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Abstract: In order to solve the problems of heavy computational load and poor real time of
the information fusion method based on the federated Kalman filter (FKF), a novel information
fusion method based on the complementary filter is proposed for strapdown inertial navigation
(SINS)/celestial navigation system (CNS)/global positioning system (GPS) integrated navigation
system of an aerospace plane. The complementary filters are designed to achieve the estimations
of attitude, velocity, and position in the SINS/CNS/GPS integrated navigation system, respectively.
The simulation results show that the proposed information fusion method can effectively realize
SINS/CNS/GPS information fusion. Compared with FKF, the method based on complementary filter
(CF) has the advantages of simplicity, small calculation, good real-time performance, good stability,
no need for initial alignment, fast convergence, etc. Furthermore, the computational efficiency of CF
is increased by 94.81%. Finally, the superiority of the proposed CF-based method is verified by both
the semi-physical simulation and real-time system experiment.
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1. Introduction

The aerospace plane is a reusable aerospace vehicle with the features of aircraft, spacecraft,
and carrier, in which the accuracy and reliability requirements of the navigation system are very high
due to its wide flight envelope, complex flight environment, and special mission [1]. The common
navigation systems in aerospace vehicle include the strapdown inertial navigation system (SINS),
global positioning system (GPS), celestial navigation system (CNS), and so on. Considering the
black-out phenomenon in atmospheric reentry, the single SINS navigation using single-axis rotation
modulation [2] or a second-order damping scheme [3] was adopted for the navigation of hypersonic
vehicles. In order to serve the needs of spacecraft, the global navigation satellite system (GNSS)
based on GPS [4], global navigation satellite system (GLONASS) [5], GPS/Galileo [6], or GPS/beidou
navigation satellite system (BDS) [7] was proposed. An approach using the measurements from GNSS
was proposed for the navigation of circumlunar spacecraft [8] or high-Earth-orbits spacecraft [9].
References [10,11] studied the high-precision autonomous celestial navigation based on astronomical
information for spacecraft.

In view of the advantages and disadvantages of each navigation subsystem, it is difficult
for any single navigation system to provide high-precision navigation parameters independently.
In this background, the method of integrated navigation was proposed. Compared with a single
navigation system, the integrated navigation system has higher accuracy as well as better reliability
and information completeness; therefore, it can be applied for the scenario of an aerospace plane.
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In [12], a GPS/SINS integrated navigation algorithm in the launch-centered Earth-fixed (LCEF)
frame was proposed to suit the features of hypersonic vehicles and meet the requirements of their flight
control system. For the navigation applications of a hypersonic vehicle, the design of a tightly coupled
SINS/GNSS integrated navigation system was presented to resist the disturbance of measurement errors,
which adopted the innovation orthogonality-based robust unscented Kalman filter (IO-RUKF) [13]
or order-reduction robust filter [14]. Reference [15] reviewed the inertial navigation system (INS)/CNS
integrated navigation technology. For space vehicles of probes and hypersonic cruise vehicles,
two tightly coupled INS/CNS integrated navigation methods were proposed, which adopted the
accurate CNS celestial measurements assisted by the corrected infrared Earth sensor [16] and the
weighted multi-stars observations according to the different error levels of starlight observations [17],
respectively. Considering the high navigation requirements and complex practical environment of
high dynamic aircraft, the INS/CNS/GPS integrated navigation approach was presented, which used
the robust filtering algorithm based on extended H∞ filter [18], Kalman filter assisted by neural
network ensembles [19], or unscented Kalman filter (UKF)-based Federated filter [20]. In [21], a new
INS/GNSS/CNS integrated navigation method for hypersonic cruising aircrafts (HCVs) based on
non-Keplerian orbits mode was presented. For autonomous SINS/GPS/star sensor (SS) navigation
of space vehicle, the information fusion algorithms of the extend Kalman filter [22] and federated
Kalman filter [23] were designed, respectively. In [24], a federated Sage–Husa adaptive filter was
proposed for a SINS/CNS/GNSS navigation system with time-varying noise. For INS/GNSS/CNS
integration, Hu et al. proposed two novel information fusion methods: the modified federated Kalman
filter (MFKF) based on state decomposition [25] and the matrix weighted multi-sensor data fusion
methodology with a two-level structure [26]. Gao et al. presented two multi-sensor optimal data fusion
methods with “bottom–top-levels” structures for INS/GNSS/CNS integrated navigation, of which one
was based on a UKF filter [27], and another was based on the adaptive fading unscented Kalman
filter [28]. However, the data fusion methods for INS/CNS/GPS integrated navigation in the existing
literature are mostly implemented by Kalman filter (KF) or federated Kalman filter (FKF). Since the
state dimension of FKF in an INS/CNS/GPS integrated navigation system is large, the computational
load is heavy and the computational efficiency is low, and the precise filtering model and parameters
are required for FKF. In the case of actual non-Gaussian noise or a large model error, the filtering
divergence may occur. State observer is also a method of state estimation for a nonlinear system
(particularly speed estimation), such as the approximately-reconstruct-state-variables observer [29],
approximated-velocity-switching observer [30], designed-for-Lipschitz-nonlinear-system observer [31],
etc. However, the estimation method based on state observer has the following disadvantages: (1) It is
difficult to select the feedback gain matrix of the general state observer, which needs to be determined
according to experiments or experience; (2) Without consideration of the random error of the system,
the estimation accuracy of the observer is affected by the stochastic noise of the system; (3) The design of
the state observer requires the system to be completely observable, but the integrated navigation system
generally does not meet the requirement of complete observability. Therefore, the estimation method
based on the state observer is not suitable for a complex multi-source integrated navigation system.

Compared with FKF, the design of complementary filter (CF) is based on the frequency-domain
characteristics of navigation errors of each subsystem, and it does not require the exact system model
and noise statistics. The CF filter has the advantages of a simple algorithm, low computational load,
good real-time computations, etc. When it is used in an integrated navigation system, CF can achieve
the closely same filtering precision as FKF [32–34]. In this paper, a novel information fusion method
based on complementary filter is proposed for an SINS/CNS/GPS integrated navigation system to
improve both the computational efficiency and real-time performance. By utilizing the method of CF
filtering, the attitude/speed/position estimations of a SINS/CNS/GPS integrated navigation system are
realized, respectively. In addition, the proposed information fusion method has the advantages of
low computation load, good stability, and steady-state accuracy, which meet the requirements of an
integrated navigation system for an aerospace plane.
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The rest of this paper is organized as follows: Section 2 introduces the coordinate frames in use,
inertial navigation mechanization, and CNS measurement transformation from the i frame to the
n frame. Section 3 introduces the principle of complementary filter and designs the information fusion
algorithms for an SINS/CNS/GPS integrated navigation system. Section 4 analyzes the frequency
characteristics of navigation errors of each subsystem and selects the appropriate cut-off frequencies of
complementary filters. A semi-physical simulation experiment and result analysis are provided in
Section 5. In addition, the content of this paper is summarized in Section 6.

2. Coordinate Frames, INS Mechanization and CNS Measurement Transformation

2.1. Coordinate Frames in Use

The coordinate frames in use are defined as follows:

1. Navigation coordinate frame (n frame): locally level geographic coordinates, which are defined
with its zn-axis upward along the local geodetic vertical, yn-axis north (and horizon), and xn-axis
east (and horizon);

2. Body-fixed coordinate frame (b frame): located at the centroid of the vehicle, defined with its
yb-axis forward along the longitudinal axis of the vehicle, xb-axis right, and zb-axis upward;

3. Earth-centered Earth-fixed coordinate frame (e frame): located at the center of the Earth, the xe-axis
extends from the origin to the intersection of the prime meridian (Longitude 0◦) and the Equator
(Latitude 0◦), the ze-axis is along the spin axis of the Earth, pointing to the north pole, the ye-axis is
orthogonal to both the xe-axis and ze-axis; the three coordinate axes follow the right-handed rule.

4. Earth-centered inertial coordinate frame (i frame): located at the center of the Earth; the zi-axis is
along the spin axis of the Earth, pointing to the north pole; the xi-axis extends from the origin to
the spring equinox in the equatorial plane; the yi-axis is orthogonal to both the xi-axis and zi-axis;
xi, yi, and zi follow the right-handed rule.

2.2. SINS Mechanization

The navigation parameters of SINS include the attitude quaternion qn
b =

[
q0 q1 q2 q3

]T
,

velocity vn =
[

vE vN vU
]T

, and position pn =
[

L λ h
]T

; the superscript n denotes the
navigation frame and the subscript b denotes the body-fixed frame, qi (i = 0, 1, 2, 3) denotes the
ith component of attitude quaternion. vE, vN, and vU represent the eastern velocity, northern velocity,
and vertical velocity, respectively. L, λ, and h represent the latitude, longitude, and altitude, respectively,
and the mechanization equations for SINS are expressed in Equation (1).


.
qn

b.
vn

.
pn

 =


1
2 qn

b ⊗ω
b
nb

fn
− (ωn

en + 2ωn
ie) × vn + gn

Mpvvn


Mpv =


0 1/(RM + h) 0

sec L/(RN + h) 0 0
0 0 1


(1)

whereωb
nb represents the angular velocity of the b frame relative to the n frame expressed in the b frame,

fn represents the measurement of a specific force in the n frame, ωn
ie represents the Earth rotation

rate denoted in the n frame, ωn
en represents the angular velocity of the n frame relative to the e frame

coordinated in the n frame, gn represents the gravity acceleration expressed in the n frame, RM and
RN are the radii of curvature in meridian and prime vertical, (L, λ, h) is the position of the vehicle in
latitude, longitude and altitude.
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2.3. CNS Measurement Transformation

The output of the CNS is the attitude quaternion qi,cns
b from the b frame to the i frame, but the

output of SINS is the attitude quaternion qn,ins
b from the b frame to the n frame. If the complementary

filter is selected for the information fusion of SINS/CNS integration, the parameter conversion is
required firstly; that is to say, qi,cns

b (the attitude quaternion from the b frame to the i frame) must be
converted into qn,cns

b (the attitude quaternion from the b frame to the n frame). The algorithm of CNS

quaternion transformation from qi,cns
b to qn,cns

b is given in this subsection. According to the chain rule,
the attitude quaternion qn,cns

b is

qn,cns
b = qn

e ⊗ qe
i ⊗ qi,cns

b (2)

where qn
e is the transformation quaternion from the e frame to the n frame, and qe

i is the transformation
quaternion from the i frame to the e frame.

2.3.1. The Method for Calculating qn
e

Given the longitude λgps and latitude Lgps of GPS, the position matrix Cn,gps
e can be calculated

according to the relationship between the n frame and e frame, and the expression of Cn,gps
e is shown in

Equation (3):

Cn,gps
e =


− sin(λgps) cos(λgps) 0

− sin(Lgps) cos(λgps) − sin(Lgps) sin(λgps) cos(Lgps)

cos(Lgps) cos(λgps) cos(Lgps) sin(λgps) sin(Lgps)

 (3)

According to the relationship between the direction cosine matrix and corresponding quaternion,
the expression of quaternion qn

e is as follows:

qn
e = Mat2Quat(Cn,gps

e ) (4)

where Mat2Quat(•) represents the function that calculates the quaternion according to the direction
cosine matrix, and its expression is shown in Equation (5).

For any direction cosine matrix C =
[
Ti j

]
3×3

(i, j = 1, 2, 3), the corresponding attitude quaternion

is defined as q ,
[

q0 q1 q2 q3
]T

; then, the method of calculating qi(i = 0, 1, 2, 3) is as follows:
q0 = 1

2
√

1 + T11 + T22 + T33

q1 = 1
2 sign(T32 − T23)

√
1 + T11 − T22 − T33

q2 = 1
2 sign(T13 − T31)

√
1− T11 + T22 − T33

q3 = 1
2 sign(T21 − T12)

√
1− T11 − T22 + T33

(5)

where sign(•) represents the sign function.

2.3.2. The Method for Calculating qe
i

The quaternion qe
i can be calculated according to the Greenwich Mean Time and Earth rotation

rate. Given Greenwich Mean Time tG and Earth rotation rate ωie, the Greenwich Hour Angle GST
(the rotation angle of the e frame relative to the i frame along the zi axis) is obtained by multiplying ωie
and tG together:

GST = ωietG (6)

Then, the transformation matrix Ce
i can be calculated, as shown in Equation (7):

Ce
i =


cos GST sin GST 0
− sin GST cos GST 0

0 0 1

. (7)
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According to the relationship between the direction cosine matrix and corresponding attitude
quaternion, the quaternion qe

i can be calculated using Ce
i , and its expression is shown in Equation (8):

qe
i = Mat2Quat(Ce

i ). (8)

3. Design of Complementary Filters for Integrated Navigation

3.1. The Principle of Complementary Filter

The complementary filtering method can restrain the error divergence of the integrated navigation
system, which is designed according to the frequency-domain characteristics of errors of different
subsystems. For any signal variable X, when it is measured using two uncorrelated methods
(for convenience, they are denoted as Method #1 and Method #2, respectively), two measurement
results Z1 and Z2 can be obtained, and they can be expressed as:{

Z1 = X + V1

Z2 = X + V2
(9)

where Z1 denotes the measurement result using Method #1, V1 denotes the measuring error of Z1;
Z2 denotes the measurement result using Method #2, V2 denotes the measuring error of Z2; V1 and V2

are assumed to be the low-frequency error and high-frequency error, respectively.
In order to obtain an accurate estimate of variable X, the measurements Z1 and Z2 are filtered

using the high-pass filter (H.P.F. for short) and low-pass filter (L.P.F for short), respectively, so that the
errors V1 and V2 could be eliminated.

In the design of a complementary filter, the transfer functions of H.P.F. and L.P.F are denoted as
G1(s) and G2(s), respectively. By selecting appropriate parameters for H.P.F. and L.P.F, the condition
G1(s) + G2(s) = 1 can be satisfied; then, the estimate X̂(s) of X(s) is obtained by applying the signal
reconstruction (S.R.) method (i.e., the sum of the outputs of G1(s) and G2(s)). For the low-pass filter
G2(s) and high-pass filter G1(s), the appropriate cut-off frequencies are selected so that G1(s)V1(s) and
G2(s)V2(s) are approximate to zero, and the sum of the outputs of G1(s) and G2(s) will be close to the
true value of signal variable X, as shown in Equation (10):

X̂(s) = G1(s)Z1(s) + G2(s)Z2(s) = X(s) + G1(s)V1(s) + G2(s)V2(s) ≈ X(s). (10)

The principle of the complementary filter is shown in Figure 1.

3.2. Design of Complementary Filters for SINS/CNS/GPS Integration

There are two sources of attitude information for SINS/CNS/GPS integrated navigation: the attitude
in the n frame calculated by SINS (denoted as qn,ins

b ), the attitude in the i frame measured by CNS

(denoted as qi,cns
b ), and the velocity information sources include the velocity in the n frame calculated by

SINS (denoted as vn
ins) and the velocity in the n frame measured by GPS (denoted as vn

gps(s)). Similarly,
the position information sources include the position in the n frame calculated by SINS (denoted as
pins) and the position in the n frame measured by GPS (denoted as pgps). The navigation information
(including the attitude, velocity, and position information) obtained by SINS has the advantages of good
dynamic performance, high real-time stability, and good short-term stability, but the navigation errors
accumulate over time, and the long-term stability is poor. The error sources of SINS mainly include
the gyro drifts/accelerometer biases, iterative algorithm errors, initial alignment errors, etc. Due to
the cumulative effect of integral calculation, the errors of SINS navigation parameters, which include
the attitude error, velocity error, and position error, will accumulate over time, and all the frequency
spectrums are mainly in the low frequency segment. The navigation information measured by CNS
and GPS (including the attitude from CNS, the velocity and position from GPS) has the advantages
of high precision, error convergence, and good long-term stability, but the data update rate is low,
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and the real-time performance is poor. The measurement errors of CNS and GPS do not accumulate
over time and can be approximated as Gaussian white noise. By analyzing the frequency-domain
characteristics of the navigation errors of each subsystem, the complementary filters are designed to
realize the information fusion of an SINS/CNS/GPS integrated navigation system, and the navigation
results with higher precision are obtained. The process of complementary filtering information fusion
for an SINS/CNS/GPS integrated navigation system is shown in Figure 2.
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3.2.1. Complementary Filter for Attitude Estimation

As shown in Section 2.3, the attitude calculated by SINS is qn,ins
b , and the attitude measured by

CNS is qi,cns
b . By using the position information of GPS, the attitude of CNS in the n frame can be

calculated, as shown in Equation (11):

qn,cns
b = qn,gps

e ⊗ qe
i ⊗ qi,cns

b (11)

where qn,gps
e represents the transformation quaternion from the e frame to the n frame; qe

i represents
the transformation quaternion from the i frame to the e frame; qn,gps

e can be calculated based on the
position of GPS; qe

i can be calculated based on the UTC time and EOP parameters, in which the EOP
parameters represent the Earth orientation parameters provided by the International Earth Rotation
and Reference Systems Service (IERS).

For the attitude estimation, the complementary filter is denoted as CF1, which is composed of
a first-order high-pass filter and a first-order low-pass filter. The transfer function of a first-order
high-pass filter is denoted as GH

1 (s) = s/
(
s +ωc

1

)
, and the transfer function of a first-order low-pass

filter is denoted as GL
1(s) = ωc

1/
(
s +ωc

1

)
, where ωc

1 is the cut-off angular frequency of CF1, and the
cut-off frequency corresponding to ωc

1 is f c
1 = ωc

1/(2π). Then, the attitude estimation in the s-domain
is as follows:

^
q

n

b (s) = GH
1 (s)q

n,ins
b (s) + GL

1(s)q
n,cns
b (s). (12)

Suppose that the filtering period is T f = tk − tk−1. Discretize Equation (12) to obtain the recursive
form in time domain for attitude estimation, as shown in Equation (13):

^
q

n

b

(
tk

)
=

1
1 +ωc

1T f

^
q

n

b

(
tk−1

)
+

T f

1 +ωc
1T f

.
qn,ins

b

(
tk

)
+

ωc
1T f

1 +ωc
1T f

qn,cns
b

(
tk

)
(13)

where ωc
1 represents the angular frequency corresponding to CF1′s cut-off frequency f c

1= ωc
1/(2π).

3.2.2. Complementary Filter for Velocity Estimation

As mentioned, the velocity of SINS is vn
ins, and the velocity of GPS is vn

gps. For the velocity
estimation, the complementary filter is denoted as CF2, which is composed of a first-order high-pass
filter and a first-order low-pass filter. The transfer function of a first-order high-pass filter is denoted
as GH

2 (s) = s/
(
s +ωc

2

)
, and the transfer function of a first-order low-pass filter is denoted as

GL
2(s) = ωc

2/
(
s +ωc

2

)
, where ωc

2 represents the angular frequency corresponding to CF2′s cut-off

frequency f c
2 = ωc

2/(2π). Then, the velocity estimation in the s-domain is as follows:

^
v

n
(s) = GH

2 (s)v
n
ins(s) + GL

2(s)v
n
gps(s). (14)

Similarly, the filtering period is also T f . Discretize Equation (14) to obtain the recursive form in
the time domain for velocity estimation, as shown in Equation (15):

^
v

n(
tk

)
=

1
1 +ωc

2T f

^
v

n(
tk−1

)
+

T f

1 +ωc
2T f

.
vn

ins

(
tk

)
+

ωc
2T f

1 +ωc
2T f

vn
gps

(
tk

)
. (15)

3.2.3. Complementary Filter for Position Estimation

For position estimation, the position of SINS is pins, the position of GPS is pgps, and the
complementary filter is denoted as CF3, which is also composed of a first-order high-pass filter and a
first-order low-pass filter. The transfer function of a first-order high-pass filter is GH

3 (s) = s/
(
s +ωc

3

)
,

and the transfer function of a first-order low-pass filter is GL
3(s) = ωc

3/
(
s +ωc

3

)
, where ωc

3 is the angular
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frequency corresponding to CF3′s cut-off frequency f c
3 = ωc

3/(2π). Then, the position estimation in
the s-domain is as follows:

^
p(s) = GH

3 (s)pins(s) + GL
3(s)pgps(s). (16)

Similarly, take the filtering period T f as a discrete step, and discretize Equation (16) to obtain the
recursive form in the time domain for position estimation, as shown in Equation (17):

^
p
(
tk

)
=

1
1 +ωc

3T f

^
p
(
tk−1

)
+

T f

1 +ωc
3T f

.
pins

(
tk

)
+

ωc
3T f

1 +ωc
3T f

pgps

(
tk

)
. (17)

Each time after the process of complementary filtering is completed, the navigation parameters of
SINS are corrected by feedback of the estimation results, as shown in Equation (18):

qn,ins
b

(
tk

)
=

^
q

n

b

(
tk

)
vn

ins

(
tk

)
=

^
v

n(
tk

)
pins

(
tk

)
=

^
p
(
tk

) . (18)

4. Error Analysis in Frequency Domain and Selection of Cut-Off Frequency

The cut-off frequency is the most key parameter of a complementary filter, which determines the
effect of information fusion. In order to obtain good estimation results, it is necessary to select the
cut-off frequencies properly for the complementary filters by analyzing the errors of each navigation
subsystem in the frequency domain. According to the principle of complementary filter in Section 3.1,
the analysis shows that the selection of cut-off frequency of the complementary filter determines
the influential weight of each navigation subsystem (SINS, CNS, or GPS) on the SINS/CNS/GPS
integrated navigation system. In conclusion, the larger the cut-off frequency f c

i (i = 1, 2, 3), the greater
the influence of the measurement noise of the auxiliary subsystem (CNS or GPS) on the estimation
result, the smaller the influence of the errors of SINS, and vice versa. During the on-orbit flight of an
aerospace plane, the navigation errors of CNS and GPS are mainly the measurement noises, which can
be approximated as Gaussian white noise. Under the premise of satisfying the dynamic performance
requirements of SINS, the cut-off frequency of the complementary filter should be as small as possible,
so that the measurement noise errors of CNS and GPS can be filtered out in the largest frequency
range. In this paper, the errors of each subsystem are analyzed in the time and frequency domain.
According to the relation between the cut-off frequencies and statistical errors, the cut-off frequencies
of complementary filters for attitude/velocity/position estimation are optimally selected, respectively.

4.1. Selection of Cut-Off Frequency Based on Nonlinear Optimization Theory

In this subsection, the analysis method based on power spectral density is used to analyze the
influence of the noise of each subsystem on the output noise of the SINS/CNS/GPS integrated navigation
system theoretically, and an optimal selection scheme of the cut-off frequency of the complementary
filter based on the constrained nonlinear optimization method is proposed, so as to provide a theoretical
reference for the selection of the optimal cut-off frequency.

In SINS/CNS/GPS integrated navigation, the measurement noises of navigation sensors such
as gyro, accelerometer, CNS, and GPS are all stationary random noise. For the convenience of
theoretical analysis, these noises are assumed to be Gaussian white noise with zero mean. In this paper,
the measurement noises of a gyro, accelerometer, CNS, GPS velocity, and GPS position are denoted
as wgro(t), wacc(t), wcns_att(t), wgps_vel(t), and wgps_pos(t), respectively. The random walk noises in
SINS attitude, velocity, and position are denoted as wins_att(t), wins_vel(t), and wins_pos(t). qwgro

, qwacc
,

qwcns_att
, qwgps_vel

, and qwgps_pos
represent the variance intensities of gyro angular velocity measurement

noise, accelerometer specific force measurement noise, CNS attitude measurement noise, GPS velocity
measurement noise, and GPS position measurement noise, respectively. δ() represents the Dirac delta
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function. Then, the covariances and autocorrelation functions of measurement noises of navigation
sensors are expressed as:

E
[
wgro(t)wT

gro(τ)
]
= qwgro

δ(t− τ) Rwgro(µ) = qwgro
δ(µ)

E
[
wacc(t)wT

acc(τ)
]
= qwacc

δ(t− τ) Rwacc(µ) = qwacc
δ(µ)

E
[
wcns_att(t)wT

cns_att(τ)
]
= qcns_attδ(t− τ) Rwcns_att(µ) = qwcns_att

δ(µ)

E
[
wgps_vel(t)wT

gps_vel(τ)
]
= qgps_velδ(t− τ) Rwgps_vel(µ) = qwgps_vel

δ(µ)

E
[
wgps_pos(t)wT

gps_pos(τ)
]
= qgps_posδ(t− τ) Rwgps_pos(µ) = qwgps_pos

δ(µ)

(19)

where µ = t− τ represents the time interval between the time instants t and τ.
The power spectral density functions of measurement noises of these navigation sensors are

Swgro(ω) = F
{
Rwgro(µ)

}
=

∫
∞

−∞
qwgro

δ(µ)e− jωµdµ = qwgro

Swacc(ω) = F
{
Rwacc(µ)

}
=

∫
∞

−∞
qwacc

δ(µ)e− jωµdµ = qwacc

Swcns_att(ω) = F
{
Rwcns_att(µ)

}
=

∫
∞

−∞
qwcns_att

δ(µ)e− jωµdµ = qwcns_att

Swgps_vel(ω) = F
{
Rwgps_vel(µ)

}
=

∫
∞

−∞
qwgps_vel

δ(µ)e− jωµdµ = qwgps_vel

Swgps_pos(ω) = F
{
Rwgps_pos(µ)

}
=

∫
∞

−∞
qwgps_pos

δ(µ)e− jωµdµ = qwgps_pos

(20)

where F{} is the Fourier transform.
For the convenience of analysis, the motion state of the vehicle and the random error propagation

model of SINS are simplified. Assuming that the vehicle is in an on-orbit cruise phase and its
motion state is uniform straight-line flight, then the error model of SINS can be simplified as a linear
time-invariant system.

The attitude random walk noise wins_att(t) of SINS is the integral of gyro measurement noise
wgro(t), and the frequency response function of the integrator is 1/( jω). According to the response
characteristics of the linear system to stationary process, the power spectral density of wins_att is

Swins_att(ω) =
∣∣∣1/( jω)

∣∣∣2Swgro(ω) = qwgro
/ω2 . (21)

Similarly, the SINS velocity random walk noise wins_vel is the integral of measurement noise of the
accelerometer, and the power spectral density of wins_vel is

Swins_vel(ω) =
∣∣∣1/( jω)

∣∣∣2Swacc(ω) = qwacc
/ω2. (22)

Due to the measurement noises of inertial sensors and the calculation error of the SINS update
algorithm, there will be white noise in the velocity information of SINS, which could be denoted
as wins_nv, and its variance intensity is denoted as qwins_nv

. The power spectral density of wins_nv is
Swins_nv(ω) = qwins_nv

, and the position random walk noise wins_pos of SINS is the integral of velocity
white noise; its power spectral density is as follows:

Swins_pos(ω) =
∣∣∣1/( jω)

∣∣∣2Swins_nv(ω) = qwins_nv
/ω2. (23)

In this paper, the random errors of CF1, CF2, and CF3 are denoted as wCF_att, wCF_vel, and wCF_pos,
respectively. Firstly, the power spectral density of a random error of attitude estimation complementary
filter CF1 is analyzed. According to the design of complementary filters in Section 3.2, the transfer
functions of the high-pass filter and low-pass filter of CF1 are rewritten as follows: GH

1 (s) = s/
(
s +ωc

1

)
GL

1(s) = ωc
1/

(
s +ωc

1

) . (24)
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From the transfer functions, the corresponding frequency response functions can be obtained
as follows:  GH

1 ( jω) = GH
1 (s)

∣∣∣
s= jω = jω/

(
jω+ωc

1

)
GL

1( jω) = GL
1(s)

∣∣∣
s= jω = ωc

1/
(
jω+ωc

1

) . (25)

According to the principle of complementary filter, the random error of CF1 is the sum of two
random errors, of which one is the output of GH

1 ( jω) under the input of SINS attitude random walk
noise, and the other is the output of GL

1( jω) under the input of CNS attitude measurement noise.
Since SINS and CNS are two independent subsystems, the random error of SINS is orthogonal to that
of CNS, so the power spectral density SwCF_att(ω) of the random error of CF1 is

SwCF_att(ω) =
∣∣∣GH

1 ( jω)
∣∣∣2Swins_att(ω) +

∣∣∣GL
1( jω)

∣∣∣2Swcns_att(ω). (26)

Substituting GH
1 ( jω), GL

1( jω), Swins_att(ω), and Swcns_att(ω) into Equation (26), we can obtain

SwCF_att(ω) =
∣∣∣∣ jω/

(
jω+ωc

1

)∣∣∣∣2qwgro
/ω2 +

∣∣∣ωc
1/ jω+ωc

1

∣∣∣2qwcns_att
=

(
qwgro

+ qwcns_att

(
ωc

1

)2
)
/
(
ω2 +

(
ωc

1

)2
)
. (27)

By substituting ω = 2π f into Equation (27), the expression of the power spectral density function
of wCF_att with respect to frequency f can be obtained.

SwCF_att( f ) = SwCF_att(ω)
∣∣∣
ω=2π f =

(
qwgro

+ qwcns_att

(
ωc

1

)2
)
/
(
(2π f )2 +

(
ωc

1

)2
)

(28)

In a SINS/CNS/GPS integrated navigation system, the maximum frequency of a filter’s bandwidth
is limited due to the discrete sampling of a signal. Among the three subsystems of SINS, CNS, and GPS,
the sampling frequency f s

ins of SINS is the highest. According to the sampling theorem of a stationary
random process, the power spectral density of the output noise of a SINS/CNS/GPS integrated
navigation system only needs to be considered in the frequency range of

[
0, f s

ins/2
]
. By calculating

the definite integral of SwCF_att( f ) with respect to f from 0 to f ins
s /2, the average power PwCF_att of

the random error wCF_att of CF1 in the frequency band of
[
0, f ins

s /2
]

could be obtained, as shown in
Equation (29):

PwCF_att =

∫ f ins
s /2

0
SwCF_att( f )d f = arctan

(
π f ins

s /ωc
1

)(
qwgro

+ qwcns_att

(
ωc

1

)2
)
/
(
2πωc

1

)
. (29)

By substituting ωc
1 = 2π f c

1 into Equation (29), the expression of average power PwCF_att with
respect to the cut-off frequency f c

1 can be obtained, as shown in Equation (30):

PwCF_att = arctan
(

f ins
s /

(
2 f c

1

))(
4qwcns_att

π2
(

f c
1

)2
+ qwgro

)
/
(
4π2 f c

1

)
. (30)

In the algorithm design of a practical integrated navigation system, the parameters of f ins
s , qwgro

,
and qwcns_att

are constant, and PwCF_att is a nonlinear function of f c
1 . The optimal value of f c

1 is equivalent
to the value that minimizes PwCF_att . By differentiating PwCF_att with respect to f c

1 , we can obtain

dPwCF_att
d f c

1
= 2qwcns_att

arctan
(

f ins
s /

(
2 f c

1

))
−

(
arctan

(
f ins
s /

(
2 f c

1

))(
4qwcns_att

π2
(

f c
1

)2
+ qwgro

))
/
(
4π2

(
f c
1

)2
)

−

(
f ins
s

(
4qwcns_att

π2
(

f c
1

)2
+ qwgro

))
/
(
8π2

(
f c
1

)3
((

f ins
s

)2
/
(
4
(

f c
1

)2
)
+ 1

))
.

(31)

It can be seen from Equation (31) that the derivative of PwCF_att with respect to f c
1 has a very

complex form, so it is difficult to find the minimum value of PwCF_att in analytical form by using the
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stationary point method. Considering that in a specific SINS/CNS/GPS integrated navigation system,
the values of f ins

s , qwgro
, qwcns_att

are known or can be obtained by calibration, thus, the minimum value
of PwCF_att with respect to f c

1 can be solved by the optimization method, and the nonlinear optimization
function of the MATLAB Optimization Toolbox can be used to obtain the numerical solution of the
optimization problem.

Combined with optimization theory, the optimal solution of f c
1 can be regarded as a constrained

nonlinear optimization problem, and the optimal mathematical model is established as min
f c
1

PwCF_att = arctan
(

f ins
s /

(
2 f c

1

))(
4qwcns_att

π2
(

f c
1

)2
+ qwgro

)
/
(
4π2 f c

1

)
s.t. f c

L ≤ f c
1 ≤ f cns

s /2
(32)

where f c
L is the infimum of the range of the CF’s cut-off frequency, which can be determined by analyzing

the error propagation characteristics of the SINS. Under the condition of f c
1 ≥ f c

L, the high-pass filter of
CF1 can effectively restrain the oscillation and divergence low-frequency errors in the SINS attitude.
Many studies about inertial navigation analyzed the error propagation characteristics of the inertial
navigation system, which are not outlined here. Furthermore, the selection of f c

1 should meet
the requirement of “minimizing the influence of measurement noise of CNS”, thus f c

1 ≤ f cns
s /2,

i.e., the constraint condition in Equation (32). For programming implementation, the MATLAB built-in
function “fmincon” can be used to solve Equation (32).

The power spectral density analyses of random errors of CF2 and CF3 are similar to that of CF1.
The detailed analysis process will not be introduced here, the analysis results of random noises of
CF2 and CF3 are given directly (including the power spectral density, average power, and optimal
mathematical model).

According to the power spectral density analysis of random noise of CF2, the following conclusions
can be obtained:

Power spectral density of random error of CF2 SwCF_vel( f ):

SwCF_vel( f ) =
(
qwacc

+ qwgps_vel

(
ωc

2

)2
)
/
(
(2π f )2 +

(
ωc

2

)2
)
. (33)

Average power of random error of CF2 PwCF_vel :

PwCF_vel = arctan
(

f ins
s /

(
2 f c

2

))(
4qwgps_vel

π2
(

f c
2

)2
+ qwacc

)
/
(
4π2 f c

2

)
. (34)

In order to solve the optimization problem of f c
2 , the mathematical model of constrained nonlinear

optimization is established as follows: min
f c
2

PwCF_vel = arctan
(

f ins
s /

(
2 f c

2

))(
4qwgps_vel

π2
(

f c
2

)2
+ qwacc

)
/
(
4π2 f c

2

)
s.t. f c

L ≤ f c
2 ≤ f gps

s /2
(35)

where f c
L is the spectrum bandwidth of INS errors. Under the condition of f c

2 ≥ f c
L, the high-pass filter

of CF2 can effectively eliminate the oscillation and divergence terms of SINS velocity errors. f gps
s is the

sampling frequency of GPS.
According to the power spectral density analysis of random noise of CF3, the following conclusions

can be obtained:
Power spectral density of random error of CF3 SwCF_pos( f ):

SwCF_pos( f ) =
(
qwins_nv

+ qwgps_pos

(
ωc

3

)2
)
/
(
(2π f )2 +

(
ωc

3

)2
)
. (36)
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Average power of random error of CF3 PwCF_pos :

PwCF_pos = arctan
(

f ins
s /

(
2 f c

3

))(
qwgps_pos

(
2π f c

3

)2
+ qwins_nv

)
/
(
4π2 f c

3

)
. (37)

To solve the optimization problem of f c
3 , the mathematical model of constrained nonlinear

optimization is established as follows: min
f c
3

PwCF_pos = arctan
(

f ins
s /

(
2 f c

3

))(
qwgps_pos

(
2π f c

3

)2
+ qwins_nv

)
/
(
4π2 f c

3

)
s.t. f c

L ≤ f c
3 ≤ f gps

s /2
(38)

where f c
L is the spectrum bandwidth of SINS errors. Under the condition of f c

3 ≥ f c
L, the high-pass filter

of CF3 can effectively eliminate the oscillation and divergence terms in INS position errors. f gps
s is the

sampling frequency of GPS.

4.2. Selection of Cut-Off Frequency Based on Simulation Test

4.2.1. Spectrum Analysis Based on DFT

According to the theory of digital signal processing, the discrete Fourier transform (DFT) is often
used for signal spectrum analysis. If an N-point time-domain sampling sequence is denoted as
x(n) (0 ≤ n ≤ N − 1), then the corresponding N-point DFT of x(n) is defined as:

X(k) = DFT[x(n)] =
∑N−1

n=0
x(n)Wnk

N 0 ≤ k ≤ N (39)

where WN = exp(− j2π/N) is the twiddle factor.
In order to study the frequency distribution of error, DFT is often used to analyze the frequency

spectrum of an error signal, mainly focusing on the amplitude-frequency characteristics. For DFT,
the sampling frequency of the signal is denoted as fs; then, the steps of Fourier analysis on the N-point
sampling data x(n) are as follows:

Step 1: The DFT transform on the N-point sampling data x(n) is performed to obtain the N-point
DFT X(k).

Step 2: Calculate the spectral amplitude
∣∣∣X(k)

∣∣∣ for the spectrum data X(k) of the ordinal number
0 ∼ f ix(N/2), where f ix(•) denotes the function rounding a number to the nearest integer.

Step 3: Divide all amplitude data of the spectra obtained in Step 2 by N; then, multiply the
amplitude data of ordinal number 2 ∼ f ix(N/2) + 1 by 2, convert the two-sided spectrum into a
one-sided spectrum, and plot the amplitude-frequency curve.

Step 4: The frequencies of spectral lines labeled on the abscissa axis of the amplitude-frequency
figure are sequentially k fs/N Hz, (k = 0 ∼ f ix(N/2)).

Step 5: The ordinate of spectral line corresponds to the harmonic amplitude of sampling signal
x(n) at the corresponding frequency, the unit of amplitude is the same as that of time-domain sampling
data, and the amplitude of DC component is at zero frequency.

4.2.2. Selection of Cut-Off Frequencies Based on Simulation Test

In order to determine the cut-off frequencies of complementary filters for the attitude/velocity/position
estimation in an SINS/CNS/GPS integrated navigation system, the frequency-domain analyses were
conducted on the measurement errors of SINS, CNS, and GPS subsystems. The analysis results,
which include the error curves, amplitude-frequency diagrams, and relationship graphs between the
estimation errors and selected cut-off frequencies, are shown in Figures 3–11, respectively.

Firstly, analyze and select the cut-off frequency of the complementary filter for attitude estimation
(i.e., the cut-off frequency of CF1). The attitude errors of SINS and CNS subsystems obtained in the
static test are analyzed in time and frequency domain, and the analysis results are shown in Figures 3–5
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where φx, φy, and φz denote the pitch, roll, and yaw misalignment angles, respectively, the unit of
which is arcsecond (”); t denotes the time axis, and its unit is second (s);

∣∣∣φx
∣∣∣, ∣∣∣φy

∣∣∣ and
∣∣∣φz

∣∣∣ denote the
amplitudes of the pitch, roll, and yaw error spectrums, the unit of which is arcsecond (”); f denotes
the frequency axis, its unit is Hertz (Hz); σ(φx), σ

(
φy

)
, and σ(φz) denote the standard deviations of

attitude errors in SINS/CNS integration, and f c
1 denotes the cut-off frequency of CF1. Figure 3 shows

the time curves and amplitude spectrums of CNS attitude errors, of which the three subfigures on
the left are the time curves, and three subfigures on the right are the amplitude spectrums. Figure 4
shows the time curves and amplitude spectrums of SINS attitude errors. Similarly, the three subfigures
on the left are the time curves, and the three subfigures on the right are the amplitude spectrums.
It can be seen from Figure 3 to Figure 4 that the attitude errors of CNS do not diverge and are less
than 100”, while the time curves of attitude errors are characterized by disorderly jumping noise.
According to the corresponding amplitude spectrums, the errors of CNS can be approximated as
white noise. The attitude errors of SINS have a tendency to oscillate and diverge, which are close
to 20′ in 3600 s. From the amplitude spectrums, it can be seen that the attitude errors of SINS are
mainly distributed in the low frequency band of 0–1 Hz. In order to obtain the statistical relationship
between the cut-off frequency f c

1 and attitude estimation accuracy σ(φi), let f c
1 take different values,

and Monte-Carlo simulation is performed to record the corresponding values of σ(φi) (i = x, y, z) and
f c
1 every time. Selection of f c

1 value points: the cut-off frequency value points are in the frequency range
of 0 to 2.5 Hz, while the interval between two adjacent cut-off frequency points is taken as 0.03 Hz.
In addition, the three frequency points of 0.001, 0.005, and 0.01 Hz are also tested. This means that

the set of f c
1 value points is

[
0.001 0.005 0.01 [0.03 : 0.03 : 2.5]

]T
Hz. According to the statistical

results of Monte-Carlo simulation, the relationships between f c
1 and σ(φi) (i = x, y, z) are obtained.

As shown in Figure 5, the effect of cut-off frequency on the attitude error can be seen. The data
pairs including the minimum values of σ(φi) (i = x, y, z) and corresponding f c

1 are pitch (0.09 Hz,
0.2116’), roll (0.09 Hz, 0.2140’), and yaw (0.12 Hz, 0.2121’), which are marked with red asterisks(*)
in Figure 5. It can be seen that the cut-off frequencies corresponding to the minimum values of three
attitude errors are very close. In order to reduce the algorithmic complexity and computational load,
the same cut-off frequency values are selected for the pitch, roll, and yaw estimations, i.e., f c

1 = 0.1 Hz,
ωc

1 = 2π f c
1 = 0.2π.
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In order to select the appropriate cut-off frequency of a complementary filter for velocity estimation
(i.e., the cut-off frequency of CF2, f c

2 ), the velocity errors of the SINS and GPS subsystems obtained in
the static test are analyzed in the time and frequency domains, and the analysis results are shown in
Figures 6–8, where δVE, δVN, and δVU denote the velocity errors in the East, North, and Up directions,
respectively, the unit of which is meters per second (m/s); t denotes the time axis, and its unit is
second (s); |δVE|, |δVN |, and |δVU | denote the amplitude spectrums of velocity errors in the East,
North, and Up directions, the unit of which is meters per second (m/s); f denotes the frequency
axis, its unit is Hertz (Hz); σ(δVE), σ(δVN), and σ(δVU) denote the standard deviations of velocity
errors in SINS/GPS integration, and f c

2 denotes the cut-off frequency of CF2. Figure 6 shows the time
curves and amplitude spectrums of GPS velocity errors, of which three subfigures on the left are
the time curves, and three subfigures on the right are the amplitude spectrums. Figure 7 shows the
time curves and amplitude spectrums of SINS velocity errors. Similarly, three subfigures on the left
are the time curves, and three subfigures on the right are the amplitude spectrums. It can be seen
from Figures 6 and 7 that the velocity errors of GPS do not diverge and are all less than 0.5 m/s,
the time curves of GPS velocity errors are characterized by disorderly jumping noise. According to the
corresponding amplitude spectrums, the velocity errors of GPS can be approximated as Gaussian white
noise. The velocity errors of SINS have a tendency to oscillate and diverge, which are close to 20 m/s
in 3600 s. From the amplitude spectrum, it can be seen that the velocity errors of SINS are mainly
distributed in the low frequency band of 0 to 0.5 Hz. In order to obtain the statistical relationship
between the cut-off frequency value and velocity estimation accuracy, let the cut-off frequency f c

2 take
different values, and Monte-Carlo simulation is performed to record the values of σ(δVi) (i = E, N, U)
and corresponding f c

2 . For Monte-Carlo simulation of CF2, the selection of f c
2 value points is the

same as that of f c
1 . According to the statistical results of Monte-Carlo simulation, the relationships

between f c
2 and σ(δVi) (i = E, N, U) are obtained, as shown in Figure 8, so the effect of cut-off

frequency on the error of velocity estimation can be seen. The data pairs including the minimum values
of σ(δVi) and corresponding f c

2 are East (0.03 Hz, 0.0413m/s), North (0.03 Hz, 0.0408m/s), and Up
(0.03 Hz, 0.0381m/s), which are marked with red asterisks(*) in Figure 8. It can be seen that the
cut-off frequencies corresponding to the minimum values of the three velocity errors are very close.
Therefore, the same cut-off frequency value can be selected for velocity estimation; there, it is selected
as f c

2 = 0.03 Hz, ωc
2 = 2π f c

2 = 0.06π.
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Figure 8. The relationship between f c
2 and σ(δVi).

Finally, the cut-off frequency is selected for position estimation (i.e., the cut-off frequency of CF3,
f c
3 ). The position errors of SINS and GPS subsystems obtained in the static test are analyzed in time

and frequency domain, and the analysis results are shown in Figures 9–11. Thereinto, δL, δλ, and δH
denote the latitude, longitude, and altitude errors, respectively, the unit of which is meter (m); t denotes
the time axis, and its unit is second (s); |δL|, |δλ|, and |δH| denote the amplitude spectrums of latitude,
longitude, and altitude errors, the unit of which is meter (m); f denotes the frequency axis, its unit is
Hertz (Hz); σ(δL), σ(δλ), and σ(δH) denote the standard deviations of position errors in SINS/GPS
integration; and f c

3 denotes the cut-off frequency of CF3. Figure 9 shows the time curves and amplitude
spectrums of GPS position errors, of which three subfigures on the left are the time curves, and three
subfigures on the right are the amplitude spectrums. Figure 10 shows the time curves and amplitude
spectrums of SINS position errors. Similarly, the three subfigures on the left are the time curves, and the
three subfigures on the right are the amplitude spectrums. It can be seen from Figures 9 and 10 that the
position errors of GPS do not diverge and are less than 30 m, while the time curves of the GPS position
errors are characterized by disorderly jumping noise. According to the corresponding amplitude
spectrums, the position errors of GPS can be approximated as Gaussian white noise. The position
errors of SINS will oscillate and diverge, which are close to the order of magnitude of 2 × 104 m at
3600 s. As seen from the amplitude spectrum, the position errors of SINS are mainly distributed in
the low frequency band of 0 to 2 Hz. Similarly, in order to obtain a statistical relationship between
the cut-off frequency and position estimation accuracy, let the cut-off frequency f c

3 take different
values, and Monte-Carlo simulation is performed to record the values of σ(δPi) (i = L,λ, H) and
corresponding f c

3 ; the selection of f c
3 value points is the same as that of f c

1 . According to the statistical
results of Monte-Carlo simulation, the relationships between f c

3 and σ(δPi) (i = L,λ, H) are obtained.
As shown in Figure 11, the effect of cut-off frequency on the position errors of SINS/GPS integration
can be seen. The data pairs including the minimum values of σ(δPi) and corresponding f c

3 are latitude
(0.15 Hz, 6.7436m), longitude (0.15 Hz, 5.6282m), and altitude (0.09 Hz, 6.2559m), which are marked
with red asterisks(*) in Figure 11. The cut-off frequencies corresponding to the minimum values of the
latitude, longitude, and altitude errors are very close. Based on the analysis above, the value of f c

3 can
be selected as f c

3 = 0.12 Hz, ωc
3 = 2π f c

3 = 0.24π.
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The minimum standard deviations of navigation parameters and corresponding cut-off frequencies
are summarized in Table 1. Finally, the values of f c

1 , f c
2 , and f c

3 are determined as 0.1, 0.03,
and 0.12 Hz, respectively.

Table 1. Statistics of minimum standard deviations and corresponding cut-off frequencies.

Errors σmin fc(Hz) fc(Hz)

φx (′) 0.2116 0.0900
0.1φy (′) 0.2140 0.0900

φz (′) 0.2121 0.1200

δVE (m/s) 0.0413 0.0300
0.03δVN (m/s) 0.0408 0.0300

δVU (m/s) 0.0381 0.0300

δL (m) 6.7436 0.1500
0.12δλ (m) 5.6282 0.1500

δH (m) 6.2559 0.0900
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5. Simulation and Experiment

The real-time data of an SINS/CNS/GPS integrated navigation system of an aerospace plane in
flight are difficult to obtain. In this paper, the method of trajectory simulation combined with the error
characteristics of a real sensor’s outputs is used to generate the simulation data of each navigation
subsystem, and the semi-physical simulation of an SINS/CNS/GPS integrated navigation algorithm
based on CF is performed to verify the validity. The semi-physical simulation experiment using
this system has important practical significance for studying the characteristics of a SINS/CNS/GPS
integrated navigation system of spacecraft under actual noise. In order to fully verify the priority of
CF in real-time performance, an experimental test based on a real-time system was done.

5.1. Design and Implementation of Semi-Physical Simulation System

Combined with the application background of spacecraft, the semi-physical simulation platform
of the SINS/CNS/GPS integrated navigation system is constructed, which consists of the hardware
part (including IMU, GPS, CNS, navigation computer, etc.) and software part (including the trajectory
simulation, integrated navigation algorithm, SINS updating algorithm, etc.). By modeling the sampling
data of SINS, GPS, and CNS, the error characteristics of each navigation subsystem are obtained.
According to the presupposed maneuver conditions, the required error-free data of navigation sensors
are generated by using the method of trajectory simulation. According to the error characteristics of
each subsystem, the real outputs of subsystems can be simulated by adding errors to the corresponding
error-free data. Finally, the algorithm software of SINS and SINS/CNS/GPS integration are performed,
and the navigation results are output.

The flow chart of semi-physical simulation for an SINS/CNS/GPS integrated navigation system is
shown in Figure 12. The process is as follows:

(1) Set the initial parameters of trajectory simulation, perform the trajectory simulation, and generate
the error-free trajectory data (including the error-free attitude, velocity, and position of spacecraft).

(2) According to the obtained trajectory data, calculate the error-free output of IMU. Collect the
IMU data in a static test, and subtract the corresponding mean value from the IMU data to
obtain the error data of inertial sensors. Then, add the error data to the error-free IMU data,
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thus obtaining the simulated output data of IMU with real errors. Then, calculate the attitude,
velocity, and position of the SINS.

(3) The speed and position data of GPS in the static test are collected, and the means are
subtracted from collected data to obtain the error data of GPS. Add the GPS’s error data
to the error-free position/velocity data of spacecraft from trajectory simulation generated in
step (1), thereby obtaining the simulated output data of GPS with real errors.

(4) Similarly, the error data of the CNS can be obtained by subtracting the true value of attitude
from the collected off-line attitude data of CNS. Then, add the error data of the CNS to the
error-free attitude data of the spacecraft from the trajectory simulation generated in step (1),
thereby obtaining the simulated output data of CNS with real errors.

(5) By using the data from navigation subsystems generated in steps (2), (3), and (4), the information
fusion based on complementary filter is performed to obtain the optimal estimations of
attitude/velocity/ position parameters of an SINS/CNS/GPS integrated navigation system.
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5.2. Simulation Conditions

Based on CF and FKF respectively, the simulations of SINS/CNS/GPS integrated navigation
are performed using MATLAB software (MATLAB 2009a, MathWorks, Natick, MA, USA) with the
simulation conditions as follows:

(1) Initial State of Aerospace Plane
The initial position (the longitude, latitude, and altitude in WGS84 frame) is 165.36o W, 34o N,

and 406,655.29 m; the initial velocity (including the velocity components in the East, North, and Up
directions) is 2995.2 m/s, 6665.7 m/s, and 8.6 m/s; the initial attitude (including the pitch, roll,
and azimuth angles) is 0.15

◦

, 0.1
◦

, and 67.3
◦

.
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(2) Initial Errors of INS
The initial position errors (including the initial errors of longitude, latitude, and altitude) are 300 m,

300 m, and 300 m. The initial attitude errors (including the initial errors of pitch, roll, and azimuth)
are 10′, 10′, 10′. The initial velocity errors (the velocity errors in the East, North, and Up directions)
are 1 m/s, 1 m/s, and 1 m/s.

(3) IMU, GPS, and CNS Errors
Gyro errors: the random constant drift is 0.03

◦

/h (1σ), and the angular random walk coefficient is
0.005

◦

/
√

h (1σ). Accelerometer errors: the random constant bias is 30 µg (1σ), and the velocity random
walk coefficient is 5 µg

√
Hz (1σ). The sampling frequency of IMU is 200 Hz.

GPS errors: the horizontal position error is 10 m (1σ), the altitude error is 10 m (1σ), and the
velocity error is 0.1 m/s (1σ). The sampling frequency of GPS is 1 Hz.

CNS errors: the attitude error is 20′′ (1σ). The sampling frequency is 5 Hz.
(4) Parameter Setting of CF
The cut-off frequencies of complementary filters for attitude/velocity/position estimations are set

as f c
1 = 0.1 Hz, f c

2 = 0.03 Hz, and f c
3 = 0.12 Hz, respectively. The simulation time is 3600 s.

5.3. Simulation Results

The semi-physical simulation of the proposed CF-based SINS/CNS/GPS integrated navigation
algorithm is performed, and the navigation errors obtained by comparing the integrated navigation
results with the corresponding trajectory parameters generated by the trajectory generator are shown in
Figures 13–15. Figures 13–15 show the time curves of attitude errors, velocity errors, and position errors,
respectively. According to the statistics of errors, the standard deviations of pitch, roll, and azimuth
errors are 0.2124′, 0.2137′, 0.2100′; the standard deviations of velocity errors in the East, North, and Up
directions are 0.0426 m/s, 0.0420 m/s, and 0.0401 m/s; the standard deviations of position errors in
latitude, longitude, and altitude are 6.8851 m, 5.5885 m, and 6.4637 m.Sensors 2020, 20, x FOR PEER REVIEW 26 of 32 
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Figure 15. Position errors of SINS/CNS/GPS integration using CF.

From Figure 13, Figure 14, Figure 15, when the CF processes of INS/CNS/GPS integration
navigation start, the curves of attitude errors, velocity errors, and position errors converge quickly,
and the noise components of navigation errors are basically filtered out. Throughout the process of
simulation, the navigation parameters output by the CF-based SINS/CNS/GPS integrated navigation
system remain convergent. The attitude errors are less than 0.7′, the velocity errors are less than
0.15 m/s, and the position errors are less than 10 m. The errors of navigation parameters are all
within the acceptable range. So, the proposed method of CF-based information fusion can meet the
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requirements of long-term and high-precision navigation for an SINS/CNS/GPS integrated navigation
system of an aerospace plane.

In order to further analyze the performance of the proposed algorithm, the semi-physical
simulation of SINS/CNS/GPS integrated navigation algorithm based on FKF (federated Kalman filter)
is carried out under the same simulation conditions. The estimation errors of CF are compared
with that of FKF, as shown in Table 2. For both CF and FKF, the mean value of each navigation
parameter error is one order of magnitude smaller than the standard deviation of the corresponding
error. The means of errors are no longer listed in the table, and only the standard deviations of errors
are compared and analyzed. The simulation results show that the statistical errors of the CF-based
integrated navigation algorithm are close to that of the FKF-based integrated navigation algorithm.
In terms of filtering accuracy, the estimation errors of the two filtering methods are in the same order of
magnitude; however, in terms of the real-time and complexity, because FKF needs to perform a large
number of high-order matrix operations, the computational complexity of FKF is much higher than
that of CF, and the real-time performance of FKF is much poorer than that of CF.

Table 2. Comparison of estimation errors between CF and federated Kalman filter (FKF).

Errors (1σ) CF FKF CNS GPS

φx (′) 0.2124 0.1442 0.3333 N/A
φy (′) 0.2137 0.1538 0.3333 N/A
φz (′) 0.2100 0.1449 0.3333 N/A

δVE (m/s) 0.0426 0.0275 N/A 0.1
δVN (m/s) 0.0420 0.0164 N/A 0.1
δVU (m/s) 0.0401 0.0168 N/A 0.1
δL (m) 6.8851 2.3852 N/A 10
δλ (m) 5.5885 2.3878 N/A 10
δH (m) 6.4637 3.9670 N/A 10

5.4. Analysis of Real-Time Performance

In order to investigate the real-time performance of the proposed CF-based information fusion
algorithm for SINS/CNS/GPS integrated navigation, the average single-time elapsed times of the FKF
and CF are recorded by using TIC and TOC functions of MATLAB. Denote the average single-time
elapsed times of the FKF and CF as tFKF and tCF, respectively. According to the recorded time, we have
tCF = 3.3836 × 10−5s and tFKF = 6.5180 × 10−4s. In order to eliminate the effect resulted from the
difference of computer performances, the relative elapsed times of FKF and CF are defined as: tR

CF = tCF/tFKF

tR
FKF = tFKF/tFKF

. (40)

Obviously, tR
FKF = 1, tR

CF = 0.0519. The relative elapsed times of FKF and CF are shown in Figure 16.
From Figure 16, it can be seen that for the information fusion of SINS/CNS/GPS integrated navigation,
the elapsed time of the CF is much shorter than that of the FKF, and the average single-time elapsed time
of the CF is just 5.19% of the average single-time elapsed time of the FKF. The above simulation results
demonstrate that the proposed CF-based method of information fusion for multi-sensor integrated
navigation system successfully overcomes the drawback of heavy computational load of the FKF-based
method. When used for SINS/CNS/GPS integrated navigation, the proposed CF-based method can
save 94.81% computational time compared with the FKF-based method.

5.5. Experimental Test Based on Real-Time System

In order to further verify the priorities of a proposed CF-based information fusion algorithm
in terms of computational complexity and real-time performance, an experimental test based on a
real-time system was conducted. The data processing architecture of a real-time system is shown
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in Figure 17, in which the navigation computer mainly includes Digital Signal Processor (DSP,
Texas Instruments, TMS320C6748), Field Programmable Gate Array (FPGA, Altera, Cyclone V
5CEFA9F23I7N), Analog-to-Digital Converter (ADC, Analog Devices Inc., Norwood, MA, USA,
AD9288), etc. The DSP chip is used to calculate the information fusion algorithms of SINS/CNS/GPS
integrated navigation. The experimental process is as follows: Firstly, a frame of experimental data
(including the data of SINS, CNS, and GPS) generated by semi-physical simulation is input into the DSP
chip through the RS232/422 serial communication interface of the navigation computer. Subsequently,
the two information fusion algorithms of SINS/CNS/GPS integrated navigation based on CF and FKF
are carried out by the DSP chip, respectively. Eventually, the recorded time consumptions are output
to a terminal display device.
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The computational times of CF and FKF are shown in Table 3. It can be seen that the time
consumptions of CF and FKF are 3.4795 × 10−6 s and 5.5088 × 10−5 s, respectively. So, the timing
performance of CF is better than that of FKF. There, the time consumption refers to the average time to
process a frame of experimental data.

Table 3. Time consumptions of CF and FKF.

Filters Average Time Consumption(s)

CF 3.4795× 10−6

FKF 5.5088× 10−5
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6. Conclusions

In this paper, a novel information fusion method based on complementary filter is proposed
for the SINS/CNS/GPS integrated navigation system of an aerospace plane. The transformation
algorithm of the CNS quaternion from the i frame to the n frame is designed, and the CF-based
attitude/speed/position estimations are designed and implemented for SINS/CNS/GPS integrated
navigation system, respectively. By utilizing the time-frequency domain analysis, the optimal
cut-off frequencies of complementary filters are obtained. Compared with the FKF-based method,
it can improve the real-time performance and computational efficiency of information fusion of
spacecraft-borne multi-sensor integrated navigation. In order to verify the proposed CF-based
information fusion algorithm, a semi-physical simulation experiment platform is designed, and the
algorithm validity is verified by a semi-physical simulation experiment. The experiment results show
that the CF-based integration method has the advantages of fast convergence speed, acceptable noise
suppression, and acceptable navigation accuracy. By comparing the two methods of CF-based and
FKF-based, it can be concluded that the accuracy of the CF-based method is close to that of the most
commonly used FKF-based method; however, the CF has better real-time performance and lower
computational complexity than FKF. For a SINS/CNS/GPS integrated navigation system of spacecraft,
the elapsed time of CF is decreased to 5.19% of FKF, while the computational efficiency of CF is
increased by 94.81%. The experiment results prove that the computational efficiency of information
fusion of SINS/CNS/GPS integrated navigation is improved.
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