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Abstract

The relation between electrophysiology and BOLD-fMRI requires further elucidation.

One approach for studying this relation is to find time-frequency features from elec-

trophysiology that explain the variance of BOLD time-series. Convolution of these

features with a canonical hemodynamic response function (HRF) is often required to

model neurovascular coupling mechanisms and thus account for time shifts between

electrophysiological and BOLD-fMRI data. We propose a framework for extracting

the spatial distribution of these time-frequency features while also estimating more

flexible, region-specific HRFs. The core component of this method is the decomposi-

tion of a tensor containing impulse response functions using the Canonical Polyadic

Decomposition. The outputs of this decomposition provide insight into the relation

between electrophysiology and BOLD-fMRI and can be used to construct estimates

of BOLD time-series. We demonstrated the performance of this method on simu-

lated data while also examining the effects of simulated measurement noise and

physiological confounds. Afterwards, we validated our method on publicly available

task-based and resting-state EEG-fMRI data. We adjusted our method to accommo-

date the multisubject nature of these datasets, enabling the investigation of inter-

subject variability with regards to EEG-to-BOLD neurovascular coupling mechanisms.

We thus also demonstrate how EEG features for modelling the BOLD signal differ

across subjects.
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1 | INTRODUCTION

Considerable effort has been dedicated to understanding the precise

nature of the blood-oxygen-level dependent functional magnetic res-

onance imaging (BOLD-fMRI) signal, due to its neurovascular and

physiological origins (Hillman, 2014). One challenge is to remove

confounds from BOLD-fMRI data such as head motion (Power

et al., 2014) and confounds related to systemic physiology, such as

cardiac and respiratory activity (Kassinopoulos & Mitsis, 2019). In

addition to denoising, other approaches for studying the BOLD signal

include mathematically modelling the process of neurovascular cou-

pling (Stephan et al., 2007), BOLD signal deconvolution (Sreenivasan
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et al., 2015) and combining BOLD-fMRI with additional modalities

(Uluda�g & Roebroeck, 2014). From a multimodal perspective, simulta-

neous recordings of electroencephalography (EEG) and BOLD-fMRI

have gathered much attention and have provided important insight

into electrophysiological correlates of the BOLD signal (Abreu

et al., 2018).

One approach for bridging EEG and BOLD-fMRI is to use EEG

frequency-band power signals as temporal predictors of the BOLD signal,

in line with an asymmetrical fusion strategy (Abreu et al., 2018; Murta

et al., 2015). As the EEG signal is considered as mostly instantaneous

with regards to the underlying neural activity (despite some amount of

blurring from brain tissue), whereas the BOLD signal exhibits some time

lag, a temporal mismatch between EEG frequency-bands and BOLD sig-

nals must be accounted for (Feige et al., 2017). The default strategy for

accounting for this mismatch is to convolve frequency-band amplitude

signals with the canonical hemodynamic response function (HRF)

(Goldman et al., 2002). However, the shape of the canonical HRF implies

several assumptions about the dynamical relation between EEG

frequency-bands and the BOLD signal, overlooking the well-known vari-

ability in HRF shape and thus the underlying neurovascular coupling

mechanisms (Devonshire et al., 2012; Taylor et al., 2018).

We propose a method to identify the spatial and spectral electro-

physiological correlates of the BOLD signal simultaneously with HRF

estimation. This method is based on the canonical polyadic decomposi-

tion (CPD), a fundamental tensor decomposition which seeks a rank-1

multilinear representation of tensor-formatted data (Kolda &

Bader, 2009). CPD is often considered analogous to a higher-order vari-

ant of principal component analysis (PCA). Hence, CPD mainly differs

from PCA in its ability to decompose higher-order tensors—rather than

just second-order matrices—with the added feature of not necessitating

orthogonality between the derived components. As a practical example

of how it is employed, CPD may be applied to a third-order tensor con-

structed by concatenating EEG time-frequency maps for different chan-

nels (Cong et al., 2015). In this case, CPD returns a set of rank-1 vectors

describing the time-courses, frequency bands and EEG channels which

most explain the data. CPD has also been leveraged to extend group ICA

analysis of BOLD-fMRI data to a tensorial framework (Beckmann &

Smith, 2005). Moreover, CPD and related tensor decompositions have

been used for EEG-fMRI data fusion (Acar et al., 2019; Karahan

et al., 2015; Marecek et al., 2016; Van Eyndhoven et al., 2017).

More specifically, our method consists of constructing third-order

tensors which contain HRF estimates between frequency-band

dynamics and a given BOLD time-course. CPD is applied to these

HRF tensors to recover the main spatial and spectral distributions of

HRF variability. This approach is similar to a higher-order extension of

multiway partial least-squares as used for fusing EEG and BOLD-fMRI

data (Martínez-Montes et al., 2004). Under certain conditions for the

output noise, impulse response functions can generally be likened to

cross-correlations corrected for the input's serial autocorrelation

(Westwick & Kearney, 2003). Performing CPD on a tensor comprising

of such cross-correlations amounts to computing eigenvectors which

capture the main modes of the correlation structure embedded within

the tensor. In other words, we perform CPD on a correlation tensor

rather than a singular-value decomposition or eigen decomposition on

a correlation matrix. Formulated this way, our approach is also akin to

the temporal kernel canonical correlation analysis proposed by

(Biessmann et al., 2010) which was applied for fusing LFP recordings

with BOLD data.

Here, we first simulated LFP-fMRI data as a reference for

assessing the ability of our method to estimate BOLD time-series by

deriving meaningful HRF estimates as well as their associated spatial

and spectral distributions. We also evaluated the impact of cardiac

and respiratory sources of physiological artefacts, which can under-

mine interpretability of results derived from analysing BOLD-fMRI

data. Then, we applied our method to three open-source EEG-fMRI

datasets. Employing this method on either simulated LFP-fMRI data

or empirical EEG-BOLD does not make a substantial difference in

practice. The main idea remains largely unchanged: leveraging CPD to

capture HRF variability across spatial distributions and frequencies.

Moreover, in light of the multisubject nature of the empirical

open-source datasets, we extend HRF tensors to fourth order to

cover an additional subject-related dimension. Hence, CPD applied to

fourth order HRF tensors returns a distribution of subject weightings

in addition to the spatial, spectral distributions and HRF estimates.

This allows us to use the proposed framework for studying subject-

specific neurovascular coupling mechanisms, while simultaneously

accounting for broadband electrophysiological activity combined with

flexibility in the HRF dynamics with respect to both electrophysiologi-

cal frequency and spatial location.

2 | METHODS

We propose a novel methodological framework to simultaneously

obtain the spatial and spectral electrophysiological correlates of BOLD-

fMRI data and perform HRF estimation. When applied to simulated

data as proof-of-concept, the main constituents of the proposed frame-

work are the whole-brain modelling of electrophysiology and BOLD-

fMRI data, pre-processing of multivariate electrophysiological data,

HRF estimation based on CPD of spatial–spectral response functions

and phase-randomisation of BOLD data for performing statistical infer-

ence. The different steps of the framework are illustrated in Figure 1.

Moreover, an overview of our analysis when applied to empirical

data is shown in Figure 2. Figure 2a,b shows additional steps where

EEG and BOLD-fMRI group decompositions are depicted. The results

of these group decompositions are then forwarded to the rest of the

analysis as shown in Figure 2c. The subfigures of Figure 2c closely

match those of Figure 1 with the addition of a subject dimension.

2.1 | Simulated data

2.1.1 | Whole-brain modelling

To simulate realistic whole-brain measurements of electrophysiologi-

cal and neuroimaging data, an approach based on MR diffusion
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imaging tractography and mean-field modelling was adopted (Deco,

Kringelbach, et al., 2017; Sanchez-Rodriguez et al., 2018; Schirner

et al., 2018). Mesoscopic dynamics of individual brain regions were

simulated using mean-field models (MFM), where the local dynamics

of individual brain regions interact through coupling mechanisms. The

interaction strength between different brain regions was determined

by a structural connectivity matrix based on MR diffusion

tractography. This approach leverages our understanding of the brain

as a dynamic, modular and integrative organ whose network-like

activity gives rise to processing of sensory information, motor control,

cognition and other cerebral processes (Deco et al., 2015).

For data simulation, we used The Virtual Brain (TVB), a neu-

roinformatics platform for full brain network simulations using biologi-

cally realistic connectivity (Sanz-Leon et al., 2013). Most data required

to run the simulations are provided by TVB within a demonstration

dataset. The TVB demonstration dataset includes coordinates for cor-

tical parcellation nodes and a structural connectivity matrix based on

fiber tractography derived from MR diffusion imaging.

The sample structural connectivity matrix quantifies interaction

strengths between 66 cortical brain regions—or nodes in network-

science terminology—determined by the Desikan–Killiany cortical

parcellation (Desikan et al., 2006). To enact local node-level dynamics,

we used Stuart–Landau oscillators (SLO) as MFM (Moon et al., 2015).

The SLO serves as a canonical model for dynamical systems which

undergo a supercritical Hopf bifurcation upon changing a specific

parameter of the model describing the given dynamical system, a so-

called bifurcation parameter (Kuznetsov, 2004). Simulating stochastic

SLOs close to the bifurcation can recreate rich neurodynamics using a

limited number of model parameters.

The differential equations describing the behaviour of coupled

stochastic SLOs in Cartesian coordinates are shown in Equations (1)

and (2). In Cartesian form, two variables x and y interact via nonlinear

equations.

dxj
dt

¼ αj�x2j �y2j

h i
xj�ωjyjþG

X
i
Cijxiþβηj ð1Þ

dyj
dt

¼ αj�x2j �y2j

h i
yjþωjxjþG

X
i
Cijyiþβηj ð2Þ

The first two terms of each equation enact the local dynamics of

a single SLO for a given node j. The local dynamics are dictated by the

bifurcation parameter α and natural angular frequency ω. The bifurca-

tion parameter controls the amplitude r of the oscillations, which is

equal to r¼ ffiffiffi
α

p
for α>0 and r¼0 for α≤0.

F IGURE 1 General workflow for simulated data. (a) A whole-brain model (WBM) was constructed by combining MRI tractography and
Desikan–Killiany cortical parcellation. The local dynamics of the nodes of the WBM were simulated using modified Stuart–Landau oscillators,
giving rise to simulated local field potentials (LFP). (b) BOLD data were then generated from the LFPs. LFP data were bandpass filtered and
Hilbert-transformed to obtain amplitude signals which were stored in an LFP tensor for later use. Spatial–spectral response functions were
estimated between each frequency-band amplitude signal and each BOLD signal. (c) Estimated spatial–spectral response functions associated
with a given BOLD signal were stored within a third-order HRF tensor, organized along dimensions of space (node index) and frequency band.
(d) The HRF tensor underwent a CPD to extract the dominant spatial and spectral distributions of HRF variability, as well as the dominant HRF
waveform. (e) The N-mode product was applied to the LFP tensor using the CPD-derived spatial and spectral distributions, enacting a weighted
averaging across spatial and spectral dimensions using these distributions as weights. We term the resulting signal the compound LFP signal. The
latter was convolved with the CPD-derived HRF to estimate its contribution to BOLD signal variability. The BOLD signal estimate and real BOLD
signal were subtracted to return residuals, later used for bootstrapping. Panel 1a adapted from figure 2 of Cabral et al. (2014) with permission
from the corresponding author
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The third terms of (1) and (2) correspond to the coupling of the

oscillator from node j with oscillators of other nodes i ≠ j. The

pairwise linear coupling is scaled by entries of the diffusion MR-

based structural connectivity matrix Cij. The sum of linear couplings

is finally scaled by a global coupling parameter G, which tunes the

contribution of coupled interactions to the overall dynamics of node j.

We found a value of G¼0:3 to provide a good balance between

SLO-driven local dynamics and collective coupled behaviour,

resulting in realistic neurodynamics. Readers may refer to Deco,

Cabral, et al. (2017) and Deco, Kringelbach, et al. (2017) for discus-

sions regarding the global coupling parameter. The last term ηj is an

additive white Gaussian noise process (AWGN), which drives the

oscillator through different dynamical regimes if the parameter α is

close to its bifurcation value, that is, α≈0. We propose a variant of

SLO to model richer oscillatory amplitude dynamics. For each node

of our parcellation, two subpopulations of SLOs with different

angular frequencies interact. The interaction is characterised by a

slow SLO subpopulation driving the behaviour of a fast SLO sub-

population. Specifically, the bifurcation parameter α of the fast sub-

population is directly coupled to the amplitude of the slow

subpopulation. In this way, the slow subpopulation serves as a modu-

lator signal for oscillations of the fast subpopulation since αdirectly

tunes oscillation amplitude r (i.e. r tð Þ¼ ffiffiffiffiffiffiffiffiffi
α tð Þp

for α tð Þ>0 and r tð Þ¼0

for α tð Þ≤ 0).
Equations (3) and (4) formulate this concept of a fast SLO

(Equation (3)) being modulated by a slow SLO (Equation (4)). The slow

subpopulation variables uj and vj, scaled by the fixed parameter αfj ,

serve as a time-varying bifurcation parameter which directly modu-

lates the amplitude dynamics of the fast subpopulation variables xj

and yj. An example time-series of a slow subpopulation is shown in

Figure S1a whereas that of a fast subpopulation is shown in

Figure S1b. The primary distinction between fast and slow SLOs

relates to their respective natural frequency parameters. Moreover,

since the bifurcation parameter α of the fast SLOs is driven by the

amplitude of slow SLOs, it becomes time-varying rather than fixed

throughout a given simulation, that is, α¼ α tð Þ in Equation (3).

Fast SLOs (Equation (3)) oscillate at time scales corresponding to

common electrophysiological frequency bands (e.g. ωf
j=1–100Hz),

whereas the natural frequency of slow SLOs (Equation (4)) is orders of

magnitude smaller (e.g. ωs
j =0.01–0.1 Hz), on the scale of BOLD signal

fluctuations. To introduce variability in peak oscillation frequency

across nodes within standard frequency ranges, ωf
j for nodes belong-

ing to the right hemisphere were set to 2 Hz whereas ωf
j for nodes

belonging to the left hemisphere were set to 10 Hz. The ωs
j parameter

F IGURE 2 General workflow for empirical data. (a) Concatenated EEG data decomposed using the second-order blind identification algorithm
(SOBI). The retained SOBI components are projected onto individual subjects to obtain subject-specific time-series for each component.
(b) Concatenated BOLD-fMRI data decomposed using group ICA. The retained ICA components are projected onto individual subjects using
spatial regression (i.e. the first step of dual regression) to obtain subject-specific time-series for each component. (c) Construction of fourth-order
HRF tensor and its decomposition using canonical polyadic decomposition. (c-i) Time-frequency decomposition of individual EEG SOBI time-
courses (a) is performed to extract oscillation amplitude signals within each pre-specified frequency bin. A spatial/spectral response function
(SSRF) is estimated between each amplitude signal and the BOLD time-series of interest. Amplitude signals are stored within an EEG tensor (one
tensor per subject). (c-ii) For each BOLD ICA time-series, SSRF estimates are stored into a fourth order HRF tensor with dimensions of time,
frequency, SOBI component (also referred as space) and subject. (c-iii) The HRF tensor is decomposed using CPD to obtain weighted distributions
of SOBI components, frequencies and subjects as well as an HRF. (c-iv) Distributions of SOBI components and frequencies are used to perform
N-mode products on the EEG tensor. This provides a compound EEG signal which is convolved with the estimated HRF to provide an estimate of
the BOLD time-series of interest, yielding a BOLD signal estimate for each subject
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was set to 0.08Hz for all nodes, corresponding to an oscillation period

of 12.5 s and thus roughly mimicking BOLD oscillations observed dur-

ing resting-state.

Fast SLO

dxj
dt

¼ αfj uj�x2j �y2j

h i
xj�ωf

j yjþβηj

dyj
dt

¼ αfj vj�x2j �y2j

h i
yjþωf

j xjþβηj

8>><
>>:

ð3Þ

SlowSLO

duj
dt

¼ αsj �u2j �v2j

h i
uj�ωs

j vjþG
X

i
Cijujþβηj

dvj
dt

¼ αsj �u2j �v2j

h i
vjþωs

j ujþG
X

i
Cijvjþβηj

8>><
>>:

ð4Þ

The coupling across nodes is another noteworthy aspect of the

current implementation of modified SLOs, where only slow subpopu-

lations may interact across nodes. This inter-node coupling was

implemented in light of our focus on amplitude dynamics and evi-

dence by which amplitude functional connectivity patterns derived

from electrophysiology can reproduce functional connectivity pat-

terns when using BOLD-fMRI (Brookes et al., 2011). Hence, amplitude

dynamics are of primary interest for relating electrophysiology to

BOLD dynamics, whereas processing the oscillatory signals as done

with empirical data is a useful exercise to assess the effects of com-

mon pre-processing steps on our analysis. The implications of some

pre-processing steps on the analysis, namely band-pass filtering, will

be discussed later on.

Moreover, the balloon model (Buxton & Frank, 1997; Friston

et al., 2000) was used to simulate BOLD data using simulated LFPs as

input time-series. As a proxy for oscillatory amplitude dynamics, LFP

signals were squared before serving as inputs to the balloon model.

The balloon model accounts for the increase of regional cortical blood

flow in response to neuronal activity, the ensuing changes in

haemodynamic state variables and the measurable BOLD signal which

arises as a result of these mechanisms. Figure S1c shows an example

of simulated BOLD time-series. We acknowledge the existence of

more complex and realistic models of neurovascular coupling (Huneau

et al., 2015). However, the objective of using the balloon model in the

present study was to investigate the effects of regional HRF variabil-

ity by varying some of its physiologically interpretable parameters

(notably, the autoregulation time-constant as discussed in the next

paragraph). Furthermore, the balloon model has been extensively used

by the neuroimaging community and it is routinely fitted to empirical

data when using Dynamic Causal Modelling (DCM; Friston et al.,

2003), with some degree of consensus that, following appropriate

estimation of its parameters, it can sufficiently fit experimental BOLD

data. Finally, the balloon model can create neurovascular coupling

dynamics which have been studied using Volterra kernels (Friston

et al., 2000), with the results suggesting that a linear time-invariant

(LTI) system is a good linear approximation (Friston, Fletcher,

et al., 1998). In our simulations, it was found that a linear HRF was

able to capture most of the balloon model's output, suggesting that an

LTI system (e.g. an HRF) is sufficient for the input signal range used in

the present study. To support this statement, we injected AWGN as

input into the balloon model and used the output to estimate an HRF.

This process was repeated multiple times with different par-

ametrisations of the balloon model. For each simulation, convolving

the input AWGN with its associated HRF and correlating the resulting

signal with the balloon model output yielded a median correlation

coefficient of 0.9.

The dynamics enacted by the balloon model may be manipulated

by tuning the model parameters. Hence, to impose regional cerebro-

vascular variability, the autoregulation time-constant of the balloon

model was sampled from a log-normal distribution for all nodes of the

cortical parcellation. This log-normal distribution had a mean value of

2.46 and standard deviation 0.212 following Table 2 from (Khalidov

et al., 2011). This sampling procedure resulted in a node-specific HRF

for each cortical node.

Physiological signals were also modelled to evaluate the impacts

of cardiac and respiratory related systemic fluctuations on HRF esti-

mation and spatial–spectral feature extraction (Figure S2). It is known

that these physiological processes can induce systemic fluctuations in

hemodynamics (Chen et al., 2020; Kassinopoulos & Mitsis, 2022;

Xifra-Porxas et al., 2020); these processes are termed systemic low-

frequency oscillations (SLFOs1; Tong et al., 2016). Standard SLOs

were used to simulate time-varying respiration waveforms (RW, Equa-

tions (1) and (2)). A nonlinear oscillator taken from (Rundo et al., 2018)

was used to simulate cardiac pulses as seen when performing

photoplethysmography (PPG, Equations (5)–(7)), where x2 of

Equation (6) was taken to be the PPG. Importantly, the integration

time-constant of the oscillators for PPG modelling was directly modu-

lated by the simulated RW. This coupling between respiratory and

cardiac activity serves to simulate respiratory sinus arrhythmia, by

which inhalation upregulates heart-rate whereas exhalation down-

regulates heart-rate in healthy adults (Rassler et al., 2018).

PPG (Figure S2a) and RWs (Figure S2b) were simulated using a sto-

chastic Stratonovich–Heun algorithm (Burrage et al., 2004)

implemented in the sdeint Python package. Model parameters were set

to μ¼0:5,p1 ¼�0:3,p2 ¼0:3,b¼1 as per (Rundo et al., 2018). Other-

wise, we set a¼7,c¼14 as we have found these values to produce

the sought-for coupling between RW and PPG. Furthermore, k¼1:5

to recreate the systolic and diastolic peaks of the PPG waveforms.

dx1
dt

¼ 1
τ tð Þ �x1þ 1þμð Þy1�by2þp1ð Þ ð5Þ

dx2
dt

¼ 1
τ tð Þ �x2þ 1þμð Þy2þby1þp2ð Þ ð6Þ

1
τ tð Þ¼ a

d
dt
RW tð Þþc ð7Þ

y1 ¼ tanh kx1ð Þ

y2 ¼ tanh kx2ð Þ

1SLFO (systemic low-frequency oscillation) not to be mistaken with SLO (Stuart–Landau

oscillator).
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In short, LFP data were simulated for 66 nodes using modified SLOs,

coupled via whole-brain structural connectivity. LFPs were used as

input signals to the balloon model to simulate BOLD data. Physiologi-

cal signals were also simulated by modelling respiratory waveforms

and PPG.

2.1.2 | Pre-processing

Initially, LFP signals were subjected to time-frequency transforma-

tions after passband filtering the individual signals within standard fre-

quency bands and obtaining the Hilbert transform of the resulting

narrowband signals. The following standard frequency bands were

used: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz)

and gamma (32–50 Hz). Using these frequency bands allowed us to

relate our results with previous relevant studies more directly, and

assess how processing data (filtering, time-frequency transforms, deci-

mation, etc.) affects common analyses. Nonetheless, our framework

permits users to define alternative frequency bins.

The Hilbert-transformed narrowband signals were truncated to

remove initial transient behaviour resulting from numerical integration

of SLOs and the balloon model. Linear trends were also removed. Sub-

sequently, the data were low-pass filtered to avoid aliasing (decima-

tion) and the resulting low-pass signals were down-sampled to 4 Hz

to reduce computational load. The BOLD signals were also truncated

and decimated in the same fashion.

To study the effects of SLFOs on our analysis, simulated cardiac

pulses (Figure S2a) and respiratory waveforms (Figure S2b) were

transformed into signals related to SLFOs (Kassinopoulos &

Mitsis, 2019). Cardiac pulses were transformed into beat-to-beat

heart-rate (HR) signals by calculating the reciprocal of the time inter-

val between successive cardiac peaks (Figure S2c). The HR signal was

linearly interpolated to match the sampling rate of LFP and BOLD

data. The temporal derivative of respiratory waveforms was squared,

giving rise to a feature termed respiratory flow (RF, Figure S2d). HR

was convolved with a cardiac response function (CRF, Figure S2e) and

RF convolved with a respiratory response function (RRF, Figure S2f)

to create the SLFOs. HR and RF SLFOs were summed together to

output a single SLFO signal (Figure S2g). This SLFO signal was subse-

quently truncated, detrended and decimated before being added as

physiological confound. The standard CRF and RRF used herein are

described respectively in Chang et al. (2009) and Birn et al. (2008)

although readers may also refer to (Kassinopoulos & Mitsis, 2019) for

discussion regarding physiological response functions.

With evidence suggesting that SLFOs do not affect the BOLD sig-

nal uniformly across brain regions (Kassinopoulos & Mitsis, 2019;

Tong et al., 2016), we derived scaling coefficients for each node which

were subsequently used to adjust the amplitude of the SLFO signal

for individual nodes. Specifically, the amplitude of the SLFO signal

was increased for brain regions for which the BOLD signal is more

affected by SLFOs. To obtain these coefficients, a Desikan–Killiany

overlay was aligned with a map of coefficients quantifying the associ-

ation between a given voxel's BOLD signal and SLFOs, as reported in

(Kassinopoulos & Mitsis, 2019). Separate maps were used for the car-

diac related SLFOs and respiratory SLFOs. These maps were first

down-sampled to a 1 mm resolution using linear interpolation and

smoothing. For both cardiac and respiratory SLFOs, the average

coefficient value was computed for each of the 66 parcels of the

Desikan–Killiany parcellation. By accounting for the impact of regional

heterogeneity of SLFOs on the BOLD signal, we aimed to generate

more realistic simulation data and examine the effect of this heteroge-

neity on HRF estimation as well as extraction of spatial–spectral dis-

tributions. The Desikan–Killiany overlay in MNI 152 2 mm space was

taken from the GitHub repository of the AtlasReader package.2

2.1.3 | HRF estimation and derivation of spatial–
spectral distributions

The HRF estimation scheme relies on the Canonical Polyadic Decom-

position (CPD), a tensor decomposition technique which extracts the

low-rank structure of multivariate data (Kolda & Bader, 2009). In

machine learning, a tensor generalizes the concepts of vectors

(1D) and matrices (2D) to include higher orders, that is, greater

than 2D.

The CPD is often compared to principal components analysis for

higher-order data structures. CPD models a given tensor into a sum of

N components, where each component is a low-rank tensor resulting

from the outer product of C modes. Equation (8) shows the CPD

model of tensor X with modes a,b and c. Figure S3 shows a graphical

illustration of the CPD model.

X ¼
XN

i¼1
ai ∘bi ∘ci ð8Þ

For simplicity, the number of components N was set to 1 when evalu-

ating our method on simulated data. However, similarly to outputting

multiple components during PCA, N > 1 can generally be used to

derive multiple CPD components as will be seen when using

empirical data.

The HRF tensor (Figure 1c) is one of the mathematical quanti-

ties of major importance for the proposed framework. The HRF

tensor captures the variability in neurovascular coupling mecha-

nisms relating electrophysiology to BOLD. To construct an HRF

tensor, a spatial–spectral response function (SSRF) was estimated

between the LFP signal associated with each space and frequency

pair and the BOLD signal of a given node. In other words, the five

frequency bands and 66 parcellation nodes resulted in 330 different

amplitude signals obtained from performing the Hilbert transform.

An impulse response function (i.e. SSRF) was estimated between

each of these 330 amplitude LFP signals and the BOLD signal under

consideration, resulting in 330 SSRFs associated with a single

BOLD signal. These SSRFs were stored within a third-order HRF

tensor and organised as a function of parcellation node and

2https://github.com/miykael/atlasreader/blob/master/atlasreader/data/atlases/atlas_

desikan_killiany.nii.gz.
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frequency band. Readers should refer to Figure 1c for a visual

depiction of how HRF tensors are constructed.

To estimate individual SSRFs, we adopted the basis functions

expansion technique (Marmarelis, 2004) and used spherical Laguerre

basis functions (Leistedt & McEwen, 2012; Prokopiou, Xifra-Porxas,

et al., 2022). The damped oscillatory shape of Laguerre functions

makes them suitable for modelling physiological systems with low-

pass behaviour and finite memory. The spherical variant of Laguerre

functions also has the desirable property of beginning at zero ampli-

tude, rendering them useful for estimating HRFs using a limited num-

ber of basis functions. Once the number of spherical Laguerre

functions is defined, only a single parameter is needed to generate

these functions, namely, the decay rate α. The first three spherical

Laguerre basis functions are shown in Figure S4 for different decay

parameter values.

Before running the phase-randomisation routine (explained in

the next section), we performed a parameter sweep to select the

optimal decay rate for every node. We searched the parameter

space α� 0:40,3:00½ � with steps of 0.05. The decay rate maximising

the correlation between the BOLD signal and BOLD signal estimate

was chosen on a node-by-node basis for further analysis. The number

of basis functions during analysis was set to 3, as it was empirically

observed that this number provided a good trade-off between HRF

complexity and robustness during estimation. Also, for estimating

SSRFs, the LFP and BOLD signals were z-score normalised to account

for differences in variance. The SSRF and HRF length was set to

32 seconds.

SSRF estimation, calculation of correlation coefficients, soft-

thresholding and scaling of SSRFs resulted in 330 SSRFs (66 LFP

nodes � 5 frequency bands) which were stored in an HRF tensor. The

dimensions of this tensor are equal to the number of nodes, number

of frequency bands and HRF length (66 nodes � 5 bands � 32 s).

Thereafter, the HRF tensor was denoised and sparsified using a

rescaling procedure based on soft-thresholding as explained in

Supporting Information (Supplementary Methods 1—Rescaling the

HRF tensor using soft-thresholding). CPD was then applied to this

rescaled HRF tensor to obtain the dominant HRF shape as well as spa-

tial and spectral distributions associated with this HRF for the BOLD

signal under consideration (Figure 1d). The resulting spatial and spec-

tral distributions allowed us to obtain a weighted linear combination

of the LFP signals, giving rise to what we call the compound LFP sig-

nal. The weighted linear combination was performed by applying the

N-mode product (Kolda & Bader, 2009) to the LFP tensor across both

space and frequency dimensions (Figure 1d,e). The compound signal

convolved with the dominant HRF was then correlated to the BOLD

signal of interest, as a measure of goodness-of-fit. CPD and the

N-mode product were performed using the Tensorly3 package

(Kossaifi et al., 2019).

We tested the robustness of our proposed HRF estimation

scheme in the presence of input and output measurement noise as

well as SLFOs. Input and output measurement noise was first

simulated using AWGN processes. The relative impact of each of

these three noise signals was controlled by amplifying them by differ-

ent amounts. The scaling coefficients associated to each of the three

noise signals were stored in an array of tuples, each tuple comprising

of a unique combination of scaling values. For each tuple, the scaling

coefficients were all individually set to one of the five following

values: 0, 0.1, 0.46, 2.15 and 10—the latter four values were derived

from a log-spaced sequence between 0.1 and 10. The list of tuples

was created from all combinations of these five scaling coefficients

applied to the three confound signals (i.e. 53 ¼125 combinations). We

thus iterated through this array of tuples to scale the input and output

noise by different values. See Figure S6 for an illustration of this pro-

cess of injecting different source of confounds. It should be noted that

this process was enacted prior to re-weighting the HRF tensor. Also,

it is worth remembering that the SLFO was originally scaled node-

wise by different values according to maps of coefficients quantifying

the association between BOLD signal and SLFO taken from

(Kassinopoulos & Mitsis, 2019). On the other hand, the scaling coeffi-

cient kp for the SLFO shown in Figure S6 scales SLFOs uniformly

across nodes, controlling the global influence of SLFO. Thus, the final

node-wise scaling of SLFO results from the product of the original

node-specific scaling values and the uniform scaling coefficient kp.

Moreover, whereas SLFOs and output measurement noise was

directly added to the BOLD data after scaling, the AWGN input mea-

surement noise underwent some processing steps explained in the

Supporting Information (Supplementary Methods 2—Injecting input

noise). These processed input measurement noise signals were scaled

and added to the LFP/EEG during the HRF-estimation part of the

analysis.

Our handling of input and output measurement noise varied

according to the expected effects of these noise types on the LFP

and BOLD signals. When analyzing BOLD data, some thermal noise

is expected to remain in the data in the form of a white-noise pro-

cess (although high-pass filtering of BOLD data in standard pre-

processing pipelines would remove the very low frequency trends of

this thermal noise). On the other hand, time-frequency analysis of

LFP data often involves a nonlinear transformation (e.g. amplitude of

the complex signal arising from the Hilbert transform), thereby

impacting the thermal noise in non-trivial ways. Hence, whereas the

output measurement noise was modelled simply by an AWGN pro-

cess, the input measurement noise was modelled by accounting for

the way in which the Hilbert transform alters an AWGN process

(Supporting Information, Supplementary Methods 2—Injecting input

noise).

2.1.4 | Phase-randomisation

We repeated HRF estimation on null data by phase-randomising the

BOLD signals (Handwerker et al., 2012) to then obtain the correlation

between estimated and phase-randomised BOLD data at every itera-

tion. We used these correlations to construct a null distribution to test

whether correlations obtained from the original data were statistically3Another term for CPD, used in Tensorly, is Parallel Factor Analysis abbreviated as PARAFAC.
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different than those from the null distribution. A null distribution was

constructed for each BOLD signal as well as for each noise regime,

that is, combination of confound scaling factors. The statistical tests

were Bonferroni corrected for 66 independent tests. Figure S8 depicts

how such a null distribution was constructed. Both bootstrapping and

the construction of null distributions were performed on Compute

Canada clusters. Parallelisation was achieved using GNU Parallel

(Tange, 2018).

The entire process of building an HRF tensor, deriving an HRF

and spatial–spectral distributions and statistical inference was per-

formed for each of the 66 BOLD signals. In other words, modelling

the BOLD signal using LFP data was done separately for each node of

the parcellation, resulting in an independent analysis for each node.

3 | EMPIRICAL DATA

3.1 | Open-source datasets

We further apply our methodology to three open-source EEG-fMRI

datasets, covering resting-state and task-based experimental

conditions.

Data released by Lioi and colleagues described in (Lioi

et al., 2020) contain two sets of EEG-fMRI data acquired during a

motor-imagery neurofeedback task. Subjects were asked to perform

motor-imagery of clenching their right hand according to a block

design, alternating between motor-imagery and resting blocks. Fea-

tures derived from the EEG and BOLD-fMRI acquisitions served as

visual feedback cues to drive changes in subject behaviour. This task

provides the benefit of limiting sources of artefacts related to

motion and muscle tone, in contrast to motor tasks requiring sub-

jects to perform muscle contraction. The first motor-imagery dataset

contains 10 subjects where BOLD images were acquired with a rep-

etition time of 2 s over a total acquisition time of 6 min and 40 s,

whereas the second dataset contains 16 subjects where the repeti-

tion time was set to 1 s over a total acquisition time of 5 min

and 20 s.

Data made publicly available by Deligianni and colleagues con-

tains simultaneous EEG-fMRI acquisitions of 16 subjects at resting-

state (Deligianni et al., 2014, 2016). The repetition time for BOLD

data is 2.16 s over a total acquisition time of 11 min and 20 s. Upon

loading EEG data within EEGLAB, it was made apparent that two dif-

ferent EEG electrode layouts were used during data collection: both

layouts are displayed in Figure S9. We decided to retain the 11 sub-

jects associated with the first layout (Figure S9a) to simplify our

analysis.

In the current article, we focus on Lioi and colleagues' second

motor imagery dataset (16 subjects, TR = 1 s) and the resting-state

dataset from Deligianni and collaborators (11 subjects, TR = 2.16 s).

Results for these two datasets are thus included within the main

body of this article. Results for the first motor-imagery dataset

(10 subjects, TR = 2 s) are shown in the Supporting Information for

completeness.

3.2 | Pre-processing

Recording EEG within the MRI environment using Echo Planar Imag-

ing sequences gives rise to significant artefacts, the most commonly

described throughout the literature being the gradient artefact and

the ballistocardiogram (BCG) artefact (Abreu et al., 2018). All three

datasets contain versions of EEG data where both gradient and BCG

artefacts have been removed using common denoising pipelines,

along with standard EEG pre-processing steps such as down-sampling.

Furthermore, we re-referenced EEG data to the common average ref-

erence allowing us to re-insert the FCz channel which was used as ref-

erence during recording. We also notch-filtered the data to eliminate

remaining artefactual signals. For both motor-imagery datasets, resid-

ual power in the 30–35 Hz and 44–46 Hz ranges was removed. Resid-

ual line noise around 50 Hz was removed from resting-state data.

These latter pre-processing steps were performed in EEGLAB

(Delorme & Makeig, 2004) for all three datasets.

The raw BOLD data were pre-processed using FSL (Jenkinson

et al., 2012) for all three datasets. Our pipeline included common pre-

processing steps such as brain-extraction using BET, deleting initial

BOLD volumes, high pass filtering at a 100 ms cut-off, McFLIRT

motion correction, slice-timing correction and 5 mm FWHM spatial

smoothing using FEAT. Functional data were registered to structural

data using FLIRT's boundary-based registration (BBR) which uses

white-matter (WM) segmentations to align functional and structural

volumes (Greve & Fischl, 2009). Structural data were registered to the

MNI152 2 mm standard space using NFLIRT with 12 degrees-of-

freedom and a 10 mm warp resolution.

Many pre-processing approaches have been suggested for further

ridding BOLD-fMRI data from head motion effects and systemic phys-

iological artefacts. For each subject, we employed a strategy very sim-

ilar to anatomical CompCor (Muschelli et al., 2014) which consists of

using WM eigenvectors for removing motion- and physiology-related

sources of structured noise within a regression model

(Kassinopoulos & Mitsis, 2022). Specifically, the WM segmentation

obtained from the BBR registration routine was used as an overlay

map to extract 10 eigenvectors explaining the most variance using

FSL's fslmeants routine. These 10 WM eigenvectors were used as

regressors within a GLM model to fit these regressors to all brain

voxel time-series using fsl_glm. The residuals of this GLM-based WM

regression, considered as the clean BOLD data, were used for further

analysis.

3.2.1 | Dimensionality reduction

We performed dimensionality reduction via multi-subject blind source

separation (BSS) for both EEG and BOLD-fMRI data. This reduction

reduces the number of possible combinations between EEG and

BOLD time-courses, while also providing a succinct representation of

the data at hand. From a methodological viewpoint, group-level ICA

analyses come with certain challenges when it comes to comparing

results across subjects or deriving group statistics. Temporal
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concatenation followed by dual-regression is a frequently adopted

approach for multi-subject ICA analysis of BOLD-fMRI data

(Nickerson et al., 2017). This is the approach we have adopted in this

study. Accordingly, we executed ICA on BOLD data of spatially

normalised subjects which were concatenated in the temporal dimen-

sion. We set the number of output components to 25 as this was

empirically observed to provide the desired spatial coverage and sepa-

ration of networks.

This multi-subject ICA decomposition of BOLD-fMRI data ret-

urned spatial maps and their associated time-courses (Figure 2b). The

group ICA spatial maps were used as spatial regressors for all subjects,

returning one subject-specific time-course for each group spatial map.

We limited dual regression to its first step (i.e. spatial regression) as

only subject-specific time-series were necessary for the remainder of

the analysis. Group ICA and the spatial regression step of dual regres-

sion were executed with FSL MELODIC and FSL's dual_regression rou-

tine, respectively.

Although the temporal concatenation approach followed by dual-

regression is commonplace for group BOLD-fMRI studies, the appro-

priateness of similar approaches has required more clarification for

multi-subject EEG studies (Huster et al., 2015). We adopted recom-

mendations from Lio and Boulinguez (2013) of substituting ICA

decompositions based on higher-order statistics for second-order

statistics-based decompositions. Specifically, we performed the

second-order blind identification (SOBI) algorithm (Belouchrani

et al., 1997) on concatenated EEG data for performing group-level

BSS. Compared to ICA based on higher-order statistics, SOBI is

argued in Lio and Boulinguez (2013) to be more specific to the spec-

tral content of the data when performing its decomposition. More-

over, it is also thought to be more robust to inter-subject variability of

the mixing process that underlies the electrical field propagation from

neuronal dipoles to EEG sensors. Performing SOBI on concatenated

EEG data returns group-level spatial topographies, similarly to group

ICA for BOLD-fMRI. Group-wide scalp topographies are then used as

spatial regressors to derive subject-specific time-courses for each

SOBI component (Figure 2a), similarly to dual regression for BOLD-

fMRI. Multi-subject SOBI was executed in EEGLAB, generating a total

of 63 EEG components, which represents the maximum allowable

number of components.

Out of the total of 63 EEG and 25 BOLD neuronal components, a

subset of components was manually selected for further investigation.

For all datasets, initial selection of EEG components was based on

identifying scalp topographies associated with neuronal activity in the

literature. Time-series for SOBI components were visually inspected

to validate that components reflected neuronal activity. The manual

selection of BOLD components followed the same reasoning that of

EEG data, although it was more conservative to make our analysis

more manageable. We have restricted our search to four components

for each of the motor-imagery datasets of Lioi and colleagues, and

three components for the resting-state data of Deligianni and col-

leagues. Despite limiting the number of selected components, we

were capable of retrieving relevant networks covering motor, somato-

sensory and premotor areas for motor-imagery data as well as well-

known resting-state networks (RSN) for resting-state data. The Juëlich

Histological Atlas was used for identifying functional regions within

the spatial maps of BOLD components and thus guiding our manual

selection.

3.2.2 | HRF tensor and CPD decomposition

The outputs of interest from group-level BSS were the subject-

specific EEG and BOLD time-courses. For each subject, multi-tapering

(Babadi & Brown, 2014) was applied to the time-course of each EEG

SOBI component to obtain their time-frequency representations

(Figure 2c-i). In this way, amplitude dynamics are obtained for each

band centred at selected frequencies across each SOBI component.

The selected centre frequencies were [4, 6, 8, 10, 12, 16, 20, 24, 28,

32, 40, 50] Hz, covering the theta to low-gamma EEG frequency

range. We used MNE Python (Gramfort et al., 2013) for multi-tapering

with default settings, that is, 7 cycles per wavelet and a time-

bandwidth product of 4. It is noteworthy that the centre frequencies

listed above include frequencies which have been filtered during pre-

processing as mentioned in Section 3.2)—Pre-processing of the

Methods section. Specifically, the 32 Hz and 50 Hz centre frequencies

were suppressed when bandstop filtering within the 30–35 Hz range

for motor-imagery data as well as notch filtering of line noise at 50 Hz

for resting-state data. The inclusion of these filtered frequencies was

mainly allowed for the sake of completeness. For instance, although

we have retained CPD components which contain non-zero

weightings at 32 Hz and 50 Hz, the larger downstream objective is to

adequately model the BOLD signal. Spurious weightings at 32 Hz or

50 Hz were not found to significantly affect modelling performance in

cases where other frequencies with stronger weightings dominated.

After down-sampling amplitude signals to the sampling rate of

BOLD data, a SSRF was estimated between each amplitude signal—

for each EEG SOBI component and frequency—and the time-course

of a given BOLD group-ICA component (Figure 2c-i). These SSRFs are

stored into a third-order HRF tensor for each subject, spanning

dimensions of time, SOBI components and frequencies (Figure 2c-ii).

For lack of a better term, we refer to the dimension covering different

SOBI components as the dimension of space since the EEG spatial

topographies of SOBI components are used to represent these com-

ponents. We also performed rescaling of each third-order HRF tensor

as explained in Supplementary Methods 1—Rescaling the HRF tensor

using soft-thresholding.

The size of the temporal, spatial and spectral dimensions was

implicitly constrained by the length of the estimated SSRFs, number

of selected EEG SOBI components and number of selected frequen-

cies, respectively. The third-order HRF tensors from each subject

were then combined, forming a fourth-order HRF tensor spanning

dimensions of time, SOBI components, frequencies and subjects

(Figure 2c-ii). To pre-process this tensor prior to CPD (Bro &

Smilde, 2003), we performed scaling across the subject dimension and

centering across the frequency dimension. The fourth-order HRF ten-

sor was then decomposed into a rank-1 representation using CPD,
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giving rise to a dominant HRF as well as spatial, spectral and subject-

level distributions (Figure 2c-iii). For all three empirical datasets, we

executed our analysis once with the number of CPD components set

to 1 and an additional time with the number of CPD components set

to 2. Outputting multiple CPD components allows us to extract more

EEG spatial and spectral correlates of a given BOLD signal. Outputting

multiple CPD components is similar to outputting multiple PCA com-

ponents, each component serving as a basis to describe the data

at hand.

Similar to our analysis based on simulated data, SSRFs were esti-

mating using functional basis expansion based on spherical Laguerre

functions. We fixed the number of basis functions to 3 which provides

balance between flexibility and robustness as observed empirically.

However, the decay-rate parameter also needs to be specified, as well

as the correlation percentile for soft-thresholding the correlation

matrix used for rescaling and sparsifying the HRF tensor (readers can

refer to Figure S5 for rescaling of HRF tensor). Thus, for each IC, we

performed a parameter sweep in order to find optimal decay-rate

parameters and correlation percentiles used for thresholding. The

optimal values for the parameters were selected as those that ret-

urned the highest single-subject correlation between the ensuing

BOLD signal and its estimate.

Values for decay-rate parameters during the parameter sweep

varied between 0.8 and 4.8 in leaps of 0.2 whereas percentiles of

0, 25, 50 and 75 were evaluated for selecting the optimal correlation

percentile. Parameter sweeps were performed independently for the

two cases examined, that is, when the number of CPD components

was set to 1 and 2, respectively.

3.2.3 | Jackknifing and statistical inference

To evaluate the stability of CPD applied to the fourth-order HRF ten-

sors, we adopted a jackknifing approach (Young et al., 1996). This

method consists of deleting datapoints from EEG and BOLD data

prior to constructing the HRF tensor. CPD was then applied to

the truncated data to return the estimated HRF as well as the

corresponding spatial, spectral and subject-level distributions. The

jackknife procedure involved deletion of 2 datapoint (delete-2 jack-

knife) and was repeated 1000 times to obtain median values and

5th/95th percentiles of these HRFs and their related distributions.

An important aspect of CPD to consider for obtaining jackknife

estimates is the sign ambiguity of the decomposition. For example,

the frequency distributions of jackknife iterations i and j may be mirror

copies of each other in terms of the sign of the elements of the distri-

butions (i.e. of the weightings). Hence, in such a case, one would need

to account for this sign ambiguity before computing median and per-

centile values of the frequency distribution. Another issue is the per-

mutation ambiguity when CPD returns multiple components rather

than just one. For example, it may be the case that the first compo-

nent of jackknife iteration i corresponds to the second component of

iteration j. For computing proper jackknife statistics, it becomes nec-

essary to adequately group components across iterations. To account

for the permutation ambiguity when 2 components are requested

from CPD and to correct for the sign ambiguity, we used the cpderr.m

function from the Tensorlab MATLAB package (Vervliet et al., 2016)

by running the MATLAB Engine API for Python. It should be noted

that only the sign of the scaling factors output from cpderr.m were

used to correct for sign ambiguity, discarding the magnitude of these

scaling factors.

Similar to the compound LFP signals derived from simulated data,

we derived a so-called compound EEG signal by weighing the EEG

amplitude signals with the spatial and spectral via the N-mode prod-

uct along spatial and spectral modes. The compound EEG signal was

then convolved with the estimated HRF to obtain an estimate of the

BOLD signal (Figure 2c-iii,iv). The estimated BOLD signal was corre-

lated with the BOLD ICA component under consideration, as obtained

from the experimental measurements. The resulting correlation coeffi-

cient served to quantify the goodness-of-fit of the BOLD signal esti-

mate derived from EEG data, CPD outputs and N-mode products.

These correlation coefficients were compared against a null distribu-

tion as described earlier for our analysis using simulated data in

Section 2.1.4)—phase-randomisation from Methods. Readers may also

refer to Figure S8 for a visual depiction of how null distributions were

constructed, enabling the statistical inference procedure.

4 | RESULTS

4.1 | Simulated data

Figure 3 provides an overview of the estimated HRFs and spatial–

spectral distributions resulting from our analysis applied to simu-

lated data. Results are colour-coded by the nodes of the Desikan–

Killiany parcellation (Figure 3b). Estimates of node-wise HRFs

(Figure 3a), spatial distributions (Figure 3c,d) and spectral distribu-

tions (Figure 3e) are shown for all nodes. For results shown in

Figure 3c–e, the weightings for different LFP nodes (Figure 3c,d)

and frequency bands (Figure 3e) are represented by the transpar-

ency of the entry rather than by colour. Figure 3c,d differ only in

the weightings for diagonal elements which are preserved in

Figure 3c and removed in Figure 3d. Both subfigures contain gra-

yscales to display the correspondence between transparency and

weightings. Transparency was rescaled in Figure 3d for visibility, as

can be observed by comparing the grayscales of Figure 3c and

Figure 3d. It is noteworthy that Figure 3e adequately captures the

frequency bands associated with each node. Namely, the first half

of nodes shows weightings in the δ bands as expected for oscillators

tuned at 2 Hz, whereas the second half shows weightings in the α

band as expected for oscillators tuned at 10 Hz although with some

occasional leakage into adjacent frequency bands.

For an example of more detailed results for a single node,

readers are invited to consult Figure S10 and related methodology in

Supplementary Methods 3–4 included in the Supporting Informa-

tion. Briefly, we show that our CPD-based method was able to

derive proper spatial and spectral distributions. Moreover, the
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estimated HRF derived from CPD is in good agreement with refer-

ence HRFs, where the latter are used as proxies for the ground-

truth. Two different parametrisations of the balloon model were

used to generate HRFs: one which generates a post-stimulus under-

shoot as shown in Figure S10d and one which does not generate

such an undershoot, as shown in Figure S10d2. We also demon-

strate, in Figure S11, the improved modelling capacity of simulated

BOLD signals when using an HRF derived from our CPD-based

method compared to the modelling capacity when using the

canonical HRF.

Figure 4 shows results for statistical inference of the

goodness-of-fit of BOLD signal estimates using correlations

(Figure S8 for methodology). Results are shown for all noise

regimes, that is, all combinations of the confound scaling

F IGURE 3 Overall results for all nodes using simulated data. (a) HRFs are viewed from different angles. (b) Cortical nodes of Desikan–Killiany
parcellation, colour-coded. (c) Spatial distributions, where colours map to cortical nodes (b) and transparency reflects the weightings. Grayscale
bar illustrates correspondence between transparency and weighting. This matrix is best read strictly row-wise, where CPD of the HRF tensor
associated with a given ‘BOLD node’ results in a spatial distribution involving multiple ‘LFP nodes’ to varying degrees. (d) Same as (c), where the
diagonal was removed and transparencies rescaled. (e) Spectral distributions
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F IGURE 4 Statistical inference, based on correlations between estimated and real BOLD signals. Regions rejecting the null hypothesis are
highlighted in green. Regions failing to reject the null hypothesis are highlighted in dark grey. Results are shown for different values of the scaling
coefficients kp (SLFOs - fixed across each column), ki (input measurement noise) and ko(output measurement noise). The coefficients kp,ki and ko
were individually set to one of the five following values: 0, 0.1, 0.46, 2.15 and 10. This array of possible values thus results in 53 ¼125
combinations. This figure suggests that our analysis is robust to output measurement noise and fairly robust to input measurement noise,
although highly susceptible to physiological confounds. Indeed, the scaling coefficients of input (ki) and output (ko) measurement noise requires
minimal values of 10 and 2.15, respectively, to show any effect on results. On the other hand, the slightest gain in SLFOs (i.e. kp ≥0:10) induces
spatial distributions of regions where the null hypothesis is not rejected
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coefficients kp,ki and ko which respectively scale physiological, input

measurement and output measurement noise (Figure S6). For every

combination of scaling coefficients, a spatial topography for both

hemispheres is shown of nodes either rejecting (green) or failing to

reject (dark gray) the null hypothesis. The null hypothesis posits that

correlations obtained from phase-randomised BOLD data are similar

to the correlation obtained from the original BOLD signal. Hence, the

null hypothesis was tested for each node. It can be seen that whereas

nonzero ki and ko translate into nodes failing to reject the null hypoth-

esis in a uniform fashion across nodes, nonzero kp translates into

structured patterns of nodes failing to reject the null hypothesis.

These latter structured patterns are expected, considering our method

of first deriving node-specific scaling values from correlation maps

before scaling all SLFOs uniformly using kp.

4.2 | Empirical data

Results in this section are focused on the second motor-imagery

dataset from Lioi et al. (2020) and the resting-state dataset from

Deligianni et al. (2014, 2016). Hence, mention of the motor-imagery

dataset in the following section refers by default to the second

motor-imagery dataset. Results for the first motor-imagery dataset

are presented in the Supporting Information.

BOLD spatial maps obtained from group ICA are shown in

Figures 5a and 6a for the motor-imagery and resting-state datasets,

respectively. The manual selection of group ICA components for the

motor-imagery data reflects the task at hand and thus explains

the dominantly motor and somatosensory coverage (Figure 5a). On

the other hand, components for resting-state data were selected

F IGURE 4 (Continued)
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based on well-known resting-state networks (RSNs) such as the

Default Mode Network (DMN), Somatosensory Network (SN) and

Visual Network (VN) corresponding to BOLD ICs 1, 2 and 3, respec-

tively (Figure 6a). Alongside the BOLD group spatial maps, we also

show group EEG SOBI scalp topographies in Figure 5b for the motor-

imagery dataset and Figure 6b for the resting-state dataset. Group

SOBI components were chosen based on their corresponding scalp

topographies and spectral contents. For both datasets, SOBI topogra-

phies show spatial coverage in occipital, sensorimotor and frontal

regions (Figures 5b and 6b).

4.3 | Motor-imagery dataset

Our proposed analysis was performed on each IC, returning in each

case an HRF estimate as well as the corresponding spatial, spectral

and subject distributions. Results, when the number of CPD compo-

nents was set to 1, are displayed for the motor-imagery data in

Figure 7a–d for ICs 1 through 4, respectively. Each figure shows the

estimated HRF (panel a), group EEG SOBI topographies along with

their spatial distribution (panel b), spectral distribution (panel c), sub-

ject distribution (panel d) and real time-series of the BOLD IC (blue

trace) and its estimate (orange trace) for the subject displaying the

highest correlation (panel e). Alongside these results are confidence inter-

vals bounded at the 5th and 95th percentiles based on the delete-2 jack-

knife procedure. Overall, the extracted HRFs exhibited dynamics in

agreement with previous studies (Devonshire et al., 2012; Taylor

et al., 2018), whereby the function peaks around 5–10 s before either

stabilising at baseline (Figure 7a-A and d-A) or transitioning into an

undershoot before returning to baseline (Figure 7b-A, c-A). HRFs in

Figure 7a-A,c-A also demonstrate a strong initial dip, although this may

be due to the shape of the spherical Laguerre basis functions. The shape

of the frequency distributions was found to be broadband and smooth

across frequencies (Figure 7b-C–d-D) in most cases, although this was

not always the case (Figure 7a-C). Finally, we can observe correlations

between BOLD signal and its estimate reaching maximal single-subject

F IGURE 5 BOLD independent components (IC) in panel a and scalp topography of EEG SOBI components in panel b for motor-imagery data.
Main spatial coverage for BOLD IC1—left primary motor and somatosensory cortices; IC2—bilateral primary somatosensory cortices and inferior
parietal lobules; IC3—bilateral primary motor and somatosensory cortices; IC4—bilateral premotor cortex. Regions of BOLD ICs determined using
Juëlich histological atlas
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values between 0.30 and 0.37 for different ICs (Figure 7a-E–d-E). These

correlation values are satisfactory from a qualitative standpoint and mir-

ror the ability of BOLD signal estimates to model slower variations in

BOLD dynamics as observed from visual inspection. A more quantitative

assessment is presented later on and illustrated in Figure 11.

Results when setting the number of CPD components to 2 are

displayed for motor-imagery data in Figure 8a through Figure 8d for

ICs 1 through 4, respectively. Observations made earlier for results

displayed in Figure 7 generally hold for those shown in Figure 8 as

well. One obvious difference is the addition of a second component

which is colour-coded in orange in Panels A–D of Figure 8a–d. In the

case where two components were returned by CPD, we obtained two

compound EEG signals which, once convolved with their respective

HRFs, each provide an estimate of the BOLD signal for a given IC. To

obtain a single estimate of the BOLD signal as shown in Panels E, we

fit both estimates to the BOLD signal via linear regression. This linear

regression step was also applied during jackknifing iterations and the

construction of null distributions.

According to Figure 8, having two regressors to model the same

BOLD signal translated into better BOLD signal estimates for some

ICs. For instance, the maximal correlation for IC2 grew from 0.37

when using 1 CPD component (Figure 7b-E) to 0.44 when using

2 CPD components (Figure 8b-E). Alongside this improved perfor-

mance for IC2, its CPD outputs show expected general characteristics

(HRF shape, smooth and broadband frequency distributions, etc.) and

relatively narrow confidence intervals. Otherwise, improvements were

not as marked for other ICs although still noticeable, as is the case for

IC4 where the maximal correlation increased from 0.30 to 0.38

(Figure 7d-E vs. Figure 8d-E) although at the expense of wider confi-

dence intervals for the CPD outputs. On the other hand, IC2 and IC3

did not exhibit a clear benefit from adding a second CPD component

(i.e. Figure 7b vs. Figure 8b and Figure 7c vs. Figure 8c, respectively).

Table 1 lists the decay-rate parameters as well as percentile

values used for soft-thresholding the HRF tensor. These values were

chosen based on the parameter sweep described in the Methods

section.

F IGURE 6 BOLD independent components (IC) and scalp topography of EEG SOBI components for resting-state data. Corresponding RSN
for IC1 is default mode network (DMN); for IC2 is somatosensory network (SN); for IC3 is visual network (VN)
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F IGURE 7 Results for motor-imagery data when using 1 CPD component. Figure a–d shows results for different BOLD independent
components (ICs, Figure 5a). For each IC, estimated HRF shown in panel A, EEG SOBI topographies (Figure 5b) and spatial distribution in panel B,
frequency distribution in panel C, subject distribution in panel D and BOLD signal estimate (orange) alongside real BOLD signal (blue) in panel
E. For panel E, results were presented for subject with the highest correlation coefficient (r) between BOLD signal estimate and real BOLD signal.
The vertical axis of each subfigure bears arbitrary units. In text, for example, Figure 7a-B refers to Panel B of Figure 7a.
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F IGURE 8 Results for motor-imagery data when using 2 CPD components. Figure a–d shows results for different BOLD independent
components (ICs, Figure 5a). For each IC, estimated HRF is shown in panel A, EEG SOBI topographies (Figure 5b) and spatial distribution in
panel B, frequency distribution in panel C, subject distribution in panel D and BOLD signal estimate (orange) alongside real BOLD signal (blue) in
panel E. For panel E, results were presented for subject with the highest correlation coefficient (r) between BOLD signal estimate and real BOLD
signal. The vertical axis of each subfigure bears arbitrary units. In text, for example, Figure 8a-B refers to Panel B of Figure 8a.
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The Supporting Information contains results pertaining to the sec-

ond motor-imagery dataset not included in the main body of this arti-

cle. In brief, BOLD group ICA components shown in Figure S12a

cover much of the same motor and somatosensory areas. Using

1 CPD component yields HRFs with sensible shapes, broadband fre-

quency distributions and high maximal correlations between BOLD

signal and BOLD signal estimate in the range of 0.35–0.42

(Figure S13). A comparison of results shown in Figures S13 and S14

suggests that adding a second CPD component does not significantly

provide additional information, resulting in a fewer number of cases

where the null hypothesis is rejected as exhibited in Figure S15.

4.4 | Resting-state dataset

Homologous results for resting-state data are shown in Figure 9a–c

(1 CPD component) and Figure 10a–c (2 CPD components), alongside

Table 2 which lists the selected decay-rate parameters and percen-

tiles. As before, the HRFs derived from resting-state data exhibited

shapes largely consistent with typical HRF shapes and the frequency

distributions were found to be broadband and smooth across frequen-

cies. However, one main difference between results from motor-

imagery data when using 1 CPD component (Figure 7) and those from

resting-state data (Figure 9) are the wider confidence intervals for the

latter. This suggests that CPD outputs for resting-state data exhibited

more variability, as assessed by the jackknifing procedure. Another

important difference is the quality of BOLD signal estimates, as quan-

tified by the corresponding correlation coefficients. Maximal correla-

tion coefficients from Figure 9a-E–c-E for resting-state ranged

between 0.19 and 0.28 compared to 0.30 to 0.38 for the motor-

imagery data (Figure 7a-E–d-E).

Adding a second CPD component for resting-state data resulted

in improved BOLD signal estimates, which in turn yielded maximal

correlation coefficients between 0.24 and 0.32 (Figure 10a-E–c-E).

Also, whereas adding a second CPD component for motor-imagery

data tended to increase the width of confidence intervals, this was

not found to be the case to the same extent for the resting-state data.

In fact, the HRF of the second component shown in Figure 10b-A in

orange is an example of the opposite, where the confidence intervals

around this HRF are very tight.

4.5 | Statistical inference

To assess the statistical significance of the fit between the CPD-

based estimated and real BOLD signals, we constructed null distribu-

tions of correlation coefficients by phase randomisation of BOLD

data and repeated the procedure of HRF tensor estimation followed

by CPD, BOLD signal estimation and correlation coefficient compu-

tation. The correlation coefficients obtained from the original data

were compared against the null distributions. The BOLD signal esti-

mate was deemed statistically significant if the original correlation

coefficient exceeded the 95th percentile of null correlation

coefficients.

Histograms of these null distributions across different subjects

and ICs are shown in Figure 11 for the motor-imagery (Figure 11a,

b) and resting-state (Figure 11c,d) datasets, alongside the original

correlation coefficients marked by vertical dotted lines. Histograms

with a green background signify that the null hypothesis was

rejected at the p = .05 significance threshold. Also, the vertical dot-

ted line is green when the null hypothesis was rejected and red

otherwise.

The right-most column of each panel of Figure 11 also displays

the absolute value of subject weightings for different ICs. This

arrangement allows to compare the subject weightings to the pattern

of significant correlation coefficients. For motor-imagery data, we

observe from Figure 11a that a subject with a strong weighting for a

given IC was more likely to have a correlation coefficient which

exceeded the statistical threshold, and vice-versa. This pattern also

holds for Figure 11b where 2 CPD components are used, therefore

yielding 2 weightings per subject. Although these observations do not

hold for resting-state data (Figure 11c,d) due to the near-total absence

of significant correlations, it is still the case that stronger subject

weightings translate into higher correlations.

As alluded to within the previous paragraph, another important

observation is the rate at which the null hypothesis was rejected for

motor-imagery data (Figure 11a,b) compared to resting-state data

(Figure 11c,d). For motor imagery data, the null hypothesis was

rejected around 7.8% (5/64) of the time when using 1 CPD compo-

nent and around 10.9% (7/64) when using 2 CPD components. For

resting-state data, the null hypothesis was rejected 3.03% (1/33) and

0.0% (0/33) of the time.

Moreover, we repeated the process of creating null distributions

by bootstrapping BOLD data instead of performing phase randomisa-

tion. This proved to be a more liberal way of generating null distribu-

tions, resulting in more occurrences where the null hypothesis is

rejected. This was done in light of the observed stringency of phase-

TABLE 1 Decay-rate parameter and percentile selected by the
parameter sweep for each independent component (IC) for motor-
imagery data

Independent component (IC) Decay-rate parameter Percentile

1 CPD component

IC1 1.2 75

IC2 2.2 25

IC3 2.2 0

IC4 1.4 0

2 CPD components

IC1 1.0 50

IC2 3.2 25

IC3 1.0 25

IC4 4.8 0

Note: Shown for the number of canonical polyadic decomposition (CPD)

components set to 1 and 2.
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F IGURE 9 Results for resting-state data when using 1 CPD component. Figure a–c shows results for different BOLD independent
components (ICs, Figure 6a). For each IC, estimated HRF shown in panel A, EEG SOBI topographies (Figure 6b) and spatial distribution in
panel B, frequency distribution in panel C, subject distribution in panel D and BOLD signal estimate (orange) alongside real BOLD signal
(blue) in panel E. For panel E, results were presented for subject with the highest correlation coefficient (r) between BOLD signal estimate
and real BOLD signal. The vertical axis of each subfigure bears arbitrary units. In text, for example, Figure 9a-B refers to Panel B of
Figure 9a.
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randomisation considering the narrowband activity of BOLD-fMRI

data, especially at rest where no stimuli is thought to affect BOLD

dynamics, thus keeping the frequency content unaltered and

narrowband. The related histograms and results are provided in the

Supporting Information in Figure S16 for motor-imagery and resting-

state data and Figure S17 for supplementary motor-imagery data.

F IGURE 10 Results for resting-state data when using 2 CPD component. Figure a–c shows results for different BOLD independent
components (ICs, Figure 6a). For each IC, estimated HRF shown in panel A, EEG SOBI topographies (Figure 6b) and spatial distribution in panel B,
frequency distribution in panel C, subject distribution in panel D and BOLD signal estimate (orange) alongside real BOLD signal (blue) in panel
E. For panel E, results were presented for subject with the highest correlation coefficient (r) between BOLD signal estimate and real BOLD signal.

The vertical axis of each subfigure bears arbitrary units. In text, for example, Figure 10a-B refers to Panel B of Figure 10a.
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5 | DISCUSSION

5.1 | Simulated data

We proposed a method for estimating region-specific HRFs while

simultaneously deriving from electrophysiology data the spatial and

spectral correlates of BOLD data. Our approach was first applied to

simulated data, employing a whole-brain model of coupled modified

Stuart–Landau oscillators. We performed phase-randomisation to per-

form statistical inference.

We used a basis function expansion technique using the spherical

Laguerre functions to obtain robust HRF estimates. This approach has

the benefit of requiring less data for estimating impulse response

functions than other common approaches, which is advantageous

when using data sampled at a low sampling rate such as is the case

with experimental BOLD data. Moreover, down-sampling of EEG data

can be performed after convolution with the basis functions, reducing

the information loss which accompanies down-sampling. Nonetheless,

such benefits in robustness of HRF estimate come at a cost of impos-

ing bias on the shape of the HRF. Fortunately, selecting the number

of spherical Laguerre basis functions may serve to adjust the bias-

variance trade-off. Hence, the design of our approach is directly well-

suited for empirical data.

Our approach was able to correctly extract the node-wise fre-

quency bands implemented in the simulations. Specifically, the

extracted frequency bands directly reflected the tuning of Stuart-

Landau oscillators at 2 Hz for the right hemisphere and 10 Hz for the

left hemisphere (i.e. Figure 3e). Intriguingly, injecting low-amplitude

input noise (e.g. ki ¼0:01) resulted in a better separation of frequency

bands compared to the noiseless scenario. Upon further investigation,

this was found to be likely due to leakage during passband filtering

prior to the Hilbert transform of individual narrowband signals. Specif-

ically, the α amplitude dynamics would leak into the θ and β bands.

The θ and β amplitude dynamics thus became highly correlated to α

and were thus extracted by the CPD, despite having much lower

amplitude than α. On the other hand, for nonzero ki , the α dynamics

which leaked into the θ and β bands were diluted by input measure-

ment noise. Although some correlation remains between α, θ and β

despite the input measurement noise, it was significantly reduced

which resulted in a clearer separation of bands.

Moreover, despite our focus on a linear characterisation of the

balloon model, it should be noted that the balloon model's nonlinear

characteristics have been discussed before, with the form of its

second-order Volterra kernel expansion suggesting an underlying

Wiener structure (Friston, Josephs, et al., 1998). In turn, this suggests

that the balloon model may be better approximated by a linear

dynamic impulse response (i.e. HRF) followed by a static quadratic

response. The response of the balloon model thus nonetheless

remains mostly linear for low-amplitude input signals (Friston,

Fletcher, et al., 1998). Hence, the estimated HRFs still reflects ade-

quate linear approximations of the balloon model and its

parametrisation.

An important goal of this study was to verify whether the

derived HRF, spatial distributions and spectral distributions may be

used to reconstruct the BOLD signal. We chose the N-mode prod-

uct for this reconstruction, although other options are possible. A

key assumption in using CPD and the N-mode product is that the

HRF tensor is an adequate low-rank trilinear representation of the

distribution of SSRFs. In an attempt to test this assumption, we

performed statistical inference for different noise regimes as

shown in Figure 4. As expected, random input and output measure-

ment noise tends to affect the goodness-of-fit of BOLD estimates

uniformly across nodes. On the other hand, physiological noise

expressed through SLFOs (e.g. Figure S2) affect nodes in a more

structured manner. This is expected, as our group had previously

identified regional variability in the confounding effects of respira-

tory and cardiac processes (Kassinopoulos & Mitsis, 2019). This

regional variability was captured within statistical maps which were

used in this current study for deriving the effect of SLFOs on differ-

ent nodes.

Our approach of applying the CPD onto the HRF tensor is in part

inspired by the multiway partial least-squares (PLS) method employed

in Martínez-Montes et al. (2004) for fusing EEG and BOLD-fMRI. In

this study by Martinez-Montes and colleagues a third-order tensor of

EEG data was formed by time-frequency decomposition, akin to the

LFP tensor in our work. However, in their study, the time-series were

convolved with the canonical HRF. Multiway PLS was then performed

by computing the covariance between the convolved EEG signals and

BOLD signals. This resulted in a covariance matrix, which was

decomposed using singular value decomposition before

reconstructing the data in their original dimensionalities. On the other

hand, the HRF tensor in our work may be considered as a correlation

tensor rather than a covariance matrix. In other words, it can be

viewed as a collection of lag-based covariance matrices which are

concatenated across the temporal dimension to form a third order

tensor. This interpretation is based on the view of an impulse

response function approximating the cross-correlation between two

signals, corrected for the autocorrelation of the input signal

(Westwick & Kearney, 2003). Therefore, we perform the CPD of a

TABLE 2 Decay-rate parameter and percentile selected by the
parameter sweep for each independent component (IC) of resting-
state data

Independent component (IC) Decay-rate parameter Percentile

1 CPD component

IC1 1.4 0

IC2 2.6 0

IC3 2.2 0

2 CPD components

IC1 4.0 0

IC2 3.2 0

IC3 1.6 0

Note: Values are shown when number of canonical polyadic

decomposition (CPD) components set to 1 and 2.
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F IGURE 11 Statistical inference of goodness-of-fit based on correlation coefficients. Motor-imagery data: Panel a for 1 CPD component,
panel b for 2 CPD components. Resting-state data: Panel c for 1 CPD component, panel d for 2 CPD components. For each BOLD IC and subject,
correlation coefficient of BOLD estimate (vertical dotted line) is compared to the null distribution (histogram). Dotted line is green if correlation
coefficient exceeded the 95th percentile of null distribution, corresponding to a p = .05 statistical threshold and red if otherwise. Background is
green when the null hypothesis was rejected. The far-right column of each panel shows absolute values of weightings across subjects and BOLD
independent components (ICs). Spatial coverage for motor-imagery data (i.e. panels a,b): IC1—Left primary motor and somatosensory cortex;
IC2—Bilateral primary somatosensory cortex and inferior parietal lobule; IC3—Bilateral primary motor and somatosensory cortex; IC4—Bilateral
premotor cortex. Resting-state networks (i.e. panels c,d): IC1—Default mode network; IC2—Somatosensory network; IC3—Visual network
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correlation tensor rather than the singular value decomposition of a

covariance matrix. This distinction allows for the estimation of an HRF

following CPD. Another approach similar in spirit to the CPD decom-

position of an HRF tensor is the temporal kernel canonical correlation

analysis which serves to generalize the cross-correlogram to high-

dimensional multivariate data as demonstrated in (Biessmann

et al., 2010) for fusing neurophysiological recordings with BOLD data.

5.2 | Empirical data

We applied our method to three different open-source EEG-fMRI

datasets. Due to the multi-subject nature of these datasets, HRF ten-

sors were extended to fourth-order to encapsulate a subject dimen-

sion alongside the temporal, spatial and spectral ones. To achieve

better computational performance and limit the number of outputs,

we performed group-level data reduction for both EEG and BOLD-

fMRI data. Group ICA of BOLD data followed by dual regression pro-

vided group spatial maps and associated subject-specific time-series.

A similar approach was employed for EEG using SOBI.

The spatial and spectral distributions returned by CPD enabled us

to perform a weighted-averaging of EEG frequency-band amplitude

signals across different SOBI components. Such weighted-averaging

gives rise to what we have termed a compound EEG signal which is

convolved with the CPD-derived HRF to output an estimate of the

BOLD IC time-series. Correlation coefficients were used to assess the

goodness-of-fit of this BOLD signal estimate. Moreover, delete-2 jac-

kknifing was employed to assess confidence intervals of the CPD

outputs.

Overall, our results suggest that the proposed framework is able

to obtain a detailed quantitative representation of EEG-to-BOLD neu-

rovascular coupling mechanisms from empirical data. On occasions,

such representations allow for an adequate reconstruction of BOLD

dynamics using EEG data and data-driven HRF estimates. The ability

to incorporate multiple CPD components provides further insight into

different combinations of EEG features which best explain the BOLD

signal in a subject-specific manner. For instance, in several cases, we

observed that adding a second CPD component allowed us to decom-

pose broadband frequency distributions into finer sub-bands. This is

an indication that our method can unravel data-specific frequency

bands which may not necessarily align with the standard boundaries

of classical EEG frequency bands.

5.3 | Motor-imagery dataset

A first observation indicating the robustness of our method is the sta-

bility of CPD outputs for the motor-imagery dataset when 1 CPD

component was used (Figure 7a–d), especially for the last two ICs

(Figure 7c,d), for which confidence intervals were found to be tightly

bound around the median jackknife values. Moreover, these results

suggest a broadband relation between distinct EEG frequency bands

and the BOLD signal within motor and somatosensory areas for ICs

2–4 (Figure 7b–d), while also exhibiting anti-correlated activity

between visual and motor SOBI components (panels B). On the other

hand, the distributions for IC1 (Figure 7a) were sparser and suggest a

strong activation at 16 Hz and milder anti-correlated activations

within the upper-beta range (24–32 Hz). Sparsity was expected as a

result of the high 75th percentile soft-threshold used for IC1 as a

result of the parameter sweep (Table 1).

Adding a second CPD component for motor-imagery data may

provide a more complete view of the EEG-to-BOLD neurovascular

coupling, sometimes however at the cost of higher variability

(Figure 8a–d). For instance, the first CPD component of IC1 still

exhibited a strong activation at 16 Hz, whereas spectral weightings

for the second CPD component are split at 16 Hz between low and

high frequencies (Figure 8a-C). Hence, for subjects with strong

weightings for the first component (Figure 8a-D) upper-beta activity

was anti-correlated to this pronounced 16 Hz component, whereas

subjects with strong weightings for the second component showed

correlated activity between upper-beta and the 4–8 Hz delta range.

However, the HRF of the second component exhibited some degree

of variability (Figure 8a-A), with confidence intervals even overlapping

with the HRF of the first component, perhaps due to some residual

crosstalk between components. Consequently, the spatial (Figure 8a-

B), frequency (Figure 8a-C) and subject-level (Figure 8a-D) distribu-

tions also exhibited a larger degree of variability.

In contrast to IC1, where adding a second CPD component comes

with a cost of increased variability, adding a second component for

IC2 yielded more insightful CPD outputs without comparable short-

comings (Figure 8b). Specifically, both HRFs shown in Figure 8b-A

have tight confidence intervals. Also, despite the similarity in their

shapes which could indicate some degeneracy from CPD, the HRF of

the second component (orange) exhibits a significantly stronger

undershoot than that of the first component (blue). This decoupling in

undershoot strength is important considering how the confidence

interval for the HRF in Figure 7b-A—where only 1 CPD was used—

grows in magnitude precisely at the undershoot. It thus seems that

using two HRFs leads to a more fine-tuned modelling of BOLD under-

shoot dynamics. The corresponding spectral distributions (Figure 8b-

C) also bear important insight and therefore mirror the benefit of

adding an additional CPD component. Whereas the first component

suggests correlated broadband activity over all frequencies, the sec-

ond component is characterised by an inflection point between 20 Hz

and 24 Hz. This latter observation is consistent with previous obser-

vations regarding the contribution of electrophysiological frequencies

below and above 20 Hz, which respectively yielded correlations of

opposite sign to the BOLD signal (Magri et al., 2012; Marecek

et al., 2016; Murta et al., 2015). This key observation cannot be drawn

from the spectral distribution shown in Figure 8b-C where only one

CPD component was used.

Moreover, comparing correlations between the BOLD signal and

its estimate for 1 and 2 CPD components (i.e. Figure 7b-E

vs. Figure 8b-E) also revealed an increase in the correlation from 0.37

to 0.44 for subject 9 (the subject with the largest correlation in this

case). It is likely that the more fine-tuned modelling of BOLD
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dynamics and incorporation of anti-correlated oscillatory activity gives

rise to this increased performance. Though the results for IC3 and IC4

became more variable with the added CPD (Figure 8c,d), IC4 also

exhibited a non-negligible increase in correlation from 0.30 to 0.38

for subject 8.

5.4 | Resting-state dataset

Similarly to motor-imagery data, frequency distributions for resting-

state data tended to be relatively broadband; however, some pro-

nounced peaks were also observed within the alpha and low-gamma

bands for DMN (IC1, Figure 9a-C), upper-beta for SN (IC2, Figure 9b-

C) and lower/mid-beta for VN (IC3, Figure 9c-C). This broadband

nature of coupling between resting-state EEG and RSNs is generally

in line with results from (Mantini et al., 2007; Prokopiou, Xifra-Porxas,

et al., 2022).

On the other hand, authors of (Mantini et al., 2007) observe for

DMN a peak positive association within the beta-band which differs

from the alpha/low-gamma association we observed when using

1 CPD component (Figure 9a-C). Nonetheless, using 2 CPD compo-

nents (Figure 10a-C) suggests a possible decoupling between alpha

and beta across the second and first components, respectively,

suggesting that alpha and beta activity may couple separately to the

DMN BOLD signal. Although we considered many different frequen-

cies in our analysis, the alpha-band is, to the best of our knowledge,

the most widely studied rhythm when correlating EEG oscillations to

DMN dynamics. Notwithstanding, there are conflicting results across

the literature regarding the correlation pattern between alpha and

DMN at resting-state which are discussed in (Bowman et al., 2017).

Comparing our results for the SM RSN (IC2, Figure 9b-C) with

those of (Mantini et al., 2007), we also observe a peak activation in

beta with some degree of activation in gamma. Adding a second CPD

component results in alpha also yielding contributions (Figure 10b-C).

It is interesting to note that adding a second CPD component sta-

bilised the HRF associated with beta activation. This further indicates

that using multiple CPD components may alleviate interference across

frequency bands in addition to providing a more complete view of

neurovascular coupling mechanisms. In such cases, more CPD compo-

nents may lead to less variability and tighter confidence intervals.

Results for the VN shows some consistency with previous litera-

ture. For instance, when using 1 CPD component (Figure 9c), a strong

weighting for EEG SOBI component 3 suggests the involvement of an

occipital EEG source in the dynamics of the BOLD signal of VN

(Figure 9c-C). This result is in agreement with prior studies which have

observed coupling between occipital EEG oscillations and BOLD

activity in visual regions (Goldman et al., 2002; Martínez-Montes

et al., 2004; Scheeringa et al., 2012; Tyvaert et al., 2008). However,

our results did not demonstrate a clear relation between the alpha fre-

quency range and VN BOLD activity when either using 1 or 2 CPD

components (Figures 9c-C and 10c-C). A possible reason for not rep-

roducing the well-known relation between alpha oscillations and the

VN is the variability of the frequency weightings within the alpha

range. Whereas the median values of the frequency weightings within

alpha are lower than those within beta, the extremities of its confi-

dence intervals suggest a potential role from alpha. Furthermore,

another important observation relating to this absent relation

between alpha and VN arises by focusing on subject 6. This subject

exhibits the strongest correlation coefficient (Figure 10c-E) despite

the median value of its subject weighting for the second component

being relatively small. However, the confidence interval of its subject

weighting stretches towards stronger weightings (Figure 10c-D). It is

possible that higher median frequency weightings for alpha and a

higher subject weighting for subject 6 (amongst other subjects) would

go hand-in-hand. However, a clear relation between alpha and VN

mediated by subject 6 is being masked by the high variability of CPD

outputs from which ensues an inability to return strong median

weightings. Crosstalk between HRFs (Figure 10c-A) is also an indica-

tion of variability, which may have in turn resulted in the inconsistent

correlations obtained between alpha and VN BOLD activity. Finally,

inter-subject variability in EEG-fMRI correlation patterns (de Munck

et al., 2007; Gonçalves et al., 2006) is perhaps in part responsible for

this missing relation between alpha oscillations and VN, which war-

rants a research framework which accounts for this type of variability.

5.5 | Statistical inference for BOLD estimates

Figure 11 provides an overview of the performance of the proposed

approach using CPD outputs and EEG amplitude signals for estimating

BOLD data fluctuations. Better BOLD signal estimates were obtained

when our method was applied to motor-imagery data compared to

resting-state data. This is perhaps unsurprising, considering the lower

SNR of resting-state data. Other examples consistent with this finding

can be found in previous work from our group where amplitude

dynamics of EEG oscillations were also used to model BOLD data.

Figure 7 from Prokopiou, Xifra-Porxas, et al. (2022) and figure 8 from

Prokopiou, Kassinopoulos, et al. (2020) both show EEG-derived esti-

mates of BOLD time-series for task-based and resting-state data. In

both cases, more variance of the BOLD signal is captured for task-

based data than resting-state data.

For motor-imagery data (Figure 11a,b), adding a second CPD

component leads to more statistically significant BOLD signal esti-

mates despite the higher correlation coefficients of the corresponding

null distributions. This indicates that overfitting is not the cause of

increased performance. This is not the case for resting-state data

(Figure 11c,d), where adding a second CPD components did not pro-

vide better BOLD signal estimates. Moreover, for resting-state data,

overfitting is likely considering the large number of EEG SOBI compo-

nents retained for resting-state data compared to motor-imagery data

(i.e. 7 vs. 5 components, respectively).

With respect to the relatively low number of significant correla-

tions observed in Figure 11, it is important to note that we explicitly

anticipated correlations for some subjects to be insignificant for a

given component. This point can be better understood by inspecting

the bar charts shown in the right-most column of each subfigure of
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Figure 11. Small subject weightings shown in these bar charts would

indeed suggest that a significant correlation would be incompatible

with the outputs of CPD. Subject 4 in Figure 11a is a good example of

this point across all four components. From this example, we could

thus conclude that additional CPD components are required in order

to allow significant correlations between real and estimated BOLD

signals for Subject 4. Moreover, adding a second CPD component for

this subject, as shown in Figure 11b, results in stronger subject

weightings and a significant correlation for BOLD IC 4. Had this sec-

ond CPD component been insufficient, as is the case for Subject

14 for instance, adding a third CPD component could be beneficial.

It is also worth noting that the generation of null data by way of

phase randomisation translates into quite stringent statistical evalua-

tions. As previously mentioned, we also provide results where phase

randomisation was replaced by bootstrapping of the BOLD data, lead-

ing to much more lenient conditions for statistical inference. In this

situation, we see a net rise in the number of rejected null hypotheses

which is accentuated when using 2 CPD components as can be seen

in Figures S16 and S17 from the Supplementary Material.

5.6 | Limitations and potential improvements

Due to our highly multifactorial approach, it is not straightforward to

directly compare our results to the previous relevant literature. In gen-

eral, EEG-fMRI research is at an early stage where consensus on rela-

tions between EEG and BOLD-fMRI activity is still missing. Much

variability in the coupling between EEG and BOLD-fMRI has been

reported as a function of sex, age, individuals and state (Gonçalves

et al., 2006; Kumral et al., 2020). This lack of consensus is moreover

worsened by the technical challenges related to EEG-fMRI and the

resulting low signal-to-noise ratio. Hence, some of our results may not

align with expected outcomes, but these expectations are not quite

yet grounded on strong consensual views from the literature. More-

over, by accounting for all EEG correlates of BOLD dynamics simulta-

neously it is not straightforward to claim, as an example, whether

beta-band desynchronisation is correlated with increased BOLD activ-

ity in motor and somatosensory areas. As SOBI may return different

motor-related components, these may couple differently to a given

task-related BOLD IC. This was broadly the logic adopted by

(Bowman et al., 2017) for explaining discrepancies in relating alpha

activity to BOLD DMN activity. In addition, the ability of our method

to capture an adequate HRF which reflects the correlation pattern

between electrophysiological and BOLD activity comes in stark con-

trast to assuming a canonical form of the HRF and thus of how EEG

frequency-bands correlate to BOLD dynamics. Moreover, our results

suggest that a relationship between beta-band and BOLD in motor

areas holds for certain subjects but does not for others. Results for

subject weightings shown in Figures 7a-D and 8a-D are good exam-

ples of this observation.

In principle, our method provides a more nuanced view of

electrophysiology-driven neurovascular coupling. However, some of

the outputs yielded large confidence intervals, suggesting variability

of CPD throughout jackknife iterations. The main issue which directly

concerns our methodology is the regularisation of the CPD decompo-

sition. The amount of noise in EEG-fMRI data makes overfitting more

likely, especially for high-dimensional/higher-order decomposition

methods such as CPD. Moreover, complete removal of the gradient

artefact and ballistocardiogram artefact is challenging. It is quite possi-

ble that residual noise from these artefacts have persisted throughout

our analysis. To address these issues, we regularised the CPD decom-

position of the HRF tensor using a soft-thresholding approach. How-

ever, other approaches could ensure a more robust CPD

decomposition. Standard norm-based regularisation could sparsify the

outputs or further limit overfitting. For instance, a non-negativity con-

straint, although not advisable for HRF shape, could limit the variabil-

ity of jackknife outputs by restricting the sign of weightings to be

positive. Non-negative subject weightings could also render inter-

subject comparisons more interpretable (Cong et al., 2015). The appli-

cation of different penalty terms for smoothness, sparsity, orthogonal-

ity and nonnegativity could be harmonised into a single framework as

described in Karahan et al. (2015) within the context of tensor-based

multimodal brain imaging fusion. Furthermore, improvements to our

CPD-based HRF estimation method could allow for a larger number

of basis functions, allowing more flexible HRF estimation.

Considering that using 2 CPD components resulted in better

BOLD signal estimates compared to using 1 CPD component

(e.g. Figure 11a, Subject 4, IC 4), it is also possible that a higher num-

ber of components (i.e. >2) is required to adequately represent vari-

ability across different dimensions of the HRF tensor. Alternative

tensor decompositions which differ from CPD when using multiple

components could be considered for deriving electrophysiological fea-

tures from the HRF tensor. For instance, the Tucker decomposition

allows interactions between modes across different components

which could limit some of the degenerate outputs as seen between

HRFs in Figure 10c-A.

The variability of CPD outputs is most evident for resting-state

data which is unsurprising considering the low repetition time (2.16 s).

A slower TR further compromises the ability to model BOLD dynamics

and typically imposes a more aggressive down-sampling of EEG data.

Moreover, EEG data collected in an active MR environment is notori-

ously noisy and challenging to clean. Poorer EEG SNR further compro-

mises the identification of EEG correlates of BOLD data, especially

when using inherently low SNR BOLD resting-state data. In brief, for

either task-based or resting-state data, relating EEG features to

BOLD-fMRI is challenging due to the nature of EEG-fMRI acquisi-

tions. Even for faster TRs used in the literature for whole-brain

acquisitions—for example, 0.72 s for data from the Human

Connectome Project—the very low sampling rate of BOLD data in

comparison to that of EEG data represents a fundamental limitation

to EEG-fMRI analyses.

A different multimodal arrangement which mitigates these issues

is the simultaneous acquisition of EEG with functional near-infrared

spectroscopy (i.e. EEG-fNIRS; Pellegrino et al., 2016), whereby the

sampling frequency of fNIRS is roughly an order of magnitude higher

than that of BOLD-fMRI. Whereas BOLD-fMRI is mainly sensitive to
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fluctuations in deoxy-hemoglobin, fNIRS captures deoxy- as well as

oxy-hemoglobin (Machado et al., 2021) providing an additional biolog-

ical standpoint from which to study neurovascular coupling using EEG

as the electrophysiological substrate. It is noteworthy that fNIRS is

constrained to more confined and superficial spatial coverage. The

use of this modality thus represents a trade-off between spatial cov-

erage and temporal resolution.

It is also possible that another type of group-level BSS algorithm

may be better suited for decomposing EEG data into components. We

used SOBI in part due to its relative robustness against inter-subject

variability in the underlying mixing matrices (Lio & Boulinguez, 2013),

although this advantage over higher-order based methods has not

been found to be ubiquitous (Huster et al., 2015). Furthermore, algo-

rithms based on second-order statistics such as SOBI depend

(although not always directly) on the frequency content of the data

for ensuring that the derived components are orthogonal. Hence, it

may seem counter-intuitive to decompose EEG data into orthogonal

components based on their frequency contents to then attempt to

capture collinearity between SOBI components via CPD. However,

collinearity between SOBI components is mediated through their

respective SSRFs rather than SOBI time-series from which orthogo-

nality is imposed. Moreover, SOBI time-series were subjected to

multi-taper filtering to obtain the output amplitude signals. It is these

amplitude signals rather than the original SOBI time-series which were

used to estimate SSRFs, rendering it possible for SSRFs to correlate

across frequencies.

6 | CONCLUSION

The proposed methodology enables us to extract spatial and spectral

features derived from electrophysiology while simultaneously estimat-

ing HRFs on a node-by-node or components basis. Our approach was

first tested on simulated LFP and BOLD data and involved the imple-

mentation of a novel variant of Stuart-Landau oscillators to generate

LFP oscillatory amplitude dynamics. Then, open-source EEG-fMRI

data was used to further validate our method.

Our results suggest that, when applied to simulated data, our

methodology can accurately extract node-wise spatial and spectral

distributions as well as node-specific HRFs. We tested the perfor-

mance of our method under different noise regimes, involving input

and output measurement noise as well as physiological confounds.

Results are in agreement with the whole-brain modelling par-

ametrisation; for instance, the frequency bands extracted across

nodes matched the natural frequencies of the fast SLO subpopula-

tions that we set for simulating data. We also show that for moderate

amounts of noise introduced into the data, our method is capable of

reconstructing BOLD data using correlations as a goodness-of-fit met-

ric. However, noise regimes with heavier noise contributions result in

an inability to model BOLD signals.

To test our method on empirical EEG-fMRI data, we leveraged

CPD applied to fourth-order HRF tensors to investigate EEG-to-

BOLD neurovascular coupling, as well as its inter-subject variability.

Our method suggests that broadband distributions of frequencies

mediate this type of neurovascular coupling, especially for motor-

imagery data. For both motor-imagery and resting-state datasets,

broadband frequency distributions may be further decomposed into

sub-bands by adding a second component to the CPD decomposition.

Moreover, CPD outputs can be used to reconstruct adequate BOLD

signal estimates.

This article represents a proof-of-concept of employing a tensor

decomposition framework for studying subject-specific neurovascular

coupling mechanisms in a more general context. It allows the simulta-

neous incorporation of broadband electrophysiological activity com-

bined with flexibility in the HRF dynamics with respect to both

electrophysiological frequency and spatial location. Potential improve-

ments to our approach include regularisation, exploring a larger num-

ber of CPD components and alternative tensor decomposition

algorithms.
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