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Abstract: A novel chemoselective polymerization control
yields predictable (co)polymer compositions from a mixture
of monomers. Using a dizinc catalyst and a mixture of
caprolactone, cyclohexene oxide, and carbon dioxide enables
the selective preparation of either polyesters or polycarbonates
or copoly(ester-carbonates). The selectivity depends on the
nature of the zinc—oxygen functionality at the growing polymer
chain end, and can be controlled by the addition of exogeneous
switch reagents.

A key challenge for polymer science is to control the
polymer sequence from mixtures of monomers. Sequence-
controlled multiblock copolymers are of high interest, owing
to their enhanced properties and their potential for designed
functionality. Whereas Nature exerts sophisticated sequence
control, for example, in peptide synthesis, synthetic methods
are far less advanced. Generally, when using mixed-monomer
feedstocks, the relative reactivities of the monomers, deter-
mined from homopolymerization experiments, are used to
predict the sequence of the copolymer, that is, kinetic
control.! Recently, this has been elegantly exploited using
donor—acceptor monomers, to prepare sequence-controlled
block copolymers.”) Herein, we present a novel chemo-
selective control mechanism that is applicable to both the
ring-opening polymerization (ROP) of lactones and the ring-
opening copolymerization (ROCOP) of epoxides and carbon
dioxide to yield copoly(ester-carbonates) (Figure 1).
Polyesters and polycarbonates are currently produced on
a large scale (>5 Mt/annum), mostly by condensation poly-
merization and using petrochemicals.’! Such syntheses are
hampered by precise monomer stoichiometry requirements,
thermodynamic constraints, slow rates, and a total lack of
polymerization control. These factors complicate, and even
prevent, the preparation of copolymers.”! In contrast, the
ring-opening polymerization (ROP) of lactones™/cyclic car-
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Figure 1. ROP and ROCOP, the switch mechanisms, and the structure
of catalyst 1.

bonates”! and the ring-opening copolymerization (ROCOP)
of epoxides with CO,/anhydrides”®! (Figure 1) are much
more desirable syntheses. They are much faster and thermo-
dynamically more favorable than condensation routes. Fur-
thermore, they are highly controlled, yielding polymers of
predictable molecular weights with narrow polydispersity
indices. As such, they are the syntheses of choice for
copolymers. Furthermore, several lactones, epoxides, and
carbon dioxide can be sourced from renewable resources.
Thus, the development of ROP and ROCOP is of high
importance for improved, versatile, and sustainable routes to
these commodity polymers.[*7-

Both the ROP of cyclic lactones and the ROCOP of
epoxides/CO, require catalysts; the most successful of these
are homogeneous metal complexes.[*°! Curiously, there is very
little overlap between the catalysts applied for these two
polymerizations: only a few homogeneous complexes can
catalyze both processes, almost always independently.’) There
are two intriguing hints in the literature that combined
processes may be feasible, using either heterogeneous zinc
glutarate or a pB-diketiminate zinc catalyst, but insights into
how to combine the reactions are limited.'” Indeed, even
using multiple catalysts there are only a handful of reports of
both ROP and ROCOP.®"! Our group has prepared ABA
triblock copolymers by ROCOP, using a dizinc catalyst,
followed by intermediate polymer purification and subse-
quent lactide ROP using an yttrium catalyst.'” Darensbourg
etal. produced AB and ABA type polymers by tandem
catalysis using a cobalt ROCOP catalyst, followed by a DBU
ROP catalyst.®31 Although elegant, this method requires
careful balancing of the rates of the catalysts, and complexes
which will not react with each other.

Here, a straightforward strategy to switch between ROP
and ROCOP is presented (Figure 1). The method applies
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exogeneous switch reagents to direct the polymerization
pathway. It enables a single catalyst (1) to be used for both
ROP and ROCOP, both sequentially and in one pot. It
obviates the need for intermediate polymer isolation, com-
plex rate balancing or compatibility testing.

Dizinc complex 1 is an efficient ROCOP catalyst, using
cyclohexene oxide (CHO) and CO,."" 1 operates under CO,
pressures as low as 1 bar and is highly selective, producing
poly(cyclohexene carbonate) (PCHC) with a high fidelity of
carbonate repeat units (> 99 %). Given the strong precedent
for zinc catalysts in lactone ROP,*! 1 was tested for the ROP
of caprolactone (CL). However, 1 was completely inactive,
even under forcing conditions (80°C, neat CL, with/without
alcohol; Table 1; see also Table S1 in the Supporting Infor-

Table 1: The formation of polyesters, polycarbonates, and copolymers
using 1.

Run CHO CL CO, t % conw Polymer M, (PDI)
th (%" [gmol ']
1 - 500 - 16 - - -
2920 200 - 2 >99 PCL 11780 (1.41)
3 900 100 - 2 >99 PCL 6020 (1.24)
4 900 100 1 15 12 PCHC 1040 (1.08)
54900 100 1 21 >99 (CL) PCL-PCHC 4810 (1.38)
53 (CHO)
6l 450 50 1 65 6 (CHO) PCHC-PCL 3490 (1.48)
>99 (CL)
7€ 450 50 1 4 10 (CHO) PCHC 560 (1.29)
2 >99 (CL)  PCHC-PCL 2350 (1.49)

[a] Determined by '"H NMR spectroscopy from the normalized integrals
for resonances from CL (4.23 ppm), PCL (4.05 ppm), CHO (3.11 ppm),
and PCHC (4.73-4.54 ppm). [b] Determined by SEC in THF, with

a correction factor of 0.56 for PCL, as described in Ref. [16]. [c] Poly-
merization in toluene, [CL],=1 M. [d] CO, added after complete
consumption of CL (1 h), as monitored by ATR-IR spectroscopy. [e] CO,
removed after 3.5 h by application of six vacuum purge/nitrogen flush
cycles.

mation). This appears to be a thermodynamic limitation, as
even reaction for extended periods (16 h, > 48 half-lives; see
below) failed to yield polycaprolactone (PCL). Catalyst
deactivation is ruled out, as 1 can be switched on for ROP
by addition of 10 mol% (vs. CL) of an epoxide (Table 1,
entry 2). Thus, CL ROP using 1 with 10% added epoxide
(CHO) at 80°C proceeded to complete conversion (>99 %)
within 2 h, yielding only PCL (Figure 2, RHS). The polymer-
ization was well controlled; the PCL M,, (21000 gmol~', PDI:
1.4) was in excellent agreement with that predicted M, .=
22000 gmol™!). The epoxide switch reagent can be added
either in low quantities (10 %) or in excess, for example, as the
polymerization solvent (Table 1, runs 3-6).Where CHO is the

O Q N 0
+ o] 2
a)
CHO CL

Figure 2. Chemoselective polymerization control. a) 1/CHO/
CL=1:900:100, 80°C, 16 h. Gases (CO, or N,) are added to 1 bar total
pressure.
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solvent (at > 9 x conc. of CL), the PCL shows a reduced M,
owing to chain-transfer reactions with residual water/cyclo-
hexane diol (0.1 mol% vs. CHO); equivalent reactions are
common to catalysts in this field.'**!!

The switch reaction involves attack by a zinc acetate
group from 1 on the cyclohexene oxide, forming a zinc
alkoxide intermediate. The ATR-IR spectrum of this inter-
mediate (Figure S3) matches theoretical predictions and
spectroscopic data.l'*!l The zinc alkoxide intermediate is the
only product formed even when using excess epoxide, that is,
1 does not catalyze any homopolymerization of cyclohexene
oxide. Together, the data show that 1 (a zinc carboxylate
species) cannot initiate CL ROP, whereas the zinc alkoxide
intermediate can initiate. Furthermore, the zinc acetate group
only undergoes a single ring-opening reaction with CHO.
Thus, the cyclohexene oxide switches on the ROP of CL.
Efficient metal carboxylate initiators for cyclic ester ROP are
scarce.l*) For example, [(bdi)Zn(OAc)] (bdi= p-diiminate)
shows very low activity for lactide ROP in contrast to
[(bdi)Zn(OiPr)], which is highly active™ In order to
establish the generality of the switch, Zn(OAc), was tested
with/without added CHO for CL ROP (Table S1). Without
any CHO, there is negligible polymerization, however, adding
just CHO (10 mol %), results in complete conversion within
15 h. Furthermore, adding CHO (10 mol % ) to CL ROP using
[(bdi)Zn(OAc)] yielded PCL in 1 h. The epoxide switch is
expected to be general; it could enable ROP using other
metal carboxylates. This is desirable, as they are less sensitive
than currently applied metal alkoxides/amides.

With an efficient catalyst for either ROCOP or ROP, the
development of a one-pot procedure enabling both polymer-
izations was desirable (Figure 2). The reaction of 1 with all
reagents simultaneously yielded only polycarbonate (PCHC),
that is, only ROCOP occurred (Figure 2 RHS, Table 1). The
"H NMR spectrum of the crude product showed only PCHC
formation, with CL remaining unreacted (Figure S4). The
polymerization was monitored using in situ ATR-IR spec-
troscopy (Figure 3). As the reaction progressed, there was

0.35
03{ ——1275cm™” (PCHC)
——1375cm™ (PCL)
0.25 |
— - 694 cm™ (e-CL) PCHC
formation
0.2 -
2
‘«
S 0.15]
kS
0.1
PCL
0.05 |
N e
0.05 ‘ : i ‘
0 200 400 600 800

t/ min

Figure 3. Changes in the intensity of IR resonances (normalized)
during the reaction in Figure 2, LHS (Table 1, run 3). The mixture of CL
and CHO under CO, (1 atm) shows only the formation of PCHC, with
no PCL formation.
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a continual increase in PCHC formation (1275cm™). In
contrast, there was no change in either PCL or CL concen-
trations (1374 and 694 cm ™!, respectively). In order to ration-
alize this selectivity, the CL ROP was investigated with CHO
(10 mol%), under an atmosphere of CO, (1bar). The
polymerization was inhibited: there was no formation of
PCL. This is proposed to be due to rapid insertion of CO, into
the zinc alkoxide bond, coupled with the inability of the zinc
carbonate to initiate ROP, by analogy to the previous findings
using 1 (Figure 4). The rate law for ROCOP using 1, shows

zinc alkoxide

ROP [zm [Zm ROCOP

{ Fow N,
ks fast k2 slowest 1rastes
[Zn] [Zn]
[Zn]  [Zn]
T e
R+1

C02 k4' fastest R

zinc alkoxide zinc carbonate

Figure 4. Chemoselective polymerization control, illustrating the
importance of the zinc-oxygen chain end groups. The selectivity can be
rationalized if the relative rates are: k; =k, > ks > k,. Where [Zn] [Zn] is
defined in Figure 1 and R=growing polymer chain (PCHC/PCL/
copolymer).

a zeroth order in carbon dioxide (1-40bar), which is
consistent with the rapid insertion of CO, into zinc alkoxide
bonds.'*! Thus, CO, inserts more rapidly into the zinc
alkoxide bond than the rate of CL ROP (Figure 4). At first
sight this could be counterintuitive, particularly if only the
turn-over frequencies are considered: the TOFs for ROCOP
(ca. 7 h™") are significantly lower than those for CL ROP (ca.
100 h™'; Table S2).

The explanation lies in the relatively faster rate of the pre-
rate-determining step (CO, insertion) which ensures that,
from a mixture of monomers, catalyst 1 selects for ROCOP.
Another finding is that the nature of the zinc chain end group
controls selectivity, even from a mixture of different mono-
mers. The zinc alkoxide chain end group catalyzes either
ROCOP or ROP, whereas the zinc carboxylate/carbonate
chain end groups only catalyze ROCOP. We have termed this
unusual phenomenon: chemoselective polymerization control
(an illustration of the key concepts is provided in Figure 4).

A logical next step was to investigate 1 as a catalyst for
sequential ROP and ROCOP (Table 1, runs 5-6) by exploit-
ing this chemoselective polymerization control. First, the
ROP of CL (100 equiv) was investigated, using 1 dissolved in
excess cyclohexene oxide (900 equiv). This resulted in quan-
titative formation of PCL (M, =4100 gmol™', PDI=1.4) in
less than 1 h. Figure 5 illustrates the in situ ATR-IR data and
shows changes to the intensities of the resonances consistent
with efficient CL ROP (1750 and 694 cm™') and PCL
formation (1420 cm™'). Next, carbon dioxide (1 bar total
pressure) was added: ROCOP began immediately, leading to
PCL-PCHC formation (evidenced by the increase in the
intensity of the signal at 1237 cm ™). During the next 20 h, the
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Figure 5. Changes to the intensity of IR resonances during PCL-PCHC
formation (Table 1, run 5). The plot shows the ROP of CL, the addition
of CO,, and the ROCOP of CHO/CO,,.

resonances due to PCL and CL (1420 and 694 cm™', respec-
tively) did not change significantly. The intensities of the
resonances at 1750 and 1237 cm™ are affected by both CL/
PCL and PCHC concentrations (Figure S5), but the dominant
influences are apparent. Size-exclusion chromatography
(SEC) analysis (53% CHO conversion, M, =4800, PDI=
1.28) shows only a slight increase in M, compared to the
PCL formed after 1 h (Figure S6). The M, determined by SEC
is calibrated against polystyrene standards because the
correction factors are unknown for the copolymers: this
calibration issue is likely in part responsible for the smaller
increase in M, than might be expected from the monomer
conversions. The '"H NMR spectrum (Figure S7) confirms the
expected copolymer composition, with relative intensities of
carbonate and ester signals in the expected ratios given the
monomer conversions. The carbonyl region of the “C{'H}
NMR spectrum (Figure S8) indicated block copolymer for-
mation, with signals due to PCL (174 ppm) and PCHC
(154 ppm) only. There were no intermediate peaks, which is
consistent with a lack of copolymer scrambling reactions, for
example, transesterification/carbonation.

The reverse order of monomer addition was also inves-
tigated, that is, firstly ROCOP, then ROP. This was achieved
by mixing 1 with excess CHO, CL, and CO, (1 bar), so as to
initiate ROCOP and produce PCHC. In situ ATR-IR spec-
troscopy (Figure 6) showed PCHC formation (1280 cm™),
with PCL/CL signals remaining constant (1420 and 694 cm™,
respectively). After 3.5h, the CO, was purged from the
reaction, by application of six vacuum purge/nitrogen flush
cycles over a period of 15 min, after which the intensity of the
CO, resonance (2340 cm™') decreased to near zero. The CO,
atmosphere was replaced with N,, leading to rapid CL ROP.
After this time, there was no significant change to the PCHC
signal (1280 cm™).

The reaction was repeated with aliquot removal for SEC
analysis (Table 1, run 7); thus after 4 h there was ca. 10%
PCHC formation with an M, of 530 gmol™' (PDI=1.29;
Figure S9) and after a further 2 h, there was >99% con-
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Figure 6. Changes to the intensity of IR resonances for PCHC-PCL
formation (Table 1, run 6). The plot shows the ROCOP of CHO/CO,,
the removal of CO, and the ROP of CL.

version into PCL-PCHC and the M, had increased to
2350 gmol™" (PDI = 1.49; Figure S9). Thus, the reverse mo-
nomer addition also enables one-pot sequential ROCOP and
ROP, and yields PCHC-PCL (polycarbonate-ester). In this
case, it is important to remove the excess CO,, so that the zinc
carbonate species can react with a further equivalent of CHO
to generate the zinc alkoxide species required for CL ROP.

In summary, a means to bridge between two commonly
applied polymerization pathways, ring-opening polymeri-
zation and ring-opening copolymerization, is described,
which enables the selective synthesis of polyesters, carbo-
nates, and copoly(ester-carbonates). The two pathways are
bridged by the addition of exogeneous switch reagents, either
epoxide or carbon dioxide. The study also reveals that the
chemical nature of the zinc-polymer chain end group plays
a central role in controlling which monomer(s) are polymer-
ized from a mixture. Such chemoselective polymerization
control is unusual, yet the principles uncovered here are
expected to apply more generally, including to other epoxides,
heterocumulenes, and lactones. Future studies will focus on
exploiting it to prepare a range of new polymers/copolymers.
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