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Idiopathic pulmonary fibrosis (IPF), the most frequent form of irreversible interstitial pneumonia with unknown etiology, is
characterized by massive remodeling of lung architecture and followed by progressive loss of lung function. However, the key
regulatory genes and the specific signaling pathways involved in the onset and progression of IPF still remain unclear. The
present study is aimed at investigating the key role of long noncoding RNAs (lncRNAs) and transcription factors (TFs) involved
in the pathogenesis of IPF through the integrated analysis of three gene expression profiles from the GEO dataset (GSE2052,
GSE44723, and GSE24206). A total of 8483 differentially expressed genes (DEGs) including 988 upregulated and 7495
downregulated genes were filtered. Subsequently, following the intersection of these DEGs, 29 overlapping genes were identified
and further analyzed using a bioinformatics approach. Furthermore, the protein-protein interaction (PPI) network was used to
obtain 18 modules of related genes. The hub genes were identified through hypergeometric testing, which were closely
associated with ubiquitin-mediated proteolysis, the spliceosome, and the cell cycle. The significant difference was observed in the
expression of these key genes, such as lncRNA MALAT1, E2F1, and YBX1, in the peripheral blood of IPF patients when
compared with those normal control subjects by real-time polymerase chain reaction (RT-PCR) analysis. This study indicated
that lncRNA MALAT1, E2F1, and YBX1 may be key regulators for the pathogenesis of IPF.

1. Introduction

Idiopathic pulmonary fibrosis is a chronic and progressive
lung tissue damage of unknown etiology, which is character-
ized by the abnormal proliferation of activated fibroblasts/-
myofibroblasts and excessive deposition of collagen in the
extracellular matrix (ECM) from adjacent alveoli to the lung
parenchyma. IPF has a poor prognosis and high mortality
rate with the postdiagnosis median survival rate of only
20% to 30% and the median survival of approximately 3 to
5 years [1, 2]. Due to the complexity and heterogeneity of
IPF, its incidence and mortality rate, which has a positive
relationship with advanced age, have shown a steadily

increasing trend worldwide [3]. Although the pharmacother-
apy of IPF has made certain progress over the past 5 years,
the therapeutic efficacy is unsatisfactory because of the
variable and unpredictable course of IPF and large individual
differences [4].

Increasing studies related to transcriptome, including
both protein-coding mRNAs and noncoding RNAs
(ncRNAs), have provided novel insights into the molecular
mechanism of IPF pathogenesis. Among them, ncRNAs
implicated in multiple fibrotic diseases have been divided
into short and long ncRNAs (lncRNAs) based on its length
of nucleotide sequences. Multiple studies have shown that
lncRNAs (≥200 nucleotides) contribute to the pathogenesis
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and progression of IPF and gain more attention [5, 6]. How-
ever, varying proportions of transcripts that can be detected
and the accuracy of measurements of changes in low-
abundance transcripts reduce detection accuracy of lncRNAs
in transcriptome-related lung fibrosis research. In addition,
transcripts detected and measured are very different in differ-
ent microarray platforms. These factors imply that some
lncRNAs may be overlooked and false-positive or false-
negative results may be generated [7, 8]. Based on publicly
available microarray expression datasets in the Gene Expres-
sion Omnibus (GEO) database, an in-depth bioinformatics
analysis of lncRNAs may provide a comprehensive under-
standing of not only transcriptional regulation but also post-
transcriptional regulation. Hence, using bioinformatics
methods to analyze the comprehensive gene network, this
study was performed to identify the biological processes
and pathways of differentially expressed genes (DEGs) that
are involved in the pathogenic mechanism of IPF. These
results may be useful in elucidating the critical regulatory
mechanism of IPF from a systematic perspective and provid-
ing the relevant effective interventions to attenuate or reverse
the process of lung fibrosis.

2. Materials and Methods

2.1. Microarray Data Information. NCBI-GEO (http://www.
ncbi.nlm.nih.gov/geo/) is a free database repository compris-
ing microarray/gene profile, next-generation sequencing,
hybridization array, and chip data. All data were derived
from GEO datasets GSE2052, GSE44723, and GSE24206.
The microarray data of GSE2052 were based on GPL1739
Platforms (Amersham Biosciences CodeLink Uniset Human
I Bioarray, University of Pittsburgh, PA, USA) and included
15 IPF and 11 control lung tissues (submission date: 09
December 2004) [9, 10]. The GSE44723 data were based on
GPL570 Platforms (Affymetrix Human Genome U133 Plus
2.0 Array, Affymetrix, Santa Clara, CA, USA) and included
10 pulmonary fibrosis and 4 normal lung tissues (submission
date: 10 April 2013) [11]. The GSE24206 data were based on
GPL570 Platforms (Affymetrix Human Genome U133 Plus
2.0 Array, Affymetrix, Santa Clara, CA, USA) and included
17 IPF and 6 normal lung tissues (submission date: 01
November 2011) [12]. The total RNA of the samples was
extracted to analyze the genomic profile of the RNA. All data
came from expression profiling with microarrays conducted
for Homo sapiens.

2.2. Identification of Differential Gene Expression in IPF. The
original data from these datasets, including SOFT-formatted
family files and Series Matrix Files, were downloaded for
analysis. DEGs were identified with the R package limma
(http://bioconductor.org/packages/release/bioc/html/limma
.html). Unsupervised hierarchical clustering was performed
to center the normalized and log2-scaled expression values
on the median by using Cluster 3.0 (Fig. S1–S3). After pre-
treatment of the genes that came from more than one probe
set, the DEGs identified with cutoff criteria of jlogFCj > 1
and P < 0:05 by the classic t-test were considered statisti-
cally significant.

2.3. Gene Ontology and KEGG Enrichment Analysis of DEGs.
Functional and pathway enrichment analyses of candidate
DEGs were performed with the online bioinformatics Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID, http://david.ncifcrf.gov) (version 6.7), which can
integrate biological data and comprehensively annotate the
biological functional information of genes. Gene Ontology
(GO) analysis can provide annotation of DEGs regarding
biological processes (BPs), molecular functions (MFs), and
cellular components (CCs) and allows further analysis of
the bioprocesses of these genes. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) provides high-level functions
and biological system information derived from large-scale
molecular datasets generated with high-throughput experi-
mental technologies. DAVID was applied to analyze the
function of DEGs, and a P value of less than 0.05 was consid-
ered statistically significant.

2.4. Construction of Protein-Protein Interaction (PPI)
Network andModule Analysis. Functional analysis of interac-
tions between the candidate DEG-encoded proteins can pro-
vide a new perspective on the pathogenesis and development
of IPF. The protein-protein interaction network (PPI) of
DEGs was constructed with the Search Tool for the Retrieval
of Interacting Genes (STRING) online database (http://
string-db.org) (version 11.0) considering combined scores
of interaction greater than 0.4 to indicate statistical signifi-
cance, and the network was visualized in the form of modules
by using ClusterONE Cytoscape plug-in (version 1.0) [13].
Cytoscape (version 3.6.1) is powerful bioinformatics software
that is utilized to visualize molecular interaction networks.
Then, GO and KEGG enrichment analyses of genes in the
module were conducted by using DAVID.

2.5. Selection of the Key Genes. Using the Molecular Complex
Detection (MCODE) (version 1.4.2) plug-in of Cytoscape,
the hub genes were selected by means of clustering the dense
connection domain based on the topology of a given network
[14]. The GO and pathway enrichment analyses of hub genes
were performed with the ClueGO (2.5.1) plug-in of Cytos-
cape [15]. Subsequently, the biological pathway relationship
network of these hub genes was constructed with the Biolog-
ical Networks Gene Ontology tool (BiNGO) (version 3.0.3)
plug-in of Cytoscape [16]. Using the hypergeometric test of
the empirical Bayes approach, key genes were obtained
through calculation. A P value of less than 0.05 was consid-
ered statistically significant.

2.6. Subjects and Blood Samples. Considering the particular
and complex nature of IPF, not all patients can undertake
the invasion operation including bronchial and surgical lung
biopsies to obtain the lung tissue samples. Moreover, obtain-
ing healthy control samples would be not only extremely
difficult but also restricted by ethical concerns. Due to the
feasibility and convenience of obtaining blood samples, we
validated the expression levels of candidate genes in the
peripheral blood samples of all subjects. IPF patients
(n = 20) were diagnosed at the Traditional Chinese Medicine
Hospital Affiliated to Xinjiang Medical University. Healthy
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physical examinees (n = 20) were selected as the control
group. The cohort of 40 subjects provided written informed
consent in compliance with the code of ethics of the World
Medical Association. The collection and usage of the blood
samples were approved by theMedical Research Ethics Com-
mittee of Traditional Chinese Medicine Hospital Affiliated to
Xinjiang Medical University (the Scientific Research Project
2018XE0109-1).

2.7. Validation of Key Genes by RT-PCR Analysis. Purifica-
tion of RNA from blood samples from 20 IPF patients and
20 normal control subjects was performed using the TRIzol™

LS Reagent (Invitrogen, USA). The RNA was reverse-
transcribed using the PrimeScript™ RT reagent kit with
ɡDNA Eraser (TAKARA, Japan) according to the manufac-
turer’s recommendations. The cDNA from each sample was
used as a template with GAPDH as an internal reference.
The specific primer sequences used to amplify the 4 key can-
didate genes are listed in Table S1. Real-time PCR (RT-PCR)
was performed using the StepOnePlus™ Real-Time PCR
System (Thermo Fisher Scientific, USA). The results are
represented as the means of 3 repetitions and were
quantified via the 2-ΔΔct method. The mRNA levels of key
genes between the IPF and normal lung tissues were
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Figure 1: Identification of DEGs from three GEO datasets (GSE2052, GSE44723, and GSE24206). (a–c) Volcano plot of the distributions of
DEGs from the three datasets, mapping upregulated genes (red dots) and downregulated genes (blue dots). No significantly changed genes are
marked as gray dots. (d) Identification of 29 commonly changed DEGs using Venn diagram from these three datasets (http://www.ehbio.com/
ImageGP/index.php/Home/). Differently colored areas represented different datasets. The overlap areas meant the commonly changed DEGs.
DEGs were identified with a paired t-test. The P value of less than 0.05 and [logFC] value of more than 1 were considered statistically
significant.
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compared using a paired t-test (P < 0:05) using GraphPad 6.0
(GraphPad Software, La Jolla, CA, USA). The data were
presented as themean ± standard deviationð�X ± SÞ (Table S2).
Counting data was assessed using a χ2 test. Multiple-group
comparison was assessed using one-way analysis of
variance (ANOVA) followed by the Bonferroni multiple
comparison test. Comparison of two groups was assessed
by a two-tailed t-test.

3. Results

3.1. Identification of Differentially Expressed Genes in IPF.
After normalization and standardization of the raw data
from these three GSE2052, GSE44723, and GSE24206
datasets (Figures 1(a)–1(c)), we identified a total of 8483
aberrantly expressed genes, including 988 upregulated and
7495 downregulated genes, in IPF tissues compared to nor-
mal lung tissues (Table 1). There were 29 overlapping genes
between the GSE2052, GSE24206, and GSE44723 datasets
according to the Venn diagram, including 29 overlapping
genes between GSE2052 and GSE44723, 268 overlapping

genes between GSE44723 and GSE24206, and 389 overlap-
ping genes between GSE2052 and GSE24206 (Figure 1(d)).

3.2. GO and KEGG Enrichment Analyses of Differentially
Expressed Genes. The biological processes associated with
the DEGs were determined by using the DAVID online bio-
informatics database. As shown in Table 2, the top 6 GO
results revealed that the significantly enriched BPs of IPF
DEGs were mainly concentrated in the cell adhesion, biolog-
ical adhesion, regulation of cell proliferation, and so on. The
top 6 significantly enriched MFs were mainly concentrated in
the calcium ion binding, cytokine binding, chemokine activ-
ity, and so on. The top 6 significantly enriched CCs were
mainly concentrated in the extracellular region part, extracel-
lular space, extracellular matrix, and so on. The top 6 signif-
icantly enriched KEGG pathways were mainly concentrated
in the ECM-receptor interaction, cytokine-cytokine receptor
interaction, and so on.

3.3. Construction and Enrichment Analysis of Modules. The
IPF DEGs were used to construct the PPI network by using
the STRING online database, and a total of 18 modules were

Table 1: DEGs were identified from three datasets, including 262 upregulated and 191 downregulated genes in IPF compared with normal
lung tissues (upregulated genes were defined with fold change ðFCÞ > 0 as the cutoff criterion. The opposite was defined as downregulated
genes).

DEGs Gene names

Upregulated

SULF1, DEAF1, SCG5, DSG2, SLC1A4, CCND2, KCNN4, ST6GAL1, SLC38A1, SEC11C, XPOT, DPY30, PFKP, DDB1,
HEPH, CXCL13, ATXN10, SEL1L3, CIAO1, CCL19, STARD5, SLFN12, ROR2, VAT1L, FPGT, GMPPA, COL18A1,
COL7A1, PIGF, LMO4, FAM120A, SLC29A3, TCFL5, IGFBP2, UQCRQ, CCNA2, TWSG1, TCTN3, ASPN, PAM,

BPIFB1, FAIM, FBLN2, SCARA3, COMP, ABCC5, DIO2, CHEK2, MCM4, TM9SF2, NAB1, DGKA, PTGFRN, FAT1,
DOK5, CNIH1, ACTN1, PLA2G12A, MAGED1, ALG1, TWIST1, TRIM5, RCN2, CXCL14, ARMC1, STMN3, HMCN1,

WDR5B, CROT, LEF1, TMEM14A, PLA2G4A, FKBP10, ABCC3, SPR, ROBO1, OXR1, CRLF1, TRIAP1, KDELR3,
DIRAS3, BBS2, TGFB3, LGMN, CDK2AP1, CXCL12, RRM2, STRBP, TSPAN6, DAP, COL6A3, FZD6, TDO2, GMDS,
PPP2R5E, SUPT7L, ZKSCAN7, CDKN3, CNTNAP1, IGF1, GSS, LRRC8D, TMEM98, TRIM2, LTBP1, BACE2, BRD8,
COLEC11, FXN, PAFAH1B3, PGAM1, COL5A2, AOC1, ANTXR1, TMEM69, IMPACT, NET1, MXRA5, RCN1,MYO1E,
DUSP23, CDH3, RHOD, CYP2S1, POSTN, ICMT, PDLIM4, C1QTNF6, ACVR1, SYTL2, PLA2G7, MFAP2, ZDHHC13,
TMED10, ALDH1A3, SLN, CPOX, CDKN2C, PPIC, XRCC5, CLDN1, NSG1, ITGA7, R3HDM1, ERGIC2, TRIM36,
EYA2, RPL39L, CCL13, RBP5, DONSON, SERPINB5, TXNDC15, HOMER3, ARL1, UBE2E3, CRYM, MEOX1,

TMEM45A, COL15A1, ATP1B1, LDLRAD4, STEAP3, NABP2, BDKRB2, DCLK1, CFH, TRO, ECM1, PFN2, IL13RA2,
MYOF, FHL2, CADPS, ITGAV, PCNA, PTK7, KIF2C, MEGF8, BMP4, PDCD2L, PRMT6, TP53BP1, OSBPL6, FMO1,
PDE1A, PBX3, ELOVL4, ATF7IP, SYNDIG1, TMEM158, CFI, ALDH3A1, CKAP2, MRPL2, COL14A1, EGFL6, LHX6,
THBS2, RRM1, YLPM1, TM7SF3, MLEC, CFB, BCL11A, GPR87, ZNF436, CLNS1A, ATIC, LGR4, CYP24A1, SEMA3C,

PDGFC, TP63, ARMCX2, NUSAP1, ASB2, SLC39A6

Downregulated

MKLN1, ECHDC3, RAB32, SLC25A51, HOPX, MATN3, MAP2, ARHGAP6, EPB41L5, NRGN, HEY1, PCTP, ACVRL1,
TBX5, ERMP1, NAGA, MPP1, TXNIP, LRRN3, FLOT1AATK, RCL1, CSF3R, ANXA3, TEK, GRK5, HES1, HSPA1L,

GATA6, EMP2, SLCO2A1, PMM1, STARD13, SEC14L1, SPTBN1, GHRL, TSPAN7, NEBL, ZNF655, TMEM11, UIMC1,
NCOA3, ZFP36, CREBBP, LDLR, RAB20, SERTAD1, PPFIBP1, REPS2, ELF1, CALCOCO2, CSRNP1, GPM6A, DLL4,
FPR1, CARHSP1, ADARB1, LMO7, RCOR1, LRRC32, CTNNBIP1, CA4, PADI4, OSGIN1, CXCL2, EGFR, CHI3L2,

LPIN2, ANKHD1, ARHGEF4, ARHGAP29, VAMP5, RAI2, CYTIP, PRX, IER5, DNM2, IL17RA, BHLHE40, SLC39A8,
RAPGEF5, PTPRM, CNOT8, DLC1, TLK2, EPAS1, PRELP, MAFF, ABTB1, HSD17B6, NDEL1, HYAL1, HECA, HSPB8,
DNAJB1, CDH13, RGS16, PTPN12, CD55, TIPARP, CRYAB, CD36, NUP153, PTPRB, ITSN2, TNNC1, MAPT, THBD,
CDKN2D, AOC3, P2RY1, ZBTB16, CSF3, EDNRB, FAM167A, SRGAP2, SLCO1A2, DAPK2, AGTR1, RIMKLB, ASRGL1,
ANG, CCK, BCL2L13, OSGIN2, ACSM5, KIAA0040, KDR, FUT1, DOCK9, GADD45G, CLDN5, LIFR, STXBP6, GPR4,
S1PR1, SLC1A1, PLAG1, EDA, DENND3, IDI1, KHDRBS3, CLEC1A, INMT, MPP3, PLLP, MTSS1, FSTL3, CRTAC1,

GTF2IRD1, F3, KLF10, KLRD1, FBLN5IZUMO4, PIR, MAOA, C1QL1, THRB, RNF182, ALDH6A1, FAM49A,
ST6GALNAC3, SSFA2, SLC25A24, AMPH, ADAMTS8, PLSCR1, BCKDHA, STXBP4, FLRT3, AOX1, SYAP1, RLF, SSH2,

DERA, PIM1, STARD3NL, SUN2, SEPP1, IL1R2, EIF2A, FAH, METTL7A, EIF4E3, CHRM2, 1-Mar, PDK1, TJP2,
RASL11A, NKX3-1
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Table 2: The significantly enriched analysis of differentially expressed genes in idiopathic pulmonary fibrosis.

Category Pathway ID Description Count P value

GOTERM_BP GO:0007155 Cell adhesion 45 1:46327E − 09
GOTERM_BP GO:0022610 Biological adhesion 45 1:50199E − 09
GOTERM_BP GO:0042127 Regulation of cell proliferation 42 9:51714E − 07
GOTERM_BP GO:0035295 Tube development 18 1:51015E − 05
GOTERM_BP GO:0032103 Positive regulation of response to external stimulus 10 1:56397E − 05
GOTERM_BP GO:0001501 Skeletal system development 22 1:77224E − 05
GOTERM_MF GO:0005509 Calcium ion binding 38 0.000949643

GOTERM_MF GO:0019955 Cytokine binding 10 0.001081524

GOTERM_MF GO:0008009 Chemokine activity 6 0.004374834

GOTERM_MF GO:0042802 Identical protein binding 27 0.00485805

GOTERM_MF GO:0042379 Chemokine receptor binding 6 0.005747644

GOTERM_MF GO:0008017 Microtubule binding 7 0.00692901

GOTERM_CC GO:0044421 Extracellular region part 54 3:94172E − 10
GOTERM_CC GO:0005615 Extracellular space 38 4:31806E − 07
GOTERM_CC GO:0031012 Extracellular matrix 24 2:55104E − 06
GOTERM_CC GO:0005578 Proteinaceous extracellular matrix 22 8:9433E − 06
GOTERM_CC GO:0044459 Plasma membrane part 76 5:14236E − 05
GOTERM_CC GO:0031226 Intrinsic to plasma membrane 48 0.000103242

KEGG_PATHWAY hsa04512 ECM-receptor interaction 9 0.00286045

KEGG_PATHWAY hsa04060 Cytokine-cytokine receptor interaction 17 0.003658523

KEGG_PATHWAY hsa04510 Focal adhesion 13 0.01357663

KEGG_PATHWAY hsa04610 Complement and coagulation cascades 7 0.014586106

KEGG_PATHWAY hsa05414 Dilated cardiomyopathy 8 0.017081193

KEGG_PATHWAY hsa00360 Phenylalanine metabolism 4 0.024804532

Figure 2: The module genes were filtered into the DEG protein-protein interaction (PPI) network complex.
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Figure 3: Continued.
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obtained with the ClusterONE Cytoscape plug-in (Figure 2).
To obtain functional and pathway enrichment information,
the genes involved in these 18 modules were further analyzed
by using DAVID as shown in Figures 3(a)–3(d). The top 10
modules of significantly enriched BPs were mainly concen-
trated in the protein polyubiquitination, ciliary basal body-
plasma membrane docking, Golgi vesicle transport, and so
on. The top 10 modules of significantly enriched CCs were
mainly concentrated in the ubiquitin ligase complex, micro-
tubule organizing center part, microtubule-associated com-
plex, and so on. The top 10 modules of significantly
enriched MFs were mainly concentrated in the ubiquitin-
protein transferase activity, structural constituents of the
cytoskeleton, microtubule motor activity, and so on
(Table 3). The KEGG pathways of these 18 modules were
concentrated in the ubiquitin-mediated proteolysis, spliceo-
some, purine metabolism, Fanconi anemia pathway, and so
on (Table 4).

3.4. Selection and Analysis of Key Genes. The biological net-
work of differentially expressed IPF genes was constructed
by using the BiNGO plug-in of Cytoscape, and the results
revealed that most of the DEGs were significantly enriched
in mitochondrial translation, cellular macromolecule meta-
bolic process, cellular process, and so on (Figure 4(a)).
ClueGO, another plug-in of Cytoscape, can annotate and
visualize the pathway networks of DEGs integrating GO
terms as well as KEGG pathways. The results from ClueGO
revealed that most of the DEGs were significantly enriched
in the glutathione metabolism, Fanconi anemia pathway,
etc. (Figure 4(b)).

Subsequently, the key genes were obtained through cal-
culation of the hypergeometric test. The 30 miRNAs and 4
lncRNAs enriched in 13 modules and the 44 transcription
factors (TFs) enriched in 10 modules are presented in
(Figures 4(c) and 4(d)). According to the enrichment scores,

the corresponding relevant noncoding RNAs (ncRNAs) were
closely associated with ubiquitin-mediated proteolysis mod-
ule m1, spliceosome module m2, cell cycle modules m14
and m18, and endocytosis module m12, which included long
noncoding RNAs (lncRNAs) MALAT1 (modulelinks = 14,
P = 7:6 ∗ 10−3), FENDRR (modulelinks = 18, P = 2:5 ∗ 10−3),
RNU1-1 (modulelinks = 23, P = 0), and TUG1 (modulelinks =
17, P = 4:03 ∗ 10−7). The transcription factors (TFs) identi-
fied based on the enrichment scores were closely associated
with GPR signaling pathway module m3, ECM-receptor
interaction module m4, glutathione metabolism module m5,
neuroactive ligand-receptor interaction module m9, endocy-
tosis module m12, cell adhesion module m13, nucleotide exci-
sion repair module m17, homologous recombination module
m16, and cell cycle modules m14 and m18, which included
E2F1 (modulelinks = 5, P = 3 ∗ 10−4), TP53 (modulelinks = 6,
P = 2 ∗ 10−4), YBX1 (modulelinks = 4, P = 1:24 ∗ 10−5), E2F4
(modulelinks = 3, P = 2 ∗ 10−4), SP1 (modulelinks = 7, P =
4:3 ∗ 10−3), BRCA1 (modulelinks = 3, P = 2:8 ∗ 10−3), CREB1
(modulelinks=5, P = 4:74 ∗ 10−5), and CIITA (modulelinks =
5, P = 4:19 ∗ 10−7). As shown in Table 5, these key genes, such
as MALAT1, RNU1-1, FENDRR, TUG1, E2F1, TP53, SP1,
YBX1, BRCA1, E2F4, CREB1, and CIITA, play significant
functional roles in their associated modules, suggesting that
these genes may play roles in cell cycle regulation, methyla-
tion, acetyltransferase activity, and the splicing cycle. Accord-
ing to the integrated analysis results, these key genes of
lncRNAs and TFs might play pathogenic roles in the occur-
rence and progression of IPF.

3.5. Validation of the lncRNAs and TFs in IPF with qRT-PCR.
Demographic and clinical features of the IPF patients and the
healthy control group are listed in Table 6. Patients with IPF
smoked fewer cigarettes than in the control group. Moreover,
the clinical features of the IPF group were decreased in
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Figure 3: Gene Ontology and KEGG analysis of module gene function in idiopathic pulmonary fibrosis. (a–c) Gene Oncology (GO) analysis
was conducted to identify overrepresented GO terms for the significantly enriched analysis of module genes. (d) KEGG analysis was
conducted to identify the biological information of module genes.

7BioMed Research International



pulmonary function. To validate the results obtained through
integrated analysis of the three datasets related to IPF, the rel-
ative expression of the key genes was analyzed by RT-PCR
(Fig. S4). We found that 3 of the 4 candidate genes have sta-
tistically significant differences between the IPF and normal
groups (MALAT1, E2F1, and YBX1 with P < 0:01, FENDRR
with P > 0:05).

4. Discussion

Chronic and progressive airway remodeling is a major char-
acteristic of IPF with unknown etiology. Although accumu-
lating evidence reveals that activated fibroblasts have
important effects on the pathogenesis and progression of
IPF, the underlying molecular mechanisms involved in the
regulation of IPF remain unclear. Previous findings of gene

regulation on IPF have mainly focused on protein-coding
genes which can delay but do not inhabit the development
of fibrosis. Recently, with the development of high-
throughput sequencing technology, epigenetic researches
provide new insights into the underlying molecular and etio-
logical mechanisms of IPF. Epigenetics, such as functional
ncRNAs, refers to heritable changes in DNA and chromatin
that influence gene expression other than changes in DNA
sequence and has gradually become the research hotspot.
Multiple studies have indicated that lncRNAs can influence
the pathological process involving the structural remodeling
of pulmonary architecture and eventually lead to respiratory
failure. As multifunctional adaptor molecules, lncRNAs play
multifunctional roles in the regulation of gene expression by
regulating mRNA decay, splicing, and gene looping by bind-
ing to DNA, proteins, and certain other RNAs [17, 18]. In

Table 3: The significant GO enrichment analysis of module gene function in idiopathic pulmonary fibrosis.

Category Pathway ID Pathway description Count P value

GO_BP_m1 GO:0000209 Protein polyubiquitination 47 1:77E − 64
GO_BP_m10 GO:0097711 Ciliary basal body-plasma membrane docking 32 6:55E − 71
GO_BP_m11 GO:0048193 Golgi vesicle transport 30 9:70E − 41
GO_BP_m12 GO:0006898 Receptor-mediated endocytosis 19 6:36E − 21
GO_BP_m13 GO:0060337 Type I interferon signaling pathway 20 1:37E − 38
GO_BP_m14 GO:0007059 Chromosome segregation 29 2:58E − 38
GO_BP_m15 GO:0009165 Nucleotide biosynthetic process 20 2:61E − 27
GO_BP_m16 GO:0036297 Interstrand cross-link repair 16 1:73E − 32
GO_BP_m17 GO:0006289 Nucleotide-excision repair 26 7:46E − 53
GO_BP_m18 GO:0000280 Nuclear division 24 7:63E − 35
GO_CC_m1 GO:0000151 Ubiquitin ligase complex 42 1:34E − 54
GO_CC_m10 GO:0044450 Microtubule organizing center part 19 1:93E − 29
GO_CC_m11 GO:0005875 Microtubule-associated complex 27 1:16E − 46
GO_CC_m12 GO:0030136 Clathrin-coated vesicle 22 8:55E − 33
GO_CC_m13 GO:0042611 MHC protein complex 5 6:87E − 10
GO_CC_m14 GO:0000775 Chromosome, centromeric region 35 4:74E − 59
GO_CC_m15 GO:0008074 Guanylate cyclase complex, soluble 2 2:57E − 06
GO_CC_m16 GO:0043240 Fanconi anemia nuclear complex 7 9:55E − 17
GO_CC_m17 GO:1990391 DNA repair complex 9 3:70E − 17
GO_CC_m18 GO:0005819 Spindle 17 5:08E − 23
GO_MF_m1 GO:0004842 Ubiquitin-protein transferase activity 69 5:10E − 99
GO_MF_m10 GO:0005200 Structural constituent of cytoskeleton 6 4:58E − 08
GO_MF_m11 GO:0003777 Microtubule motor activity 21 3:95E − 38
GO_MF_m12 GO:0030276 Clathrin binding 9 2:00E − 14
GO_MF_m13 GO:0042605 Peptide antigen binding 5 2:31E − 09
GO_MF_m14 GO:0043515 Kinetochore binding 4 9:27E − 10
GO_MF_m15 GO:0016776 Phosphotransferase activity 10 4:97E − 20
GO_MF_m16 GO:0140097 Catalytic activity, acting on DNA 13 5:26E − 17
GO_MF_m17 GO:0003684 Damaged DNA binding 16 9:67E − 31
GO_MF_m18 GO:0004674 Protein serine/threonine kinase activity 8 6:57E − 07
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this study, we integrated three publicly available microarray
datasets (GSE2052, GSE44723, and GSE24206) and found
that differential expression of 8483 genes comprised 988
upregulated and 7495 downregulated genes. Consistent with
the results of previous studies on the molecular mechanism
of IPF, we found that DEGs were mainly concentrated on
the extracellular matrix and these biological functions were
mainly related to cell adhesion, proliferation, cytoskeleton
development, and cytokine interaction. After a series of bio-
informatics analysis, the regulatory network consisting of
key lncRNAs and transcription factors (TFs), which may
contribute to the pathogenesis of IPF, was ultimately

obtained. We found that the biological functions of these
key genes, which were related to epithelial-mesenchymal
transition (EMT), mainly focused on mitochondrial transla-
tion, RNA processing, and ubiquitin-mediated proteolysis.
We performed a comprehensive literature search and judged
by integrating degrees, closeness, and betweenness centrality
of the regulatory network ultimately identifying 2 lncRNAs
and 2 TFs (MALAT1, FENDRR and E2F1, YBX1, respec-
tively). Subsequently, we further validate the expression
levels of these key genes related to the regulation of pulmo-
nary fibrosis in blood samples between the IPF and control
groups using real-time polymerase chain reaction (RT-

Table 4: The significant KEGG enrichment analysis of module gene function in idiopathic pulmonary fibrosis.

Pathway Pathway description Count P value Genes

KEGG_Pathway_m1
Ubiquitin mediated

proteolysis
30 1:21E − 46

10273, 10477, 11065, 22954, 23327, 25898, 51433, 51434, 54926, 55070,
57154, 65264, 7318, 7320, 7321, 7323, 7326, 7328, 7332, 7428, 83737,

8454, 8697, 9021, 90293, 9246, 92912, 9820, 991, 6921

KEGG_Pathway_m2 Spliceosome 30 1:23E − 44
10084, 10262, 10285, 10594, 10907, 10946, 10992, 1665, 22827, 51340,
51690, 57187, 57819, 6428, 6429, 6430, 6432, 6434, 6625, 6626, 6628,

6635, 7307, 8175, 84321, 8449, 84991, 9775, 988, 9984

KEGG_Pathway_m15 Purine metabolism 26 8:05E − 39
10201, 11128, 124583, 171568, 205, 2987, 29922, 3704, 4831, 4832, 4833,
4881, 50484, 50808, 51251, 5138, 5315, 5422, 6240, 6241, 84284, 953,

955, 956, 2982, 2983

KEGG_Pathway_m16
Fanconi anemia

pathway
20 2:23E − 37 2067, 2072, 2176, 2178, 2188, 2189, 22909, 29089, 51426, 5429, 55120,

5889, 6118, 6119, 672, 80010, 80198, 84464, 80233, 91442

KEGG_Pathway_m4
Protein digestion and

absorption
21 1:16E − 36 1277, 1278, 1281, 1285, 1287, 1288, 1289, 1290, 1292, 1293, 1294, 1299,

1300, 1303, 1306, 1308, 255631, 7373, 80781, 81578, 85301

KEGG_Pathway_m5
Glutathione
metabolism

20 1:44E − 36 124975, 2678, 2687, 27306, 2878, 2879, 2880, 2882, 2937, 2938, 2941,
2948, 2949, 2950, 2952, 373156, 4257, 4258, 493869, 51060

KEGG_Pathway_m6 Ribosome 20 4:77E − 35 11222, 29088, 51069, 51073, 51116, 51263, 51264, 51318, 54460, 54948,
6183, 63875, 63931, 64928, 64963, 64965, 64983, 65003, 65008, 79590

KEGG_Pathway_m17
Nucleotide excision

repair
16 4:27E − 30 1022, 1069, 1642, 1643, 2067, 2072, 2968, 3978, 5111, 5425, 6118, 6119,

7507, 7508, 8451, 902

KEGG_Pathway_m9
Neuroactive ligand-
receptor interaction

25 7:26E − 28
10161, 10800, 1131, 1241, 148, 154, 185, 1902, 1910, 2149, 2151, 2925,
3061, 3357, 3358, 4829, 4923, 5021, 5028, 5031, 624, 680, 6915, 7201,

9002

KEGG_Pathway_m3
Neuroactive ligand-
receptor interaction

25 3:41E − 21
1129, 1268, 150, 152, 1813, 187, 1901, 1902, 1903, 2357, 2358, 2359,
2587, 2913, 2918, 4543, 4887, 59340, 624, 6752, 6755, 719, 728, 9294,

9568

KEGG_Pathway_m8
Ribosome biogenesis

in eukaryotes
12 5:45E − 20 10171, 10799, 134430, 23560, 27341, 3692, 51096, 51119, 51602, 55341,

55651, 84916

KEGG_Pathway_m7 Ribosome 17 7:99E − 19 11224, 25873, 51065, 6128, 6141, 6156, 6157, 6160, 6168, 6169, 6181,
6201, 6205, 6229, 6231, 6232, 6234

KEGG_Pathway_m12 Endocytosis 16 3:91E − 16 10109, 1173, 1759, 1785, 1956, 22905, 26119, 27131, 273, 3949, 408,
5868, 6456, 6643, 867, 8976

KEGG_Pathway_m13
Herpes simplex

infection
11 8:93E − 13 10379, 3105, 3113, 3115, 3122, 3134, 3434, 3661, 4938, 4940, 6041

KEGG_Pathway_m18 Cell cycle 7 9:18E − 11 4085, 701, 7272, 8379, 890, 891, 9133

KEGG_Pathway_m14 Oocyte meiosis 8 8:35E − 10 4085, 5516, 5525, 5528, 5529, 8379, 891, 9133

KEGG_Pathway_m11
Vasopressin-
regulated water
reabsorption

6 1:07E − 09 10540, 1639, 51164, 79659, 84516, 8655

KEGG_Pathway_m10
Pathogenic

Escherichia coli
infection

3 5:99E − 05 203068, 7277, 7846
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Figure 4: Continued.
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Figure 4: Identification and biological analysis of key genes in idiopathic pulmonary fibrosis. (a) Using BiNGO plug-in of Cytoscape, the
biological network of the significant DEGs was conducted. (b) Using ClueGO plug-in of Cytoscape, GO and KEGG analyses were
conducted to identify the significant DEGs. (c) The ncRNAs in module genes were identified using the hypergeometric test. (d) The TFs
in module genes were identified using the hypergeometric test.
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PCR). As a result, differential expression of these genes
including downregulated YBX1 and upregulated MALAT1
and E2F1 reached statistical significance except for FENDRR
between two groups.

The research on epithelial-to-mesenchymal transition
(EMT) related to a fibrotic process has received an increased

attention in recent years. Considering the possible false-
negative or false-positive results between the individual stud-
ies and the research sample size, we integrated and analyzed
the potential lncRNAs and TFs related to the pathogenesis
and progression of IPF from the public microarray data.
Metastasis-associated lung adenocarcinoma transcript 1

Table 5: Functional roles of the strongest correlations of lncRNAs and TFs in IPF.

No.
Gene
symbol

Full name Function

1 MALAT1
Metastasis-associated lung
adenocarcinoma transcript 1

Form molecular scaffolds for ribonucleoprotein complexes, acting as a
transcriptional regulator for numerous genes, and involved in cell cycle regulation

2 RNU1-1 RNA, U1 small nuclear 1 Its related pathways are spliceosomal splicing cycle

3 FENDRR
FOXF1 adjacent noncoding

developmental regulatory RNA
Bind to polycomb repressive complex 2 and/or TrxG/MLL complexes to promote the

methylation of the promoters of target genes

4 TUG1 Taurine upregulated 1
Interacts with the polycomb repressor complex and functions in the epigenetic

regulation of transcription, acting as a sponge for microRNAs

5 E2F1 E2F transcription factor 1
Bind preferentially to retinoblastoma protein pRB in a cell cycle-dependent manner

and mediate both cell proliferation and p53-dependent/independent apoptosis

6 TP53 Tumor protein P53
Regulate expression of target genes, inducing cell cycle arrest, apoptosis, senescence,

DNA repair, or changes in metabolism

7 SP1 Sp1 transcription factor
Be involved in many cellular processes, including cell differentiation, cell growth,

apoptosis, immune responses, response to DNA damage, and chromatin remodeling

8 YBX1 Y-box binding protein 1
Be implicated in numerous cellular processes including regulation of transcription

and translation, pre-mRNA splicing, DNA reparation, and mRNA packaging

9 BRCA1
Breast cancer type 1 susceptibility

protein

Play a role in transcription, DNA repair of double-stranded breaks, and
recombination which forms a large multisubunit protein complex known as the
BRCA1-associated genome surveillance complex and interacts with histone

deacetylase complexes

10 E2F4 E2F transcription factor 4
Act as proliferation-associated suppression genes and bind to all three of the tumor

suppressor proteins pRB, p107, and p130

11 CREB1
CAMP responsive element binding

protein 1
Its related pathways are development of HGF signaling pathway and circadian

entrainment

12 CIITA
Class II major histocompatibility

complex transactivator
Once it does not bind DNA but rather uses an intrinsic acetyltransferase activity to

act in a coactivator-like fashion

Table 6: Demographic and clinical characteristics of the subjects.

Healthy controls IPF
P value

n = 20 n = 20
Age, mean (SD) 68.4 (4.7) 69.0 (6.6) 0.74

Gender, n (%) 0.07

Male 11 (55) 12 (60)

Female 9 (45) 8 (40)

Smoker, n (%) 0.001

Current 4 (20) 2 (10)

Former 7 (35) 10 (50)

Never 9 (45) 8 (40)

Smoking dose (pack-year) 37 (14.5-58) 35.7 (12-56) 0.14

FVC (% predicted), mean (SD) 96.2 (11.7) 63.88 (17.0) <0.01
DLCO (% predicted), mean (SD) 80.8 (17.6) 42.04 (16.5) <0.01
FEV1 (% predicted), mean (SD) 106.0 (18.6) 71.7 (11.0) <0.001
FEV1/FVC (%), mean (SD) 79.9 (5.0) 57.8 (8.3) <0.001
FVC: forced vital capacity; DLCO: diffusing capacity of carbon monoxide; FEV1: forced expiratory volume in one second.
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(MALAT1) located on chromosome 11q13.1, also known as
nuclear-enriched abundant transcript 2 (NEAT2), is
involved in various biological functions including molecular
scaffolds for ribonucleoprotein complexes, transcriptional
regulator for genes, and regulation of cell cycle [19]. Substan-
tial research has confirmed that MALAT1 has many impor-
tant physiological and pathological function in a wide range
of diseases such as various solid cancers, septic lung injury,
myocardial or renal ischemia-reperfusion injury, cardiac
fibrosis, liver fibrosis, and silica-induced pulmonary fibrosis
[20–23]. Furthermore, MALAT1 also play an important role
in EMT related to the pulmonary fibrosis [24]. Although
MALAT1 was reported to be mainly localized in the nucleus,
it could transfer from the nucleus to the cytoplasm during the
G2/M-phase cell cycle [25]. E2F1 located on chromosome
20q11.2, which was screened out and validated in this study,
belongs to TFs of the nuclear factor of the E2F family and
participates in the cell cycle G1/S phase regulation mediating
both cell proliferation and apoptosis [26]. Many studies have
confirmed that E2F1 could activate the expression of stromal
markers related to EMT such as vimentin and fibronectin
and facilitate the pathogenesis processes such as fibrosis
and tumor progression [27]. YBX1 located on chromosome
1p34.2, which is another screened and validated transcrip-
tion factor in this study, belongs to a member of cold-shock
protein family and acts as an important regulator related to
cell proliferation and cell cycle [28]. Some studies have
reported a correlation between abnormal expression of
YBX1 and EMT markers such as vimentin and N-cadherin
[29]. The above results suggest that genes screened and vali-
dated in this study might act as key regulators of the patho-
genesis and progression of IPF.

However, the limitations of this study are as follows.
First, although key genes related to the pathogenesis of
IPF have been screened and validated through integrating
three datasets and performing a series of bioinformatics
approaches, expression levels of these key genes need further
validated experiments such as western blotting (WB) and
immunohistochemistry analysis (IHC). Second, differential
gene analysis is one of the crucial data analysis strategies
for expression profiling of IPF in GEO datasets. However,
the three datasets combined and analyzed in this study from
the GEO database microarray and platform were not unified.
Meanwhile, the sample sizes of these three datasets were rel-
atively small and imbalanced. The potential selection bias
and information bias were inevitable. Therefore, the accuracy
and reliability of candidate genes could be improved greatly
by integrating more various types of datasets. Third, verifica-
tion of the expression levels of candidate genes in clinical
samples is far from enough. Further functional verification
of these candidate genes was necessary to perform by loss-
of-function and gain-of-function experiments in vivo and
in vitro. Lastly, the verification and discussion of the under-
lying molecular mechanisms of these candidate genes
involved in the pathogenesis and progression of IPF will be
necessary to confirm through a chromatin immunoprecipita-
tion assay (CHIP) or dual-luciferase reporter gene assay and
so on. Regardless of the limitations mentioned above, this
study provided preliminary evidence for the candidate genes

related to the pathogenesis of IPF. As a time-saving and cost-
saving method for analysis of biomedical data, we took an
extensive bioinformatics data-mining approach from differ-
ent microarray platforms to obtain candidate lncRNAs and
TFs in IPF. This study provided a framework and broad
application prospects for exploring pathological molecular
networks related to IPF.

5. Conclusion

This study provides reliable and comprehensive perspectives
on the pathogenesis and progression of IPF; potential
lncRNAs and TFs related to the pathogenesis of IPF were
obtained through bioinformatics analysis. Ultimately, the 3
key genes that were found to show abnormal expression in
IPF compared to normal lung tissues may be considered as
biomarkers for the diagnosis and treatment of IPF, which
should be verified in subsequent studies.
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