frontiersin.org
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5 × 10 (4) cells/ml, and 50 ml/well were plated in a 96-well plate.

NK cells were washed, counted, diluted, and added at an NK:

PBMC cell ratio of 10:1, 1:1, and 0:1. All of the conditions were

assayed in quadruplicate. After 24 h at 37°C, cells were washed

and stained for flow cytometry analysis of variation of dead

CD4+CD28+ and CD4+CD28- cells with anti-CD4 (GK1.5,

1:100), anti-CD28 (CD28.2, 1:100), and fixable viability dye

eFluor 780 (eBioscience, Cat#65-0865-14, 1:1,000).

To determine specific cytotoxicity, CD28-CD57+CD4+ or

CD28+CD4+ T cells were sorted from PBMCs. Antibodies used

in this study were from BD Biosciences and eBioscience,

including anti-CD4 (GK1.5, 1:100), anti-CD28 (CD28.2,

1:100), anti-CD57 (NK-1, 1:100), and fixable viability dye

eFluor 780 (eBioscience, Cat#65-0865-14, 1:1,000). Then, we

used the CytoTox 96 Nonradioactive Cytotoxicity assay (Pro-

mega) based on the calorimetric detection of the released

enzyme LDH (28). Target cells were harvested, washed,

counted, and diluted to 5 × 10 (4) cells/ml, and seeded at 50

ml/well in a 96-well plate. Lymphocytes were washed, counted,

diluted, and added at an effector:target cell ratio of 10:1 and 1:1.

All of the conditions were assayed in quadruplicates. After 24 h

co-culture at 37°C, 50 ml of supernatants was assayed for LDH

activity following the manufacturer’s protocol. Controls for

spontaneous LDH release in effector and target cells, as well as

target maximum release, were prepared. The calculation of

cytotoxicity percentage was performed as follows:

%  cytotoxicity = ½Experimental − effector spontaneous

− Target spontaneous�=½Target maximum

− target spontaneous�  �   100

Only targets with spontaneous release of LDH ≤10% of the

maximum release were considered.

Additionally, CD3+PD-1+ T cells were sorted from PBMCs

with antibodies of anti-CD3 (HIT3, 1:100) and anti-PD-1

(NAT105, 1:100), and used as target cells in co-culture with

NK cells sorted from PBMC (indicated as preNK cells) and

expanded NK cells (indicated as postNK cells) at an effector-to-

target (E:T) cell ratio of 10:1. After 20 h of incubation at 37°C,

both LDH assay described as before and flow cytometry analysis

were carried out to determine NK-mediated cytotoxicity against

exhausted T cells.
Cytotoxicity of preNK and postNK

K562 cells with stable expression of luciferase were used as

target cells and co-cultured with preNK or postNK at an E:T

ratio of 10:1. After 18 h of incubation, luciferase activity was

determined according to Luciferase assay system TB281

(Promega). Target maximum luciferase activity was prepared.

The calculation of cytotoxicity percentage was performed

as follows:
Frontiers in Immunology 04
% cytotoxicity = [Target maximum − Experimental]/Target

maximum] × 100%. Meanwhile, supernatants were collected to

determine NK-released perforin and IFNg with the human

perforin ELISA kit (SEKH-0295, Solarbio) and the human

IFNg ELISA kit (DY285, R&D).
Phenotype of preNK and postNK

Flow cytometry analysis was carried out to study phenotype

variation of NK cells before and after in vitro expansion. Antibodies

used here were from BD Biosciences and eBioscience, including

anti-NKG2C (134591, 1:100), anti-NKG2A (131411, 1:100), anti-

LAG3 (11C3C65, 1:100), anti-KLRG1 (14C2A07, 1:100), anti-CD57

(HNK-1, 1:100), and anti-TIM3 (7D3, 1:100).
Statistical analysis

Data in this study were analyzed in GraphPad Prism 7.0, and

represented as means ± SEM (the standard error of the mean) or

means ± SD. The statistical significance was determined by one-

way ANOVA for multiple comparisons. p-values were denoted

in figures in the following way: ns: not significant; *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001. Power calculation was

carried out in analyzing saline-related effects on senescent and

exhausted T cells, with alpha set at 0.05.
Results

Baseline characteristics

From July 2017 to September 2018, 47 out of a total of 54

subjects aged from 45 to 55 years old were recruited into the

study, because these middle-aged populations were reported to

have impaired biology of NK cells (29, 30). During screening,

eight volunteers were excluded, among which three had

incomplete detection index, two had two or more abnormal

results in liver function tests, one had abnormal immune index,

one had positive infectious index, and one had abnormal blood

biochemical index. Therefore, 39 volunteers were enrolled in this

study. They received leukapheresis and subsequent NK cell

administration. However, two subjects missed their sample

collection after NK cell administration and had to exit from

the study. Finally, 37 subjects successfully completed the study,

including 18 male and 19 female subjects (Figure 1).

Importantly, all the volunteers consulted and signed the

informed consent form before participation. Meanwhile, 32

volunteers were re-injected with autologous NK cells, while 5

were administrated with normal saline. The baseline

characteristics of the subjects and NK cell information are

listed in Supplementary Table 1.
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Safety of autologous NK cell infusion

After NK cell administration, all subjects had normal body

temperature and blood pressure. No one developed skin rashes,

local infection and bleeding, fever, chills, difficult breathing, nausea,

and vomiting. However, one subject developed agrypnia within 1

week after cell infusion and recovered thereafter. One developed

dizziness within 1 week after cell infusion, and this phenomenon

lasted for 2 weeks before recovering. Two subjects developed

fatigue, among which one developed mild fatigue and the other

developed media fatigue, and both recovered in 2 weeks

(Supplementary Table 2). Furthermore, we conducted routine

blood test, hematological examination, and urinary and

virological examination at 1 month after cell infusion. No

hepatotoxicity and nephrotoxicity were observed according to

normal serum levels of ALT, AST, urea, and creatinine.

Additionally, no abnormal C response protein (CRP), anti-

thyroglobulin antibody (TGAb), and anti-thyroid peroxidase

autoantibody (TPOAb) activities were observed, indicating that

no immune response and autoimmune effects occurred.

Furthermore, no increased plasma levels of alpha fetoprotein

(AFP) and carcinoembryonic antigen (CEA) were observed 1

month later, strongly confirming that autologous NK cell infusion

was safe in terms of tumorigenicity.
Senescent T cells decreased after NK
cell infusion

Previous studies have proven that the accumulation of

senescent cells accelerates aging-associated disorders, and the
Frontiers in Immunology 05
clearance of p16-positive cells delays this phenomenon (31). NK

cells play important roles in innate immunity for clearing

senescent cells and defending against cancer (22). Thus, flow

cytometry analysis was carried out to detect populations of

CD4+CD28-, CD4+CD57+, CD4+KLRG1+, CD4+CD28-CD57+,

and CD4+CD28-KLRG1+ as senescent CD4+ T cells at baseline,

and 1 and 4 weeks after infusion. Results showed no significant

changes in CD4+ and CD8+ T-cell populations at two time

points after cell infusion (Figures 2A, B). However, senescent

CD4+ T cells were significantly decreased 1 and 4 weeks after NK

cell infusion (Figure 2C). In addition, gender had no impact on

the reduction of senescent CD4+ T cells caused by NK cell

infusion (Figure 2D).

As we know, CD8+ T cells are the main tumor killing cell

group (32). CD8+ cytotoxic T cells can attenuate tumor growth

by expressing FasL and secreting granzyme B and IFN-g (33).

However, the accumulation of senescent T cells impairs T cell-

mediated responses. Thus, we checked the percentage of CD28-,

CD57+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ senescent

CD8+ T cells at baseline, and 1 and 4 weeks after infusion. We

found out that senescent CD8+ T cells significantly decreased, at

both 1 week and 4 weeks, after NK cell infusion (Figure 2E). The

NK cell infusion-induced reduction of senescent CD8+ T cells

was gender independent (Figure 2F).
Exhausted T cells decreased after NK
cell infusion

During chronic infections and cancer, memory T cells

differentiate along with persistent antigen exposure and
FIGURE 1

The study flowchart in line with the STROBE.
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inflammation (15). It has been reported in human that T-cell

exhaustion happens during viral infections, such as HIV and

hepatitis C virus (HCV), and cancer development (34, 35).

Importantly, exhausted T cells are characterized by elevated

expression of PD-1, TIM-3, CTLA-4, and the activation of their

related signaling pathways. Recent successful applications of

anti-PD-1/PD-L1 antibodies in cancer immunotherapy have
Frontiers in Immunology 06
proven the significance and efficacy of treatments targeting T-

cell exhaustion (36). Then, we detected whether NK cell infusion

affected the percentage of exhausted CD4+ and CD8+ T cells.

Results showed that CD4+PD-1+ T cells, CD8+PD-1+ T cells,

CD4+TIM-3+ T cells, and CD8+TIM-3+ T cells were significantly

decreased after NK cell infusion at both 1 week and 4 weeks

(Figure 3A). These results suggested that NK cell infusion might
A B

D

E

F

C

FIGURE 2

Senescent T cells decreased after NK cell infusion. (A) Percentages of CD4+ and CD8+ T cells were analyzed by flow cytometry on the 1 week
and 4 weeks after NK cell infusion(B) Percentages of CD4+ and CD8+ T cells were analyzed in both sex by flow cytometry on the 1 week and 4
weeks after NK cell infusion. (C) Percentages of CD28-, CD57+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ CD4+ T cells were analyzed by flow
cytometry on the 1 week and 4 weeks after NK cell infusion. (D) Percentages of CD28-, CD57+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ CD4+

T cells were analyzed in both sex by flow cytometry on the 1 week and 4 weeks after NK cell infusion. (E) Percentages of CD28-, CD57+,
KLRG1+, CD28-CD57+, and CD28-KLRG1+ CD8+ T cells were analyzed by flow cytometry on the 1 week and 4 weeks after NK cells infusion.
(F) Percentages of CD28-, CD57+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ CD8+ T cells were analyzed in both sex by flow cytometry on the 1
week and 4 weeks after NK cell infusion. Each marker has detected 32 volunteers; 15 volunteers are involved in the male group, and 17
volunteers are involved in the female group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns, no signifcant.
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improve the function of T cells by alleviating the exhausted

status of T cells. Moreover, the decreases of PD-1+ and TIM-3+ T

cells, at 1 week and 4 weeks after NK cell infusion, were gender

independent (Figure 3B).
Cell types influenced the effects induced
by NK cell infusion

Among the 32 participants receiving NK cells, 14 volunteers

were re-injected with NK cells amplified from cryopreserved

PBMCs, and 18 volunteers were re-injected with NK cells

generated from fresh PBMCs. We would like to explore

whether the NK cell infusion-induced immune system

alterations were dependent on the beginning status of NK

cells. We analyzed these two groups by one-way ANOVA for

multiple comparisons. The results showed that TIM3+, KLRG1+,

CD28-CD57+, and CD28-KLRG1+ T cells were significantly

reduced at the 1- or 4-week point in the fresh NK cell infusion

group (Figure 4A), while CD28-, CD57+, and PD-1+ T cells did

not significantly change in the fresh NK cell infusion group

compared with frozen NK cell infusion (Figure 4B).
Key SASP-related factors reduced after
NK cell infusion

Senescent cells accumulate with aging and lead to the release

of SASP-related factors including pro-inflammatory cytokines
Frontiers in Immunology 07
(IL-1a, IL-17, and IL-6), chemokines (IL-8), and proteases

(MMP-1, MMP-1a, and MMP-1b). These SASP-related

factors play critical roles in aging-related inflammation,

diseases, and morbidity (37–39). Therefore, to check whether

NK cell infusion decreased systematic levels of SASP-related

factors, we measured cytokine levels in plasma collected before

and after NK cell infusion. We found lower levels of key SASP-

related factors, including IL-6, IL-8, IL-1a, IL-17, MIP-1a, MIP-

1b, and MMP1, in the plasma after NK cell infusion, whereas

IFN-g, a non-SASP-related factor, was not continuously

significantly altered (Figure 5). These results indicated that NK

cell infusion could attenuate the accumulation of SASP-related

factors and improve CD4+ and CD8+ T cells’ activities.
Senescent T cells and exhausted T cells
have no significant changes in the
control group

We had known that the percentages of senescent T cells and

exhausted T cells decreased significantly after NK cell infusion. To

further validate the relationship between NK cell infusion and T-

cell reduction, we obtained five volunteers who were injected with

normal saline (Supplementary Table 1). We revealed that total

CD4+ and CD8+ T-cell percentages were not significantly changed

after saline injection (Figure 6A). Exhausted T-cell percentages

such as PD-1+ and TIM3+ T cells did not decrease after normal

saline injection, neither did senescent T-cell populations such as

CD28-, CD57+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ T
A

B

FIGURE 3

Exhausted T cells decreased after NK cell infusion. (A) Percentages of PD-1+ and TIM-3+ T cells were analyzed by flow cytometry on the 1 week
and 4 weeks after NK cell infusion. (B) Percentages of PD-1+ and TIM-3+ T cells were analyzed in both sex by flow cytometry on the 1 week and
4 weeks after NK cell infusion. Each marker has detected 32 volunteers; 15 volunteers are involved in the male group, and 17 volunteers are
involved in the female group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. ns, no signifcant.
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cells (Figures 6B, C). Lastly, we explored the data in the larger

cohort to assess how much power that these five subjects achieve

reductions in senescent T cells (Supplementary Table 3); in order

to ruled out the hypothesis that normal saline can also cause

changes in senescent cell.
PostNK cells kill senescent CD4+ T cells
but not normal CD4+ T cells

Lastly, we wonder how NK cell infusion influenced the

percentages of senescent T cells. Previous studies have

demonstrated that NK cells could kill and clear senescent cells

to avoid paracrine effect. Thus, we firstly in vitro co-cultured

PBMCs with autologous postNK cells (Supplementary Figure 2),

and the percentages of dead CD28- and CD28+ CD4+ T cells were

detected. We found that the percentages of dead CD4+ T cells

increased after postNK cell adjunction. While causing slight
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increase of CD28+CD4+ T cells, postNK cell adjunction

dramatically led to increased ratio of dead CD28-CD4+ T cells

(Figures 7A–C), critically contributing to increased dead CD4+ T

cells. Furthermore, instead of total PBMCs, we used CD28-

CD57+CD4+ or CD28+CD4+ T cells to co-culture with

autologous postNK cells (Supplementary Figure 2) in a

Nonradioactive Cytotoxicity assay (Pro-mega). Results showed

that postNK cell adjunction specifically killed CD28-CD57+CD4+

T cells other than CD28+CD4+ T cells in a dose-dependent way

(Figure 7D). When CD3+PD1+ T cells were co-cultured with

preNK or postNK at an E:T cell ratio of 10:1, no LDH activity were

detected after 20 h of incubation (data not shown). Also, NK

cell adjunction had little effect on PD1 expression on exhausted T

cells (Figures 7E, F). postNK cells showed significant improved

cytotoxicity against K562 and perforin secretion (Figures 7G, H).

Nevertheless, IFNg was detected only in a co-culture sample of

preNK cells of donor 1 with K562 at an average concentration of

412.5 pg/ml by ELISA.
A

B

FIGURE 4

Cell types influence the effects induced by NK cell infusion. (A) Percentages of TIM-3+, KLRG1+, CD28-CD57+, and CD28-KLRG1+ T cells were
analyzed in both fresh and frozen groups by flow cytometry on the 1 week and 4 weeks after NK cell infusion. (B) Percentages of PD-1+, CD28-,
and CD57+ T cells were analyzed in both fresh and frozen groups by flow cytometry on the 1 week and 4 weeks after NK cell infusion. Each
marker has detected 32 volunteers; 14 volunteers are involved in the frozen group, and 18 volunteers are involved in the fresh group. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001. ns, no signifcant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.940577
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2022.940577
Phenotypic characterization of preNK
and postNK cells

In order to better understand why the infusion of expanded

NK cells showed significant improvement of T senescence and

exhaustion, we further compared phenotypic variation of NK

cells after in vitro expansion procedure (Figures 8A–C). preNK

cells of two individuals mainly expressed NKG2C, KLRG1, and

CD57, while having a much lower level of NKG2A. LAG3 was

barely expressed in both preNK and postNK cells. After the

expansion procedure, postNK cells had a lower expression of

NKG2C, CD57, and KLRG1, but a higher expression of NKG2A

and TIM3. Additionally, postNK cells of different individuals

showed a more similar expression pattern of indicated receptors

than their preNK counterparts.

Discussion

Here, we firstly uncovered that a single administration of

autologous NK cells in middle-aged healthy individuals not only
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significantly decreased peripheral senescence and exhaustion T

cells, but also lowered the secretions of key SASP-related factors,

which is another critical factor highly related to aging. It is well

documented that the immune system undergoes a progressive

decline and deterioration with aging, which, in turn, results in

increased incidence and severity of infections, impaired response

to vaccines, and accelerated development of cancer. Therefore,

developing efficient measures to eliminate or at least alleviate the

phenomenon of immune dysfunction may theoretically and

practically restore or improve the protective function of the

immune system.

Of note, autologous NK cell infusion was proven to be safe

for human use, because no adverse events were observed

(Supplementary Table 2). After autologous NK cell infusion,

CD28-, CD57+, and KLRG1+ subsets were significantly reduced

within CD4+ and CD8+ T cells. Meanwhile, similar changes were

observed in the CD28-CD57+ and CD28-KLRG1+ CD4+ and

CD8+ T subsets. Furthermore, T-cell exhaustion was also

alleviated significantly as indicated by reduced levels of

CD4+PD-1+, CD4+TIM-3+, CD8+PD-1+, and CD8+TIM-3+
A

B

FIGURE 5

Key senescence-associated secretory phenotype (SASP) components decreased after NK cell infusion. (A) IL-6, IL-8, IL-1a, IL-17, MIP-1a, MIP-
1b, and MMP1 were detected by Luminex xMAP technology on the 1 week and 4 weeks after NK cell infusion. (B) IFN-g were detected by
Luminex xMAP technology on the 1 week and 4 weeks after NK cell infusion. Data [IL-6 (n = 31), IL-8 (n = 31), IL-1a (n = 29), IL-17 (n = 30),
MIP-1a (n = 32), MIP-1b (n = 32), MMP1 (n = 32), and IFN-g (n = 32)] were analyzed by paired t-test. *p < 0.05; ***p < 0.001; ****p < 0.0001.
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(Figures 2, 3). However, no significant differences of T-cell

senescence and exhaustion index were observed after normal

saline treatment (Figure 6). In addition, our preliminary data

also revealed that autologous NK cell infusion was unlikely able

to affect the percentage of Th1, Th2, Th17, and Treg in CD4+ T

cells (data not shown). Accordingly, more examinations have to

be carried out in the future to address this issue. Although one

infusion was performed here, the effects were not transient but

continued for at least 4 weeks, and much longer-term effects

should be evaluated in the future to further characterize the

pharmacodynamics of NK cell infusion.

We also studied whether NK cell-mediated alleviation of T-cell

senescence and exhaustion was restricted to the sex of subjects.

There was no significantly different trend in both male and female

groups, strongly implying that the effects induced by NK cell

infusion are independent with sex. Additionally, NK cells

generated from fresh PBMCs were shown to significantly affect

more indices of senescent and exhausted T cells, indicating that

fresh PBMCs are better for starting NK cell amplification. Given

that cryopreservation is a widely used technique for long-term
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stem cell products, we believed that more subjects should be

recruited and studied in the future to evaluate the effect of PBMC

cryopreservation on adaptive NK cell-mediated immuno-

modulatory improvement.

Cellular senescence is one of the 14 hallmarks of aging.

Senescent cells play critical roles in age-related immune

dysfunction and inflammation, because they release dangerous

signals to stimulate immune cells and usually these stimulations

are chronic, which, in turn, results in T-cell senescence and

exhaustion. Senescent cells also share an important feature in

SASP. Previous findings have reported that NK cells could

eliminate senescent cells. Here, we found that NK cell infusion

significantly decreased the secretions of key SASP-related

components including IL-6, IL-1a, IL-8, MIP-1a, MIP-1b, and
MMP1, but not IFN-g, which was a non-SASP-related factor

(Figure 5). These findings strongly suggested that NK cell

infusion alleviated cell senescence during aging. Senescent cells

play critical roles in age-related immune dysfunction and

inflammation, because they release danger signals to stimulate
A B

C

FIGURE 6

Senescent T cells and exhausted T cells have no significant changes in the saline group. (A) Percentages of CD28-, CD57+, KLRG1+, CD28-

CD57+, and CD28-KLRG1+ T cells were analyzed by flow cytometry on the 1 week and 4 weeks after saline injection. (B) Percentages of PD-1+

and TIM-3+ T cells were analyzed by flow cytometry on the 1 week and 4 weeks after saline injection. Each marker has detected five volunteers.
*p < 0.05. ns, no signifcant.
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immune cells and usually these stimuli are chronic, which, in

turn, result in T-cell senescence and exhaustion. In short-term

co-culture, autologous expanded NK cells were found to affect

senescence of T cells, but not the exhaustion (Figures 7A–F),

mechanically elucidating that NK cell infusion-related effects on

senescent T cells were probably due to their capacity to eliminate

senescent cells in vivo. In terms of T-cell exhaustion, longer co-

cultures should be performed in the future to further testify

whether NK cells directly affect T-cell exhaustion or not. It is
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known that T-cell exhaustion is reversible (40), and immune

checkpoint inhibitors and antiretroviral therapy were reported

to reverse the dysfunction and phenotype of exhausted T cells

under the circumstance of chronic viral infection (41, 42). After

these treatments, exhausted CD8+ T cells gained cytotoxic

activity and had a lower level of PD-1. Accordingly, our

findings of decreased T-cell exhaustion could be an indirect

effect due to significant alleviation of the senescence and its

associated chronic inflammation by NK cell infusion.
A B

D E

F G H

C

FIGURE 7

NK cells kill senescent CD4+ T cells but not normal CD4+ T cells. (A) Representative figure showed the percentages of dead CD4+ T cells.
(B) Percentages of dead CD4+ T cells as indicated in (A). (C) Representative figure showed the percentages of dead CD28+CD4+ T cells.
(D) Percentages of dead CD28+CD4+ T cells as indicated in (C). (E) Representative figure showed the percentages of dead CD28-CD4+ T cells.
(F) Percentages of dead CD28-CD4+ T cells as indicated in (E). (G) CD28+CD4+ T cells and CD28-CD57+CD4+ T cells were sorted from PBMC
and co-cultured with NK cells, the effects of NK cells in T cells were detected by cytotoxicity assay. (H) The LDH release level of the
CD28+CD4+ T-cell group and CD28-CD57+CD4+ T-cell group as indicated in (G). *p < 0.05; **p < 0.01; ****p < 0.0001.
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Notably, expanded NK cells were found to have enhanced

cytotoxic activity and perforin secretion against K562

(Figures 7G, H). Nevertheless, these expanded NK cells expressed

a lower level of NKG2C and CD57 but a higher level of NKG2A
Frontiers in Immunology 12
and TIM3 (Figure 8), indicating that they were not fully mature (43,

44). Due to the fact that the culture conditions here are patented, it

is hard to fully elucidate the underlying mechanism. Nevertheless,

Lieberman et al. also reported that by using a K562 cell line
A B

C

FIGURE 8

Phenotypic characterization of preNK and postNK cells. (A) preNK and postNK cells of donor 1 were used for flow cytometry analysis of NKG2A,
NKG2C, LAG3, KLRG1, CD57, and TIM3. (B) preNK and postNK cells of donor 2 were used for flow cytometry analysis of NKG2A, NKG2C, LAG3, KLRG1,
CD57, and TIM3. (C) The alteration trend of indicated receptors.
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expressing membrane-bound IL-15 and 4-1BB ligand with high-

dose soluble IL-2, similar phenotypically immature and functionally

pleiotropic NK cells were generated (45). They suggested that these

subsets of NK cells were preferred to be expanded and may persist

better in vivo. Other stimuli, including the presence of IL-12 and IL-

18 in culture, were shown to induce NKG2A expression (46, 47).

Moreover, KLRG1, one of inhibitory receptors to negatively regulate

NK cell function (48), was also found to be significantly inhibited in

expandedNK cells (Figure 8), implicating its roles to contributing to

enhanced function of NK cells post expansion. After infusion,

whether and how these immature expanded NK cells will sustain

or change in either phenotypic or functional ways should be

addressed to better our understanding of their in vivo mode

of action.
Conclusions

In conclusion, the present study originally uncovered the

effect of NK cell infusion on T-cell dysfunction and cellular

senescence in middle-aged healthy individuals. Our findings

showed that autologous NK cell administration was an efficient

method to significantly alleviate T-cell senescence and exhaustion,

as well as key components of SASP. postNK cells showed

improved cytotoxic activity and can specifically and directly

recognize and eliminate senescent T cells. Also, different

expression patterns of activating and inhibitory receptors

including NKG2C, NKG2A, KLRG1, LAG3, CD57, and TIM3

were observed after in vitro expansion procedure, probably

contributing to their functional alteration. Our data importantly

indicated that aging, at least for the immune system, could be

manipulated towards a younger direction by the transfer of

autologous NK cells. Further exploration should focus on the

molecular mechanism that autologous NK cells influence T-cell

senescence and exhaustion. Also, further investigation into these

senescent and exhausted T-cell populations, their origin, and their

function in immunologic pathologic conditions will greatly

promote clinical use of NK immunotherapy.
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