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Abstract
The field of assisted reproductive technology is rapidly progressing with many
new advances in the last decade. The present review discusses methods to
improve oocyte quality in older women and new stimulation protocols that may
improve the number of mature oocytes retrieved during an   fertilizationin vitro
cycle. We will discuss the present use of pre-implantation genetic screening
(PGS) and finally focus on some new methods to determine endometrial
receptivity. The focus of this review is to point out areas of technology that may
be controversial or are new enough to require proper controlled studies for
validation.
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Introduction
In this review, we were asked to update the readers of F1000 on 
the rapidly advancing field of assisted reproduction. There have 
been too many new technologies that have been developed over 
the last 5 years to cover in detail in this review, so we decided to 
focus on advances that have generated some controversy or that 
are new enough to require further validation in the future. We plan 
to discuss methods to improve oocyte quality, especially in older 
women, together with new stimulation protocols that may improve 
the number of mature oocytes retrieved during an in vitro fertiliza-
tion (IVF) cycle. We will discuss the present controversy around 
pre-implantation genetic screening (PGS) and finally focus on some 
controversial new methods to determine endometrial receptivity. 
Needless to say, much of what we have to say in this review will 
reflect our personal opinions in some of these areas.

Improving oocyte quality: the role of mitochondria
The reproductive capacity of women decreases significantly in 
the fourth decade, which is directly correlated to an age-related 
decrease in oocyte quality and quantity1. Fecundity starts decreas-
ing gradually at age 32 and then drops exponentially after 382. The 
fact that live-birth rates from oocyte donation in older women are 
consistent with the age of the donor suggests that oocyte quality is 
the major factor responsible for reduced fecundability with aging. 
The pathways leading to increased loss of ovarian follicles in “old” 
ovaries are not fully understood, although increased DNA damage 
due to a less active DNA repair mechanism is a possible trigger for 
oocyte loss3. The decreased quality of oocytes involves an increased 
rate of chromosomal aneuploidy with aging predominantly related 
to meiotic errors during oocyte maturation. The oocyte matura-
tion process involves a combination of nuclear, cytoplasmic, and  
epigenetic changes, all of which require energy that is provided by 
the mitochondria via oxidative phosphorylation (OXPHOS)4.

Co-enzyme Q10 supplementation
The production of ATP via OXPHOS involves a complicated  
process including 5 complexes located on the inner mitochon-
drial membrane1. Ubiquinone or coenzyme Q10 (CoQ10) plays 
an important role in this process, as it has antioxidant properties,  
controls cellular redox, and affects various signaling pathways5,6. 
The concentration of CoQ10 in most tissues decreases after 30 
years of age in humans7,8, and this decline in CoQ10 may contribute 
to the aging process, since it coincides with the decline in fertility 
and increased rate of aneuploidies. Ben Meir et al. in 2015 showed 
that supplementation of CoQ10 in an aged animal model delayed 
decline in ovarian reserve, restored oocyte mitochondrial gene 
expression, and improved mitochondrial activity with a significant 
reduction in oocyte aneuploidy. As a result, these aged mice had 
more oocytes with stimulation, the developmental potential of the 
oocytes was improved, and more offspring were born compared to 
old animals receiving placebo1. As a follow-up study, conditional 
disruption of the gene PDSS-2, resulting in isolated CoQ deficiency 
in the oocytes of young animals, resulted in phenotypic changes 
characteristic of oocyte mitochondrial dysfunction associated with 
aging1. By feeding the animals CoQ10, these changes could be 
reversed.

Since CoQ10 administration in old animals was shown to have 
beneficial effects on reproductive outcomes, one could speculate 
that older women might have the same benefits when supplemented 
with CoQ101. At present, there is much research activity in this area. 
Although the animal model appears promising, the aging process 
differs greatly between mice and women because of the huge dif-
ference in lifespan. CoQ10 administration for 12–16 weeks in mice 
is likely equivalent to years of use in humans1 and thus additional 
large-scale clinical studies are needed.

Mitochondrial transfer
Other attempts to overcome ooplasmic aging have utilized oocyte 
manipulation at a subcellular level. Cohen et al. performed ooplas-
mic transfer from donor oocytes into mature oocytes of patients 
who had failed multiple IVF cycles because of poor embryo  
development and showed healthy live births as a result9. Since  
cytoplasm contains mitochondria, mitochondria from the donor 
ooplasm were also transferred into the recipient eggs and were 
believed to be the most important mediator of improved embryo-
genesis. Several of the healthy babies tested were found to be  
heteroplasmic, i.e. to have mitochondrial DNA (mtDNA) derived 
from the mother and the cytoplasm donor10, and the procedure 
of ooplasm donation is no longer used. However, autologous  
mitochondrial transfer has now extended this previous work with 
ooplasm transfer. In this new technology, mitochondria similar to 
oocyte mitochondria are isolated from oocyte precursor cells in the 
superficial epithelial layer of the patient’s ovary and are injected 
into the patient’s own oocytes at the time of fertilization. This 
mitochondrial injection has been demonstrated to improve embryo 
development and lead to live births in women with previous poor 
embryo development11. This technique, and even the presence of 
oocyte precursor cells, remains controversial and needs proper  
randomized control studies for validation.

Improving oocyte quality with new stimulation and 
triggering protocols
Co-treatment with gonadotropins and letrozole in in vitro 
fertilization
Recently, a few studies have demonstrated a potential benefit of the 
use of the oral agent letrozole together with gonadotropin stimula-
tion in IVF cycles, especially in breast cancer patients going through 
fertility preservation treatment12–15. The goal of co-administration 
of letrozole is to reduce serum estrogen concentrations during  
ovarian stimulation in breast cancer patients. These studies 
showed that treatment of breast cancer patients with letrozole and  
gonadotropins throughout the entire stimulation significantly 
decreased estradiol concentrations as expected but, interestingly, 
also increased the number of mature oocytes for cryopreservation 
compared to controls without breast cancer treated with standard 
COH15. As far as we know, only breast cancer patients undergoing 
IVF treatment have been treated with letrozole during the whole 
stimulation phase so far. In our opinion, however, this protocol is 
likely an excellent treatment for normal responders undergoing 
IVF to lower the dose of gonadotropins required to obtain adequate 
numbers of oocytes for fertilization and to keep estrogen levels 
closer to the physiologic range.
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There are some limited data for the use of letrozole in IVF cycles 
of normal responders involving co-administration of gonadotropins  
and letrozole for 5 days in the early follicular phase16–18.  
Favorable outcomes related to letrozole were reported, including 
lower doses of gonadotropin, which decreased the cost of the IVF 
treatment, and increased numbers of oocytes and mature oocytes 
while achieving the same pregnancy rate compared to conventional 
stimulation. More data exist for the use of letrozole in IVF cycles 
of poor responders. The rationale for co-treatment with letrozole 
in poor responders is to increase the intrafollicular androgen con-
centrations, which have been shown to serve as precursors for 
ovarian estrogen synthesis as well as having a fundamental role in 
ovarian follicular development by augmentation of FSH receptor 
expression on granulosa cells19. Co-administration of letrozole and 
gonadotropins has been described to improve the outcomes in poor  
responders undergoing IVF cycles20–23. Garcia-Velasco et al.24 in 
2005 evaluated the impact of letrozole as an adjuvant treatment  
in IVF cycles on intraovarian androgens and cycle outcome. 
They found that adding 2.5 mg of letrozole for the first 5 days of  
gonadotropin stimulation significantly increased follicular fluid 
androstenedione and testosterone concentrations and improved 
IVF cycle outcome. They found a significantly larger number of 
retrieved oocytes and a significantly higher implantation rate in the 
letrozole group compared to the control group.

Although the results of these studies are promising, further  
prospective studies will be needed to confirm the potential  
benefit of adding letrozole to gonadotropins in both normal and 
poor responder patients undergoing IVF.

Pre-treatment with dehydroepiandrosterone/testosterone
Considering the profound effect intraovarian androgens may have 
on early follicular growth, different protocols have been used to 
try to increase intrafollicular androgen concentrations in poor 
responder patients.

Pre-treatment with transdermal testosterone was shown to improve 
ovarian sensitivity to FSH and follicular response to gonadotrophin 
treatment in low-responder IVF patients25 and resulted in an increase 
in the number of cumulus oocyte complexes retrieved as well as 
improved clinical pregnancy and live-birth rates26.

Gleicher et al.27 investigated patients with diminished ovarian 
reserve who were supplemented with dehydroepiandrosterone 
(DHEA) for 30–120 days (25 mg 3 times daily). They demon-
strated higher AMH levels in the treated patients compared to the 
non-treated patients, and they also demonstrated improved preg-
nancy rates. The same group also demonstrated that DHEA may 
reduce embryo aneuploidy rate28 and also miscarriage rate29. Wiser 
et al.30 performed a prospective randomized controlled study of 
the effect of DHEA supplementation on IVF outcomes among  
poor-responder patients. He found an improvement in the embryo 
quality and a significantly higher live-birth rate in the DHEA group 
compared with controls. The number of eggs and zygotes was  
similar in both groups. The use of DHEA for older women or 
poor responders remains controversial because of the paucity of  
randomized controlled trials.

New data regarding a double trigger for in vitro 
fertilization
In most mammalian species, spontaneous ovulation is preceded 
by a surge of both FSH and LH, which is thought to be necessary 
for final oocyte maturation and initiation of follicular rupture. At 
present, standard IVF cycles utilize hCG as a surrogate for the LH 
surge. In contrast to hCG, the GnRH agonist-induced gonadotropin 
surge mimics the natural mid-cycle surge and exposes follicles to 
both LH and FSH31,32.

Although previous studies suggested that more mature oocytes may 
be retrieved with GnRH agonist for ovulation triggering compared 
to hCG33, the GnRH agonist trigger resulted in luteal phase insuf-
ficiency caused by lysis of the corpus luteum and poor pregnancy 
rates33–35.

Griffin et al.36 showed that a combination of hCG and GnRH agonist 
(double trigger) in women with more than 25% immature oocytes 
in previous IVF cycles resulted in a significant increase (2 and a 
half times higher) in the proportion of mature oocytes retrieved. 
Similarly, Zilberberg et al.37 found a significantly higher number 
of mature oocytes, embryos, and top-quality embryos in a similar 
group of women using the double trigger instead of hCG alone.

Lin et al.38 investigated whether the double trigger could improve  
the live-birth rate in normal responders undergoing a GnRH- 
antagonist protocol for IVF compared with hCG alone as the  
trigger. In their retrospective cohort study of almost 400 cycles, the 
mean number of MII oocytes retrieved was significantly greater in 
the dual-trigger group, as was the implantation, clinical pregnancy, 
and live-birth rates, when compared to the hCG trigger group. All 
of these studies, albeit retrospective, suggest an advantage to using 
a GnRH agonist with hCG as a double trigger in IVF cycles, and 
future prospective studies are needed to confirm.

Time-lapse imaging
Elective single embryo transfer has been suggested as the most 
efficient approach to minimize multiple pregnancies resulting from 
assisted reproduction treatments, and the traditional morphological 
evaluation has remained the first-line method for selecting the most 
developmentally competent embryo from an available cohort.

During the last decade, time-lapse imaging (TLI) has emerged as 
a novel technology that enables continuous evaluation of early 
embryo development by automated image acquisition every  
5–20 minutes and accordingly does not rely on static observations  
to define a highly dynamic process. Furthermore, it is possible to 
score embryos without removing them from the incubator, so there 
is no exposure to changes in light, humidity, temperature, pH,  
or gas.

Many morphokinetic parameters have been identified to correlate  
with the embryo’s ability to create a pregnancy39,40, and many  
different embryo-selection algorithms have been proposed to 
increase the prediction rate. Recently, Barrie et al.41 performed a 
retrospective observational analysis that demonstrated a need for 
the development of in-house embryo-selection algorithms that 
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are specific to the patient, treatment, and environment. Their data  
suggested that currently available algorithms are not clinically 
applicable and lose their diagnostic value when externally applied.

A recent meta-analysis42 assessed whether TLI resulted in favo-
rable outcomes for embryo incubation and selection compared 
with conventional methods in clinical IVF. This analysis included  
10 randomized controlled studies and concluded that there is  
insufficient evidence to support TLI as a superior method com-
pared to conventional methods for human embryo incubation and  
selection. A well-designed RCT is still needed to evaluate the  
effectiveness of the clinical use of TLI.

Pre-implantation genetic screening for aneuploidy
The objectives of PGS for aneuploidy are to select embryos with the 
highest chance of implantation, to facilitate elective single embryo 
transfer, and to reduce the risk of chromosomal abnormalities in 
the offspring. The current embryo biopsy technique for PGS, day  
5 multi-cell trophectoderm biopsy, has replaced the old day-3 single 
blastomere biopsy and is thought to have a much-improved embryo 
implantation rate. The genetic testing methods for PGS have also 
achieved higher accuracy with the progression of test platforms  
from FISH, to aCGH, SNP arrays, Q-PCR, and the current  
next-generation sequencing (NGS) technology43. PGS may dem-
onstrate abnormal results in more than three-quarters of embryos 
tested. However, recent research showed that some of these diag-
nosed abnormal embryos may have the potential to develop into 
healthy babies44. Embryo mosaicism and the trophectoderm sam-
pling technique presently utilized are two major reasons for the  
possible inaccuracy of PGS.

Embryo mosaicism is an extremely controversial topic at the 
moment. Mosaicism of the chromosomal complement in an embryo 
can be observed at different stages of embryonic development and 
is thought to arise during mitotic cell divisions after fertilization.  
Mosaic cells might reside within the inner cell mass, in the  
trophectoderm, or in both. Also, the distribution of mosaic cells 
in the blastocyst can be local, patchy, or uniform45,46. Animal  
studies found a wide range of mosaic embryos. A recent study  
using discarded human embryos found similar wide ranges of 
embryo mosaicism, ranging from 20 to 90% of embryos47. Until 
now, there is not enough clinical data to predict the fate of the 
embryos with mosaicism, and there is a clinical and ethical debate 
around whether embryos determined to be chromosomally mosaic 
could, or should, be transferred.

Animal studies have shown that some mosaic embryos can implant 
and develop into healthy babies through self-correction. A few 
clinical reports so far have demonstrated normal pregnancies  
after transferring abnormal PGS embryos. Lledo et al. used aCGH 
to re-evaluate trophectoderm biopsy samples and found that 
13.4% of embryos previously diagnosed as euploid were mosaic48. 
The clinical pregnancy rate was thought to be similar between 
mosaic and euploid embryo transfers, but the miscarriage rate 
may be higher in the mosaics. Fragouli, using NGS to analyze  
trophectoderm biopsies, found a lower pregnancy rate in mosaic 

embryos compared to euploids44. Both studies, however, provided 
evidence that embryos with certain degrees of mosaicism may 
develop into healthy babies.

Another controversy concerns the accuracy of PGS as it is now 
practiced. A recent computer modeling study showed that a single 
trophectoderm biopsy of 5 to 6 cells cannot accurately estimate the 
degree of embryo mosaicism, casting into doubt the entire value 
of PGS49. Possible ways to solve this problem include multiple  
trophectoderm biopsies or, better yet, biopsy of the inner cell  
mass50. However, the safety of removing cells from the inner cell 
mass is not yet established.

Assuming an accurate method of detecting mosaic embryos, an 
ethical controversy is whether the transfer of these embryos would 
carry a high risk of miscarriage. On the other hand, discarding  
aneuploid and mosaic embryos using our present biopsy tech-
niques could potentially result in the loss of embryos that have the  
potential to develop into a normal baby51. This area of controversy 
will not be solved in the near future.

mtDNA content in blastocysts
An offshoot of PGS and trophectoderm biopsy is the ability 
to determine the mean mtDNA copy number in the blastocyst.  
Elevated mtDNA copies at the blastocyst stage have been found  
to be associated with poorer clinical outcome52,53. Euploid embryos 
with relatively low levels of mtDNA at the blastocyst stage  
were observed to have a higher implantation rate compared to  
blastocysts with a relatively higher copy number of mtDNA. In 
keeping with the latter observation, blastocysts from younger 
patients have been found to have lower average copy numbers 
of mtDNA compared to older patients52,54. This difference was  
evident when all blastocysts were considered together but also 
when chromosomally normal and abnormal embryos were  
considered separately. This finding raises the question of whether 
mitochondria might play a direct role in the decline of female fertility 
with age. Fragouli et al.54 examined mtDNA quantity in relation to  
chromosome status. They found that chromosomally abnormal  
blastocysts tended to contain significantly larger amounts of 
mtDNA compared to those which were characterized as being 
euploid. The elevated mtDNA levels in the abnormal and the 
older embryos might be a consequence of a compensatory mech-
anism aimed to increase the ATP generation of compromised  
mitochondria of reduced function. At present, the analysis of 
mtDNA copy number at the blastocyst stage as a way to improve 
live-birth rates is controversial, and further research is ongoing.

New approaches to assess the receptivity of the 
endometrium
Embryo implantation occurs following complex synchronized 
physiological and biochemical interactions between the blasto-
cyst and the endometrium55. This occurs only if the endometrium 
is in a receptive state. In humans, an individually defined period 
called the “window of implantation” (WOI) spans 2–4 days dur-
ing the mid-luteal phase56. Two recent methods used in IVF clin-
ics for the assessment of endometrial receptivity are ultrasound  
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measurement of subendometrial wave frequency and a microarray 
analysis of putative implantation-associated gene expression, the 
so-called endometrial receptivity array (ERA).

Ultrasound assessment of endometrial receptivity
Early studies using transvaginal ultrasound (TVUS) measurement 
of endometrial thickness hoped to replace invasive techniques like 
endometrial biopsy for the assessment of endometrial receptivity. 
A pre-ovulatory endometrium of 7 mm is considered as the cut-
off thickness below which suboptimal implantation occurs57–59.  
However, pregnancies have been reported in patients with an 
endometrial thickness as low as 4 mm60. A meta-analysis in 2014 
concluded that endometrial thickness by itself did not have a high 
enough positive predictive value for pregnancy61.

More recent work has focused on TVUS measurement of the  
subendometrial contractility, observed as “endometrial waves”, 
that are hormonally responsive in their patterns and propagation 
directions62–64. In the follicular phase, these peristaltic waves are 
directed from the fundus to the cervix (FC waves), but in the late 
follicular and the ovulatory phase these waves are directed from 
the cervix to the fundus (CF waves) to assist sperm transportation 
to the fallopian tube. Following ovulation is a phase of uterine  
quiescence which would support embryo implantation65. During  
assisted reproductive technology procedures, supraphysiological  
estradiol levels are generally reflected by increased wave activ-
ity. Fanchin et al. observed an inverse correlation between the 
frequency of subendometrial waves in the luteal phase and preg-
nancy outcomes66. Increasing progesterone exposure was shown 
to result in diminished wave activity and improved pregnancy 
rates. Despite these interesting observations, most IVF units at 
present do not use ultrasound to assess endometrial wave activity.  
However, in our opinion, this non-invasive tool could be especially 
valuable in patients with recurrent implantation failure or with 

inflammatory conditions such as endometriosis to ensure uterine 
quiescence prior to the embryo transfer.

Molecular test of endometrial receptivity
Endometrial histological dating described by Noyes et al. in 195067 
was considered the gold standard for determining the WOI, thought 
to be around day 20 to 22 of an idealized 28-day cycle. Endometrial 
deficiency or “out-of-phase” endometrium is thought to occur in 
as many as 1 in 4 patients68. Multiple randomized studies have cast 
doubt on the reproducibility of the analysis of endometrial biopsy 
samples by histologic dating69–71. A new technique has devel-
oped from the transition to microarray molecular analysis using a  
customized array to identify markers of endometrial receptivity. The 
ERA based on the analysis of the expression of 238 genes thought 
to be involved in endometrial implantation may lead to the deter-
mination of the personalized WOI72. This test is done by obtaining 
endometrial biopsy samples on day LH surge + 7 in a natural cycle 
or the 6th day of progesterone administration during an HRT cycle. 
Results are expressed as pre-receptive, receptive, or post-receptive. 
If the result is non-receptive, which happens in 1 in 4 patients73, 
the embryo replacement timing is adjusted, enabling personalized 
embryo transfer74. This technique, although offered commercially, 
still requires large-scale randomized studies for validation and the 
results remain controversial.
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