
medicina

Article

The Influence of EMG-Triggered Robotic Movement on
Walking, Muscle Force and Spasticity after an Ischemic Stroke

Patrycja Lewandowska-Sroka 1, Rafał Stabrawa 1, Dominika Kozak 2,*, Anna Poświata 2, Barbara Łysoń-Uklańska 3,
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Abstract: Background and Objectives: Application of the EMG-driven robotic training in everyday ther-
apeutic processes is a modern and innovative form of neurorehabilitation among patients after stroke.
Active participation of the patient contributes to significantly higher activation of the sensorimotor
network during active motor control rather than during passive movement. The study objective was
to determine the effect of electromyographic triggering (EMG-triggered) robotic rehabilitation device
treatment on walking, muscle force, and spasticity after an ischemic stroke. Materials and Methods: A
total of 60 participants with impaired motor function and gait after subacute stroke were included in
the study. Each patient was randomly assigned to an intervention or control group (IG or CG). All
patients, except standard therapy, underwent 1 additional session of therapy per day, 5 days a week
for 6 weeks. IG had 30 min of training on the robot, while CG received exercises on the lower limb
rotor. The subjects were assessed with Timed Up and Go Test (TUG), Ashworth scale, knee range of
motion (ROM), Lovett Scale, and tight circumference at baseline and at weeks 2, 4, and 6. Results:
For seven parameters, the values credibly increased between consecutive measurements, and for the
Ashworth scale, they credibly decreased. The biggest changes were observed for the measurements
made with Lovett scale. The average thigh circumference as measured 5 and 15 cm above the knee
increased credibly more in the robot condition, as compared to control condition. Additionally, the
decrease in Ashworth values over time, although statistically credible in both groups, was credibly
higher in the robot condition. Conclusion: The inclusion of the EMG-triggered neurorehabilitation
robot in the patient’s daily rehabilitation plan has a positive effect on outcomes of the treatment. Both
proposed rehabilitation protocols significantly improved patients’ condition regarding all measured
outcomes, but the spasticity and thigh circumference improved significantly better in the robotic
group in comparison to controls.

Keywords: stroke; rehabilitation; EMG-triggered; rehabilitation robot; spasticity; mobility; gait

1. Introduction

Stroke is currently one of the most important health problems in the adult popula-
tion worldwide, for both medical and social reasons. Almost one third of deaths in the
world are caused by strokes [1]. Motor skills are one of the most important areas affected
by stroke. Patients may experience a variety of disabilities in different body parts and
different hemispheres can be affected. The most common impairments of the early stages
of stroke are weakness and paresis, which may lead to a learned nonuse of limbs. Sensory
impairments, chronic pain, and immobility of the patient in the early stages after stroke
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may also contribute to a learned nonuse state [2]. Motor skills impairments are most
associated with the reduction in functionality [3]. After stroke, normal muscle activity tone
can be also disrupted by neuronal damage. It leads to inappropriate decrease or increase of
muscle activity. Spasticity, which is a common issue associated with a stroke, is abnormal
muscle tone recognized clinically as resistance to passive muscle stretch, which increases
with velocity of stretch. In patients with no functionally useful voluntary limb movement,
spasticity can maintain an abnormal resting limb posture leading to contracture formation.
In patients with functionally useful voluntary limb movement, inappropriate co-activation
of agonist and antagonist muscles can impede normal limb movement [4]. On the other
hand, some of the neuronal pathways may remain unaffected after the stroke [5].

Electromyography (EMG)-triggered therapeutic programs create an interaction be-
tween the neuromuscular system and robotic device. The electromyographic technique
provides more complete information about the patient’s current muscular state (one muscle
or the entire muscle group). During rest, bioelectric activity is at the lowest point, and
the EMG record shows the degree of muscle stimulation based on the recording of the
amplitude and frequency of biopotentials. The main parameters of biopotentials are used
as an indicator of relaxation or a state of excitation of specific muscles. Mostly, the devices
with at least two channels are used to be able to apply therapy that involves working on
antagonist muscles. The patient’s task during the therapeutic session is to control muscle
tone for performance with the conditions of the gym, neither using the resistance of the
given device, nor in individual work with therapists [6].

Application of the EMG-driven robotic training in everyday therapeutic processes is
a modern and innovative form of neurorehabilitation among patients after stroke. Reha-
bilitation robots with the use of reactive electromyography capture the EMG signal from
a patient’s muscles and, on this basis, it assists with a given move. Active participation
of the patient contributes to significantly higher activation of the sensorimotor network
during active motor control rather than during movement performed passively [7]. Using
EMG triggered therapy in rehabilitation of stroke patients provides a possibility to learn
how to use these preserved pathways. After a treatment, a patient is able to better control
the muscle tone. This accelerates the motor function recovery, which allows for regaining
the functional efficiency after a stroke. In addition, the literature proves that the key period
in terms of regaining the functional capacity of the body is the first three months after the
cerebrovascular incident [7].

Luna EMG provides an electromyographic triggered robot-assisted therapy of upper
and lower limbs. In our study, the device was used in patients after stroke to work on
the lower limb movement. Luna EMG were detected the intentions of a stroke survivor
by means of surface electromyography (EMG) signals located on the hemiplegic side of
the lower limb and assisted in the activities of straightening and flexing the knee joint. In
addition, while delivering robot-assisted therapy tailored to the individual patient, the
system can record signals that may be useful for better understanding stroke recovery [8].

The aim of the study was to determine the effect of electromyographic triggering
(EMG-triggered) robotic rehabilitation device treatment on walking, muscle force, and
spasticity after an ischemic stroke.

2. Materials and Methods
2.1. Design Overview

A prospective, randomized controlled two-arm trial design was used: group (1) stan-
dard physiotherapy and robotic assisted exercises, and group (2) standard physiotherapy
and lower limb rotor exercises. All testing was carried out by the first author who was not
blind to participant allocation.

2.2. Setting and Participants

Ethical Approval was granted by Bioethics Committee by the District Medical Cham-
ber in Cracow (NR 10/KBL /OIL/2019). All testing took place at “RehStab” Rehabilitation
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Clinic in Limanowa, Poland. The inclusion criteria were as follows: ischemic stroke, not
later than 6 months ago; muscle strength of extensors and knee flexors on the Lovett scale
below 3; functional disorders of the lower limb; patient’s condition allows full understand-
ing of commands; and continued/uninterrupted rehabilitation process for 42 days. The
exclusion criteria included: cognitive impairment—lack of or poor cooperation between
the patient and the therapist; stroke (more than 6 months after the incident); unstable
clinical condition; muscle strength of knee extensors and flexors on the Lovett scale greater
than or equal to 3; rigid fixed contractures within the lower limb; and significant spasticity
(Ashworth scale of 3 and above).

2.3. Randomization and Interventions

After written informed consent, demographic information and baseline outcome
data had been collected prior to participants getting randomly allocated to a group by a
simple randomization. Both intervention groups were then introduced to the allocated
program, undertaking each of the program-specific exercises. Both groups participants
undertook six weeks of allocated exercise, five times per week, for 90–120 min each session,
depending on the patient’s condition. The study participants were divided into two
groups: intervention group (A, robot group) and control group (B, control group). In
the intervention group (30 patients), rehabilitation was based on individual standard
physiotherapy and rehabilitation robot Luna EMG. In the control group (30 patients),
rehabilitation was based on individual standard physiotherapy and a use of a lower limb
rotor (30 min).

Standard physiotherapy program included:

1. Individual kinesiotherapy (passive and assisted exercises of upper and lower paretic
limb, active exercises focused on balance and coordination, breathing exercises, edu-
cation, or improving gait),

2. Physical therapy (laser therapy, phototherapy, ultrasound, hydrotherapy, pressother-
apy), and

3. Classical lower limbs massage.

Luna EMG is a rehabilitation robot specifically designed to aid with the physiotherapy
of neurological patients suffering from clinical weakness. It is intended as an all-in-one plat-
form for complex personalized therapy for patients suffering from neurological conditions.
It tackles the key problems such as muscle weakness, mobility disorders, gait problems,
and range of motion restrictions specifically by automating the process of personalized,
motivating physiotherapy based on electromyography, force, and position sensing.

The patient is connected to Luna EMG through extensions—exchangeable mechanical
parts that are connected to the patient by straps or by grip. Movement is controlled by a
Windows Application from a mobile therapist panel providing a User Interface (UI), patient
management, reporting and internet connectivity for the purpose of remote diagnostics and
oversight. The device allows us to increase patient muscle force through isokinetic, isotonic,
and isometric exercises. The innovative technology “EMG-triggered robotic movement”
allows us to work actively with clinically weak patients, even where no movement is
visible. Luna EMG detects EMG activity of the muscle and based on that, it provides
assistance during the movement. If no movement or activity is present, the device provides
passive assistance.

The Luna EMG exercise protocol, which was a combination of CPM (continuous
passive movement) with reactive electromyography exercises, consisted of:

• 5 min of CPM of the knee flexion/extension.
• 10 min of EMG-triggered exercise, using the rectus femoris EMG activity to activate

the assistance of the device towards extension.
• 10 min of EMG-triggered exercise, using the biceps femoris EMG activity to activate

the assistance of the device towards flexion.
• 5 min of CPM of the knee.
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Exercises with Luna EMG were conducted in sitting position. Therapeutic procedures
were adapted according to the functional state of every person and adjusted individually.
All exercises were completed on a one-to-one basis with the first author supervising
the sessions.

2.4. Outcome Measurements

For the patient’s assessment, several measurement tools were used:

- Timed Up and Go test (TUG): the test is performed from a sitting position. The patient
on command gets up from the chair to walk a distance of 3 m, then turns back and
sits on the chair at the starting point.

- Ashworth scale (muscle tension examined by the therapist): measurement of resistance
during passive knee flexion and extension.

- Tight circumference: 5 cm and 15 cm above the patella.
- Lovett scale assessment for rectus femoris and semimembranosus muscle.
- Range of motion (ROM): knee flexion.

The subjects were assessed with TUG, Ashworth scale, ROM, Lovett Scale, and tight
circumference at baseline and at weeks 2, 4, and 6.

3. Results

The group covered 45.5% of all 132 patients after stroke who underwent the rehabil-
itation treatment at the clinic at that time. Sixty-one patients did not meet the inclusion
criteria. The total number of patients participating in the study was 71. Eleven patients
have been disqualified during the study (3-absenteeism over 10% of training, 5—shorter
than 4 weeks, 3—another stroke episode during the research). Sixty participants (27 female)
took part in the study. Half of them were assigned to the control group (15 female), and
other half to the treatment (robot) group (12 female). Data from the last measurement
(sixth week) were not available for 4 participants in the control group and for 8 participants
in the treatment group. All 60 patients participated in a 6-week rehabilitation program.

The mean age of patients at the time of research was 66.8 years ± 11.5. The oldest
patient was 91 years old, while the youngest was 29. Right-hand side manifestation of
the cerebral stroke was observed in 31 (51.7%) cases. Left-hand side paresis occurred in
29 (48.3%) cases.

Data were analyzed using R 4.0.2 statistical software [9]. Parameters distributions,
separately for each experimental condition and measurement time, are presented graph-
ically in Figure 1. Many of the distributions are asymmetrical and numerous deviant
observations can be clearly noted in the data. For this reason, to summarize the data
medians and median, absolute deviations as measures of central tendency and dispersion
are presented in Table 1.

3.1. Modeling of the Treatment Effect

To adequately measure the effects of training in both conditions, Bayesian skew-
normal multilevel regression with participant specific intercept was used for each pa-
rameter. The model allows control for the skewed distributions, unequal numbers of
observations per participant without data loss, and for differences in average values of a
parameter between participants.

Prior to modeling, the parameters were transformed into Z-scores. Training was coded
orthogonally with Robot condition as −1 and Control as 1. The effect of training represents
the difference in overall means between conditions. The effect of measurement (week) was
treated as an ordered factor and coded using the monotonic effect [10]. This effect assumes
that change in a parameter is either monotonically increasing or decreasing (note that the
increase/decrease can be nonlinear). Based on the descriptive statistics (Table 1, Figure 1),
this is a reasonable assumption for the week effect. Finally, interaction of training and week
effects was included. This effect is the most important as it represents the difference in the
increase/decrease rate of a parameter between experimental conditions.
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Table 1. Descriptive statistics.

Parameter Condition
Week

Zero II IV VI

Time up and go Control 0 (0) 20.5 (20.02) 19 (14.83) 18 (17.79)
Robot 9 (13.34) 16 (11.86) 15.5 (9.64) 17.5 (12.6)

10 m walk
Control 0 (0) 17 (19.27) 19 (14.08) 18.5 (12.6)
Robot 8.5 (12.6) 11.5 (9.64) 12 (7.41) 12.5 (8.15)

ROM knee
Control 110 (22.24) 117.5 (11.12) 120 (14.83) 122.5 (11.12)
Robot 115 (14.83) 120 (14.83) 125 (7.41) 127.5 (3.71)

Thigh circ. (5 cm) Control 41 (2.97) 41 (3.71) 41.25 (4.08) 41.75 (3.34)
Robot 40.25 (4.45) 41 (4.45) 40.75 (5.56) 42 (4.08)

Thigh circ. (15 cm) Control 47 (3.34) 48.5 (5.19) 48.25 (4.45) 48.75 (3.34)
Robot 46.5 (5.19) 47 (5.19) 46.75 (5.93) 49 (6.67)

Rectus femoris
muscle (LOVET)

Control 2.75 (0) 3 (0.37) 3.25 (0.74) 3.5 (0.74)
Robot 2.75 (0) 3.25 (0.19) 3.25 (0.74) 4 (0.37)

Semimembranosus
muscle (LOVET)

Control 2.75 (0) 3 (0.37) 3.25 (0.56) 3.5 (0.74)
Robot 2.75 (0) 3.25 (0.37) 3.25 (0.74) 3.88 (0.37)

ASHWORTH
Control 1 (0) 1 (0) 1 (0) 1 (0)
Robot 1 (0) 1 (0) 1 (0.37) 1 (1.48)

In Bayesian statistics, the inference is based on analyzing posterior probability dis-
tributions of a model parameters, obtained by integrating likelihood (data) with prior
probability distributions. The parameter (e.g., training effect) is said to be statistically
credible when 95% credibility intervals (CI) of the posterior distribution exclude zero [11],
as a point estimate of the effect means of the posterior distributions are presented.
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To approximate posterior distributions of the models, the Markov Chain Monte
Carlo (MCMC) sampling procedure was conducted using the brms package [12]. For
each reported model, six parallel MCMC chains were used. Each chain consisted of
10,000 samples, with 5000 samples used as a warm up period and every 10th sample
recorded, resulting in 3000 recorded samples in total. the sampling procedure was efficient
and resulted in well mixed and not autocorrelated chains and unimodal posteriors.

3.2. Treatment Effects

Results of the models are presented in Table 2 and posterior predictive means for each
treatment condition and measurement are in Figure 2. As a measure of the overall model
for Bayesian, the R2 is reported [13]. First, the groups did not differ in respect to the overall
means of parameters as indicated by absence of credible parameters of treatment effects.
Second, for all parameters, the main effect of week was observed, indicating that for seven
parameters, the values credibly increased between consecutive measurements, and for
the Ashworth, the scale credibly decreased. The biggest changes were observed for the
measurements made with the Lovett scale.

Finally, three credible interactions were observed. The average thigh circumference as
measured 5 and 15 cm above the knee increased credibly more in the robot condition, as
compared to control condition. In the latter, the average circumference was constant over
the consecutive measurements. Additionally, the decrease in Ashworth values over time,
although statistically credible in both groups, was credibly higher in the robot condition.

In summary, the results indicate that training in both conditions worked, but the train-
ing with the robot resulted additionally in a slight but stable increase of thigh circumference
and moderately higher decrease in spasticity over time.

Table 2. Results of multilevel skew-normal regressions.

Parameter
Population-Level Effects Ind.-Level

Effect Model

Training Week Tr.:Week τ σ α
Bayesian

R2

Time up and go −0.02 0.09 0.01 0.06 0.8 11.72 0.01
(−0.12, 0.08) (0.03, 0.16) (−0.05, 0.06) (0, 0.14) (0.73, 0.89) (7.76, 16.71) (0, 0.04)

10 m walk
−0.02 0.08 0.01 0.04 0.75 12 0.01

(0–0.12, 0.08) (0.03, 0.14) (−0.03, 0.07) (0, 0.11) (0.68, 0.82) (8.07, 16.69) (0, 0.03)

ROM knee
−0.16 0.22 0 0.81 0.45 −5.35 0.09

(−0.37, 0.07) (0.17, 0.28) (−0.05, 0.05) (0.66, 0.98) (0.4, 0.51) (−9.89, −2.52) (0.05, 0.17)

Thigh circ. (5 cm) 0.14 0.03 −0.03 1.01 0.17 −5.61 0.03
(−0.12, 0.4) (0.01, 0.05) (−0.05, −0.01) (0.85, 1.22) (0.15, 0.19) (−10.97, −0.53) (0, 0.11)

Thigh circ.
(15 cm)

0.18 0.02 −0.03 1.01 0.17 −6.91 0.03
(−0.08, 0.45) (0, 0.04) (−0.05, −0.01) (0.85, 1.22) (0.16, 0.2) (−11.93, −3.4) (0, 0.13)

Rectus femoris
muscle (LOVET)

−0.1 0.51 −0.02 0.75 0.38 −2.84 0.32
(−0.3, 0.1) (0.46, 0.55) (−0.06, 0.03) (0.62, 0.91) (0.34, 0.42) (−7.37, 0.57) (0.28, 0.37)

Semimembranosus
muscle (LOVET)

−0.1 0.52 −0.01 0.73 0.39 −1.26 0.35
(−0.3, 0.11) (0.47, 0.57) (−0.06, 0.03) (0.6, 0.89) (0.35, 0.44) (−4.54, 1.24) (0.3, 0.4)

ASHWORTH
0.1 −0.19 0.07 0.86 0.45 −1.97 0.1

(−0.15, 0.34) (−0.26, −0.13) (0.01, 0.12) (0.72, 1.06) (0.41, 0.51) (−8.53, 2.21) (0.04, 0.19)

Credible parameters of the treatment effects are presented in bold.
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4. Discussion

The aim of the study was to determine the impact of using advanced technology in
combination with conventional therapy on the stroke survivors’ rehabilitation process and
its effect on aspects like spasticity, muscle force, or walking.

EMG-triggered assistive robotic training of neurological patients is an innovative
therapeutic approach, which is based on the principles of the usage of robots in rehabil-
itation. It ensures intensive, repetitive and task-oriented work under the supervision or
with the help of a therapist [14]. Research shows that post-stroke motor recovery depends
on active rehabilitation by voluntary participation of the patient’s paretic motor system as
early as possible in order to promote reorganization of the brain. EMG-based robots have
been developed, since voluntary residual motor efforts, to the affected limb, have not been
involved enough in most robot-assisted rehabilitation for patients after stroke.

Luna EMG is using the above-mentioned approach and in our study was used to work
on the paretic lower limb with patients after a stroke. Currently, there are studies available
in the literature using EMG-triggered training in post-stroke patients, but mostly for the
upper limb [15]. In addition, there are several types of robotic technology interventions,
as multi-joint exoskeletons, to the ones, which are aimed at single joint therapy. Luna
EMG robotic device, which was used as an intervention tool for our study, gives a lot of
opportunities to train different joints, both in upper and lower limb, but in one axis and
has an EMG-triggered assistance, while most of the scientific works are concerned with
EMG-triggered resistance training.

First of all, by looking into the Milot et al. study [16], where they evaluated whether
multi-joint functional robotic training would translate into greater gains in arm function
than single joint robotic training, we see that no significant difference was noted between
multi joint functional and single joint robotic training programs. This challenges the idea
that multi joint functional robotic training is superior to single joint robotic training.

Based on the results of our research, we looked more deeply into the influence of
EMG-triggered assistance robotic training technology in combination with conventional
therapy on spasticity, muscle force, and walking.
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In our study, both groups have achieved the decrease of the knee spasticity, but the
intervention group had significantly higher reduction, compared to the control group.
Exercises that promote rapid launch have a positive effect on reducing muscle tone after
damage of the central nervous system, while little or no mobilization leads to contractures
and an increase in spasticity [17]. The same results were shown in the review of Bertani et al.,
where 14 randomized controlled clinical trials, two systematic reviews, and one meta-
analysis were included to assess effects of robot-assisted upper limb rehabilitation in
stroke patients. A modified Ashworth scale was also selected for measuring muscle tone.
According to those findings, upper limb rehabilitation using a robot was more effective in
improving the restoration of motor functions of the upper limb and was also associated
with a decrease in spasticity within the exercised limb in patients with chronic stroke, in
relation to conventional therapy. Despite the improvement, no statistical significance was
observed, where in our study, this significant difference was noted [18].

Hu et al.’s [19] work is another example of the effective use of robots based on the
EMG signal as primary input on spasticity. Researchers evaluated an electromyography
(EMG)-driven hand robot developed for post-stroke rehabilitation training. All subjects
attended a 20-session training (3–5 times/week), by using the hand robot to practice object
grasp/release and arm transportation tasks. Significant reduction in spasticity of the fingers
was measured and shown through the Modified Ashworth Scale (p < 0.05). In another study
of Hu et al. [20], where they investigated the training effects of treatments on the wrist joint
of subjects with chronic stroke with an interactive electromyography-driven robot and a
robot with continuous passive motion, the interactive treatment reduced spasticity, but
also improved muscle coordination. The passive mode training reduced spasticity only in
the wrist flexor, but the effect was not long lasting.

Song et al. [21] were assessing the myoelectrically controlled robotic system with 1
degree-of-freedom, developed to assist elbow training in a horizontal plane with intention
involvement for people after stroke. The system could provide continuous assistance in ex-
tension torque, which was proportional to the amplitude of the subject’s electromyographic
(EMG) signal from the triceps, and could provide resistive torques during movement.
After 20 sessions of training, there were also statistically significant improvements in the
modified Ashworth scale. The improvement was also noted for the Fugl-Meyer scale for
shoulder and elbow, motor status scale, elbow extension range, muscle strength, and root
mean square error between actual elbow angle and target angle.

Strength training is commonly considered to be a progressive resistance exercise.
However, it should be remembered that any intervention that involves attempted repetitive
effortful muscle contractions can result in increased motor unit activity and increase
strength [22]. We have analyzed both groups results in that perspective as well. The muscle
force of the knee joint was significantly higher in both groups after the rehabilitation
process, but the average thigh circumference as measured 5 and 15 cm above the knee
increased credibly more after rehabilitation protocol with robotic training included.

Anwer et al. have shown that the combination of isometric exercises with the use
of biofeedback increases the isometric strength of the muscle when undertaking training
for 5 weeks. Muscle strength in the research group was 23% greater than in the control
group at the end of fifth week [23]. The experimental group, which received auditory and
visual EMG feedback (which was present also in our training protocol) while exercising,
demonstrated significantly greater strength gains than the control group. This shows
that it is worth including biofeedback in the patient’s daily exercise, remembering that
neurological rehabilitation is a long-term process.

The Son et al. [24] study aims to investigate the idea that an active-resistive training
with an EMG-based exoskeleton robot could be beneficial to muscle strength and antagonist
muscle co-contraction control after 4-week intensive elbow flexion/extension training. As
a result, there was no significant difference in the maximum flexion or extension torque at
pre- and post-training. However, the co-contraction ratio of the triceps brachii muscle as
the antagonist was significantly decreased after the 4-week training. The active-resistive
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training with the exoskeleton robot in the older people yielded promising results, showing
significant changes in the antagonist muscle co-contraction.

The objective of Song et al.’s [25] study was to evaluate the feasibility of robot-assisted
rehabilitation using myoelectric control on upper limb motor recovery. As a result, with the
myoelectrically controlled assistive torque, stroke survivors could reach a larger range of
motion with a significant decrease in the EMG signal from the agonist muscles. The stroke
survivors could be trained in the unreached range with their voluntary residual EMG
on the paretic side. After a 20-session rehabilitation training, there was a non-significant
increase in the range of motion and a significant decrease in the root mean square error
(RMSE) between the actual wrist angle and target angle. Significant improvements also
could be found in muscle strength and clinical scales. They concluded that these results
indicate that robot-aided therapy with voluntary participation of the patient’s paretic
motor system using myoelectric control might have a positive effect on upper limb motor
recovery. Basteris et al. [26] also confirmed in their systematic review that stressing active
contribution by the patients, e.g., through EMG-modulated forces, may be beneficial to
stroke patients. We have measured the ROM of the knee as well, and in our study, both
groups have improved significantly in that matter.

Studies carried out by Tsaih et al. [27], in patients with chronic stroke, have confirmed
that the use of biofeedback in combination with ankle exercises improved the strength
during 6 weeks of muscle exercises. Despite those results, there was no statistically signif-
icant improvement in the TUG tests. In our study, where we were focusing on the knee
joint in particular, there was improvement of TUG results in both groups, but without any
significant difference between them.

A systematic review of robot interventions for gait function improvement in patients
with subacute stroke by Ji-Eun Cho et al. showed that some studies indicate a significant
difference between the control group and the experimental group that performed general
gait training, but other studies did not [28]. Therefore, there is still no clear answer whether
the training with the use of rehabilitation robots is more effective for improving gait overall.
However, the use of neurorehabilitation robots has its advantages because it reduces the
physical load of physiotherapists, allowing them to work with several patients at the same
time, which ensures greater throughput and availability of rehabilitation.

EMG-triggered rehabilitation robots can be dedicated to patients who are not able to
fully engage in training performed especially at the beginning of the rehabilitation process
without the constant help of a physiotherapist. Rehabilitation robots reduce the therapist’s
involvement and reduce his physical load, ensuring constant and repetitive training. These
benefits have a significant impact on the performance of the physiotherapist’s work in
terms of the quality-of-care services [28].

Activation of EMG between antagonist and a pair of muscle agonists around the
joint can provide the effect of damping the joint during movement, which in turn can
contribute to the accuracy of motion in dynamics movement [29]. Unfortunately, due to a
damage caused by stroke, abnormal muscle activation patterns are often observed after it.
Movements supported by non-paretic limbs may not be energy efficient, which is directly
the case associated with a deterioration in both accuracy and traffic efficiency [30].

5. Conclusions

This study indicates that the inclusion of the EMG-triggered neurorehabilitation robot
in the patient’s daily rehabilitation plan has a positive effect on outcomes of the treatment.
Both proposed rehabilitation protocols significantly improved patients’ condition regarding
all measured outcomes, but the spasticity and thigh circumference improved significantly
better in the robotic group in comparison to controls.

Further studies with more entities are needed to create more specific recommendations
and protocols in regard to the usage of the EMG-triggered robotic training approach in
patients after a stroke.
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after an ischemic stroke. J. Educ. Health Sport 2016, 6, 79–89. [CrossRef]
7. Ziejka, K.; Skrzypek-Czerko, M.; Karłowicz, A. The Importance of Stroke Rehabilitation to Improve the Functional Status of

Patients with Ischemic Stroke. J. Neurol. Neurosurg. Nurs. 2015, 4, 178–183. [CrossRef]
8. Dipietro, L.; Ferraro, M.; Palazzolo, J.J.; Krebs, H.I.; Volpe, B.T.; Hogan, N. Customized interactive robotic treatment for stroke:

EMG-triggered therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 2005, 13, 325–334. [CrossRef]
9. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2020. Available online: https://www.R-project.org/ (accessed on 26 February 2021).
10. Bürkner, P.C.; Charpentier, E. Modelling monotonic effects of ordinal predictors in Bayesian regression models. Br. J. Math. Stat.

Psychol. 2020, 73, 420–451. [CrossRef]
11. Kruschke, J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan; Academic Press: Cambridge, MA, USA, 2014.
12. Bürkner, P.C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [CrossRef]
13. Gelman, A.; Goodrich, B.; Gabry, J.; Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 2019, 73, 307–309. [CrossRef]
14. Wang, S.; Meijneke, C.; van der Kooij, H. Modeling, design, and optimization of Mindwalker series elastic joint. In Proceedings

of the 2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013, Seattle, WA, USA, 24–26 June 2013.
[CrossRef]

15. Ho NS, K.; Tong, K.Y.; Hu, X.L.; Fung, K.L.; Wei, X.J.; Rong, W.; Susanto, E.A. An EMG-driven exoskeleton hand robotic training
device on chronic stroke subjects: Task training system for stroke rehabilitation. In Proceedings of the 2011 IEEE International
Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–5. [CrossRef]

16. Milot, M.; Spencer, S.J.; Chan, V.; Allington, J.P.; Klein, J.; Chou, C.; Bobrow, J.E.; Cramer, S.C.; Reinkensmeyer, D.J. A crossover
pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors
using the arm exoskeleton BONES. J. Neuroeng. Rehabil. 2013, 10, 112. [CrossRef] [PubMed]

17. Nair, K.P.; Marsden, J. The management of spasticity in adults. BMJ 2014, 349, g4737. [CrossRef] [PubMed]
18. Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation

in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [CrossRef]
19. Hu, X.L.; Tong, K.Y.; Wei, X.J.; Rong, W.; Susanto, E.A.; Ho, S.K. The effects of post-stroke upper-limb training with an

electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 2013, 23, 1065–1074. [CrossRef]
20. Hu, X.L.; Tong, K.Y.; Song, R.; Zheng, X.J.; Leung, W.W. A comparison between electromyography-driven robot and passive

motion device on wrist rehabilitation for chronic stroke. Neurorehabilit. Neural Repair 2009, 23, 837–846. [CrossRef]

http://doi.org/10.1590/bjpt-rbf.2014.0171
http://doi.org/10.1002/14651858.CD004585.pub2
http://doi.org/10.1258/0007142001903111
http://doi.org/10.1161/STROKEAHA.110.581991
http://doi.org/10.5281/zenodo.160238
http://doi.org/10.15225/PNN.2015.4.4.6
http://doi.org/10.1109/TNSRE.2005.850423
https://www.R-project.org/
http://doi.org/10.1111/bmsp.12195
http://doi.org/10.18637/jss.v080.i01
http://doi.org/10.1080/00031305.2018.1549100
http://doi.org/10.1109/ICORR.2013.6650381
http://doi.org/10.1109/ICORR.2011.5975340
http://doi.org/10.1186/1743-0003-10-112
http://www.ncbi.nlm.nih.gov/pubmed/24354476
http://doi.org/10.1136/bmj.g4737
http://www.ncbi.nlm.nih.gov/pubmed/25096594
http://doi.org/10.1007/s10072-017-2995-5
http://doi.org/10.1016/j.jelekin.2013.07.007
http://doi.org/10.1177/1545968309338191


Medicina 2021, 57, 227 11 of 11

21. Song, R.; Tong, K.Y.; Hu, X.; Li, L. Assistive control system using continuous myoelectric signal in robot-aided arm training for
patients after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 371–379. [CrossRef] [PubMed]

22. Perez-Marcos, D.; Chevalley, O.; Schmidlin, T.; Garipelli, G.; Serino, A.; Vuadens, P.; Tadi, T.; Blanke, O.; Millán, J.d.R. Increasing
upper limb training intensity in chronic stroke using virtual reality: A pilot study. J. Neuroeng. Rehabil. 2017, 14, 119. [CrossRef]

23. Anwer, S.; Quddus, N.; Miraj, M.; Equebal, A. Effectiveness of electromyographic biofeedback training on quadriceps muscle
strength in osteoarthritis of knee. Hong Kong Physiother. J. 2011, 29, 86–93. [CrossRef]

24. Son, J.; Ryu, J.; Ahn, S.; Kim, E.J.; Lee, J.A.; Kim, Y. Effects of 4-Week intensive active-Resistive training with an EMG-based
exoskeleton robot on muscle strength in older people: A pilot study. BioMed Res. Int. 2016, 2016, 1256958. [CrossRef]

25. Song, R.; Tong, K.Y.; Hu, X.; Zhou, W. Myoelectrically controlled wrist robot for stroke rehabilitation. J. Neuroeng. Rehabil. 2013,
10, 52. [CrossRef]

26. Basteris, A.; Nijenhuis, S.M.; Stienen, A.H.; Buurke, J.H.; Prange, G.B.; Amirabdollahian, F. Training modalities in robot-mediated
upper limb rehabilitation in stroke: A framework for classification based on a systematic review. J. Neuroeng. Rehabil. 2014, 11,
111. [CrossRef] [PubMed]

27. Tsaih, P.-L.; Chiu, M.-J.; Luh, J.-J.; Yang, Y.-R.; Lin, J.-J.; Hu, M.-H. Practice Variability Combined with Task-Oriented Electromyo-
graphic Biofeedback Enhances Strength and Balance in People with Chronic Stroke. Hindawi Behav. Neurol. 2018, 2018, 7080218.
[CrossRef] [PubMed]

28. Cho, J.-E.; Yoo, J.S.; Kim, K.E.; Cho, S.T.; Jang, W.S.; Cho, K.H.; Lee, W.-H. Systematic Review of Appropriate Robotic Intervention
for Gait Function in Subacute Stroke Patients. BioMed Res. Int. 2018, 2018, 4085298. [CrossRef]

29. Dewald, J.P.A.; Sheshadri, V.; Dawson, M.L.; Beer, R.F. Upper-limb discoordination in hemiparetic stroke: Implications for
neurorehabilitation. Top. Stroke Rehabil. 2001, 8, 1–12. [CrossRef]

30. Gribble, P.L.; Mullin, L.I.; Cothros, N.; Mattar, A. Role of cocontraction in arm movement accuracy. J. Neurophysiol. 2003, 89,
2396–2405. [CrossRef] [PubMed]

http://doi.org/10.1109/TNSRE.2008.926707
http://www.ncbi.nlm.nih.gov/pubmed/18701384
http://doi.org/10.1186/s12984-017-0328-9
http://doi.org/10.1016/j.hkpj.2011.06.006
http://doi.org/10.1155/2016/1256958
http://doi.org/10.1186/1743-0003-10-52
http://doi.org/10.1186/1743-0003-11-111
http://www.ncbi.nlm.nih.gov/pubmed/25012864
http://doi.org/10.1155/2018/7080218
http://www.ncbi.nlm.nih.gov/pubmed/30598705
http://doi.org/10.1155/2018/4085298
http://doi.org/10.1310/WA7K-NGDF-NHKK-JAGD
http://doi.org/10.1152/jn.01020.2002
http://www.ncbi.nlm.nih.gov/pubmed/12611935

	Introduction 
	Materials and Methods 
	Design Overview 
	Setting and Participants 
	Randomization and Interventions 
	Outcome Measurements 

	Results 
	Modeling of the Treatment Effect 
	Treatment Effects 

	Discussion 
	Conclusions 
	References

