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Oxygen is critical to energy metabolism, and tumors are often characterized by a hypoxic
microenvironment. Owing to the high metabolic energy demand of malignant tumor cells,
their survival is promoted by metabolic reprogramming in the hypoxic microenvironment,
which can confer tumor cell resistance to pyroptosis. Pyroptosis resistance can inhibit
anti-tumor immunity and promote the development of malignant tumors. Hypoxia
inducible factor-1a (HIF-1a) is a key regulator of metabolic reprogramming in tumor
cells, and estrogen-related receptor a (ERRa) plays a key role in regulating cellular energy
metabolism. Therefore, the close interaction between HIF-1a and ERRa influences the
metabolic and functional changes in cancer cells. In this review, we summarize the
reprogramming of tumor metabolism involving HIF-1a/ERRa. We review our
understanding of the role of HIF-1a/ERRa in promoting tumor growth adaptation and
pyroptosis resistance, emphasize its key role in energy homeostasis, and explore the
regulation of HIF-1a/ERRa in preventing and/or treating endometrial carcinoma patients.
This review provides a new perspective for the study of the molecular mechanisms of
metabolic changes in tumor progression.
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Abbreviations: HIF-1a, Hypoxia inducible factor-1a; ERRa, Estrogen-related receptors a; EC, Endometrial carcinoma; MSI,
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BRCA, Breast cancer; PCa, Prostate cancer; OXPHOS, Oxidative phosphorylation; NSCLC, Non-small cell lung cancer cells;
EGFR, Epidermal growth factor receptor; HCC, Hepatocellular carcinoma; LDHA, Lactate dehydrogenase A; PGK1,
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Peroxisome proliferator-activated receptor gamma coactivator 1-alpha; ROS, Reactive oxygen species metabolism-related
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receptor family, pyrin domain-containing protein 3; GSDMD, Gasdermin D; VEGF, Vascular endothelial growth factor.
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INTRODUCTION

Endometrial carcinoma (EC) ranks first among malignant tumors
of the female reproductive system in developed countries and
second in China (1). Over the past decade, the EC morbidity and
mortality rates have gradually increased (2), and the age of patients
is younger than previously observed (3). According to the statistics
of the National Cancer Center, in 2019, the incidence of EC in
China was 10.28/100,000, and the mortality rate was 1.9/100000.
The mortality rate of uterine cancer is twice as high as its morbidity
rate (4). This may be due to the fact that specific pathological types
of EC, such as serous carcinoma or EC with high risk factors (such
as distant metastasis or deep myometrial invasion), are resistant to
pyroptosis after radiotherapy/chemotherapy, resulting in the risk of
tumor recurrence and metastasis, and a significantly increased
mortality rate (5). Although recent progress has been made in the
diagnosis and treatment of EC, and better clinical outcomes have
been achieved, the quality of life of patients is affected by the side
effects of treatment. These can include infertility, surgical
menopause, lower limb lymphedema, sexual dysfunction,
depression, and fatigue, which pose a serious threat to women’s
health (6, 7).

In 1983, Bokhman (8) classified EC into type I and type II
according to the presence or absence of estrogen stimulation. The
diagnosis and prognosis of type I EC are related to mutations in the
genes PTEN, PI3KCA, POLE, CTNNB1, and TP53; deletions of the
DNA mismatch repair protein; and the expression of estrogen
receptor and progesterone receptor. The prognosis of type II EC
is related to the overexpression of human epidermal growth factor
receptor 2 (HER2) and mutations in the TP53 gene. The activation
of PI3K/Akt, P53, mitogen-activated protein kinase, and Wnt/b-
catenin signaling pathways is closely related to the pathogenesis of
EC (9). In 2013, a molecular genetic analysis of 373 EC patient
samples was carried out based on the Cancer Genome Atlas
(TCGA), and cases were divided into four subgroups as follows:
POLE mutation, microsatellite-instable (MSI), copy number low
(CNL), and copy number high (CNH). Among them, patients with
POLE mutations have the best prognosis, those with MSI and CNL
have a moderate prognosis, and those with the CNH-mutant type
have the worst prognosis (10). Therefore, it is necessary to better
understand the molecular changes in the progression of EC and
develop new biomarkers or targeted therapy to further improve the
overall prognosis of patients with EC.

Despite the obvious heterogeneity of EC, only the
standardized treatment is still used for all subtypes. Since the
Bokhman classification cannot explain the high morphological
and molecular heterogeneity of EC, the histopathological
classification method based on tumor morphology and tumor
grade needs to be further improved. Santoro et al. (11) proposed
the distribution and prognosis of different histopathological
types of EC in a molecular classification based on TCGA, put
forward the improvement in risk stratification based on
molecules, and discussed the corresponding treatment methods
as well. These observations need to be evaluated by experienced
gynecologic oncologists, pathologists, and geneticists.
Histopathology and TCGA molecular typing combined with
Frontiers in Oncology | www.frontiersin.org 2
diagnosis and treatment methods can be used to accurately
treat EC and predict the susceptibility and prognosis of EC to
specific therapeutic drugs (12). However, according to the
current diagnosis and treatment guidelines and the medical
situation, it is impossible to perform a detailed molecular
typing in every EC patient. This requires a multi-disciplinary
team (MDT) (molecular biologists, clinicians, oncologists,
geneticists, and other professionals, as well as paramedical
units, such as pathology, ultrasound, and imaging) to decide
the treatment method that is most likely to benefit the patients,
by integrating medical history, complications, clinical,
histomorphology, immunohistochemistry and molecular data.
Through cross-cooperation in the MDT, a dynamic assessment
of the condition, treatment, and regular reexamination can be
carried out in the form of joint and inter-disciplinary
consultations, so that the diagnosis and treatment strategy can
be adjusted in time and a more reasonable treatment plan can be
provided. MDT mode can be applied to the whole process of
prevention, diagnosis, preoperative evaluation, postoperative
treatment, and follow-up of EC outpatient service, which can
improve the quality of life and prognosis of cancer patients (13).

Hypertension, obesity, and diabetes are the triple risk factors
of EC; in fact, EC can be regarded as a metabolic disease (14).
Inflammation may be activated in EC patients due to oxidative
stress and increased systemic inflammation caused by metabolic
syndrome, and tumor cells reprogram their metabolic pathways
in this inflammatory environment to maintain a higher
proliferation rate; promote tumor growth, invasion, and
neovascularization; and resist cell death signals (15–17).
Hypoxia inducible factor-1a (HIF-1a) is a key regulator of
tumor invasion and a key promoter of energy adaptation.
Increased HIF-1a activity promotes angiogenesis, metabolic
reprogramming, metabolic adaptation, extracellular matrix
remodeling, epithelial mesenchymal transformation (EMT),
invasion, metastasis, resistance to radiotherapy and
chemotherapy, maintenance of cancer stem cell phenotype,
immune escape, and protein expression affecting changes in
the tumor immune microenvironment during early
carcinogenesis (18, 19). HIF-1a is a prognostic marker related
to the overall poor prognosis of tumor patients (20). Estrogen-
related receptor a (ERRa) subtypes are highly expressed in
malignant tumors, especially in hormone-dependent/related
tumors, such as breast cancer (BRCA) (21), prostate cancer
(PCa) (22), ovarian cancer (23), and endometrial cancer (24–
26). At the same time, ERRa, acting as a transcription factor,
regulates the process of energy metabolism in the body via the
tricarboxylic acid cycle (27), oxidative phosphorylation
(OXPHOS) (28), and glucose and lipid metabolism (29). As a
result, a variety of biological effects are observed, such as tumor
cell proliferation, differentiation, and apoptosis; tumor
angiogenesis; and control of systemic inflammation. These
processes are related to the prognosis and progression of the
tumor. At present, clarifying how tumor cells resist pyroptosis
and adapt to hypoxia through metabolic reprogramming, is a hot
research topic aimed at overcoming metastatic/recurrent tumors
using anti-metabolic therapy. We hypothesized that metabolic
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reprogramming intervention of tumor cells may be an important
approach for the treatment of metastatic tumors. Based on this
hypothesis, this review summarizes the role of metabolic changes
caused by HIF-1a/ERRa in the metabolic reprogramming of
tumor cells in the growth, invasion, and metastasis of EC
(Figure 1). These areas are very important for understanding
the occurrence, progression, and treatment stratification of EC.
HIF-1a PARTICIPATES IN REGULATED
GLUCOSE AND LIPID METABOLISM IN
CANCER CELLS

The metabolic phenotype of cancer cells varies in different types
of cancer; for example, some malignant tumors mainly rely on
glycolysis, whereas others exhibit an OXPHOS-mediated
phenotype (30). In general, coordinated catabolism and
anabolism are essential for tumor cells to maintain an energy
supply and biosynthesis (31). The metabolic adaptation process
of tumors is driven by several key carcinogenic signal cascades or
kinase signals, including specific genes such as cMYC (32, 33),
adenosine monophosphate-activated protein kinase (AMPK)
Frontiers in Oncology | www.frontiersin.org 3
(34), and PI3K/Akt/mTOR (35). Myc directly activates the
transcription of glycolytic enzymes, namely GLUT1, LDHA,
PKM2, and HK2; coordinates cell metabolism and cell
proliferation; and promotes cell malignant transformation (32,
33). These key rate-limiting enzymes involved in glycolysis
promote the development of drug resistance in tumor cells,
which proves the importance and effectiveness of targeted
therapy in the regulation of energy metabolism in malignant
tumor cells. AMPK restores the cellular ATP pool by promoting
catabolism and inhibiting anabolism and plays a central role in
regulating the reprogramming of cellular energy metabolism to
adapt to metabolic stress (36, 37). Inhibition of the PI3K/AKT/
mTOR/HIF-1a signaling pathway can reduce the expression of
the key glycolytic enzymes PKM2 and LDHA, thus inducing cell
death and improving the cytotoxicity of cisplatin (38). PTEN can
inhibit the activity of PI3K/AKT/mTOR pathway, and PTEN
dysfunction is the most common genetic change in EC (39).
Therefore, targeting PI3K may improve the personalized
treatment of EC patients with PTEN mutation (40). Energy for
tumor cells is provided by the high activity of aerobic glycolysis
stimulated by HIF-1a. This creates an acidic microenvironment
that promotes EMT and leads to more invasive phenotypes, such
FIGURE 1 | Working model of the role of HIF-1a/ERRa in cancer cell metabolism. Cancer cells can adapt to low oxygen conditions through the PI3K/AKT/mTOR
and AMPK signaling pathways, which regulate metabolic reprogramming. ERRa interacts with HIF-1a, enhancing the transcriptional activity of HIF-1a and promoting
the remodeling of glucose and lipid metabolism (formation of lipid droplets) in cancer cells. ERRa also enhances glutamine metabolism and lipid de novo synthesis,
promoting metabolic adaptation in cancer cells. Together, these activities stimulate tumor proliferation, metastasis, and angiogenesis. Images were made in
BioRender (Biorender.com).
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as radiotherapy and chemotherapy resistance or tumor
metastasis, which are closely related to poor clinical prognosis
(41). It is suggested that the regulation of HIF-1a may be a new
approach to overcome the drug resistance of tumor cells. Hence,
further exploration of the malignant progression of tumors
driven by HIF-1a through the above carcinogenic pathway will
contribute to the development of better treatment methodologies
for tumors.

The reprogramming of lipid metabolism has become a
marker of malignant tumors (42, 43). Lipids make up the basic
components of the cell plasma membrane and they are also
important signal molecules and energy sources. Lipid
biosynthesis plays an important role in highly proliferative
malignant tumor cells (44) (such as prostate, breast, liver, and
kidney cancers) supporting the production of cell membrane and
the regulation of its fluidity; promoting the formation of
triacylglycerides and energy storage; promoting resistance to
reactive oxygen species (ROS) damage (45, 46); and producing
signal molecules involved in cancer cell migration, inflammation,
and survival (47). These changes promote the further
development of cancer. HIF-1a-dependent changes in lipid
metabolism can promote the survival and growth of cancer
cells. Lipid droplets can promote cancer cell proliferation and
tumor growth, and there is a positive correlation between the
level of lipid droplets in tumors and a poor prognosis (48). The
accumulation of lipid droplets has been confirmed in different
types of cancers, including breast (49, 50), cervical (51), prostate
(52), and ovarian (53) cancers. Under hypoxic conditions,
because oxygen-dependent stearoyl-CoA desaturase is inhibited
(54), the ratio of saturated/unsaturated fatty acids changes, thus
affecting the integrity of cell membranes and cell function. HIF-
1a inhibits the accumulation of saturated lipids and reduces the
toxicity induced by saturated fatty acids by promoting the
expression of fatty acid synthase, triggering fatty acid synthesis
and activation, which promote the production of unsaturated
Frontiers in Oncology | www.frontiersin.org 4
fatty acids (55, 56). These findings emphasize the importance of
changes in lipid metabolism in promoting tumor development
and suggest that targeting lipid metabolism in tumor cells may be
a new approach for the treatment of patients with malignant
tumors (Table 1). However, there are still few studies on the
effects of HIF-1a on the distribution of lipid metabolism and the
reprogramming of lipid metabolism in tumor cells.
ERRa PARTICIPATES IN REGULATED
GLUCOSE AND LIPID METABOLISM IN
CANCER CELLS

ERRa can control key metabolic processes by transcriptional
regulation of different metabolic genes during cell differentiation
(65). ERRa inhibits glucose oxidation by transcriptionally
activating pyruvate dehydrogenase kinase 4 (PDK4) (66).
Inhibition of ERRa can block mitochondrial respiration and
enhance the effect of tumor chemotherapy (67). HIF-1a can
improve oxygen-dependent energy metabolism through
mitochondrial biogenesis, mainly through the signal
transduction pathway of the PGC-1a/HIF-1a/ERRa axis. This,
in turn, promotes the reprogramming of tumor metabolism and
leads to tumor metastasis and progression. Therefore, we infer
that ERRa is a key regulator of metabolic reprogramming under
glucose stress and hypoxia.

ERRa plays an important role as a nuclear transcription
factor in lipid metabolism. Increased activity of ERRa can
increase the oxidation rate of fatty acids. Genetic or
pharmacological inhibition of ERRa can reduce fat weight and
lipid accumulation and resist high fat-diet-induced obesity (68).
ERRa can also stimulate adipogenesis by increasing the
accumulation of triglycerides (69). From a metabolic
standpoint, lipid metabolism is significantly upregulated in EC,
TABLE 1 | Studies on HIF-1a regulation of glucose and lipid metabolism and promotion of gynecological malignant tumor progression.

Author Cancer
type

Main finding

Giatromanolaki
et al. (57)

EC HIF-1a is highly expressed in proliferating endometrium nuclei, which is related to tumor invasion.

Wincewicz
et al. (58)

EC Activators of transcription (STAT3) mediates the signal transduction of HIF-1a to stimulate tumor growth and maintain the invasive ability of
EC cells.

Seeber et al.
(59)

EC HIF-1a expression is often accompanied by the activation of its downstream factor GLUT-1, which makes cancer cells survive in the
hypoxic environment, and is related to aggressive tumor behavior.

Yeramian et al.
(60)

EC HIF-1a regulates the transcriptional activity of NF- kB and the accumulation of nuclear RelA in Ishikawa cells, and mediates the survival of
EC cells under hypoxia.

Ai et al. (61) Ovarian
cancer

Knockout of HIF-1a can redirect aerobic glycolysis in drug-resistant ovarian cancer cells to mitochondrial OXPHOS, resulting in cell death
through the production of ROS, thus improving the response of cisplatin-resistant ovarian cancer cells to cisplatin.

Triantafyllou
et al. (62)

Cervical
cancer

In tumor hypoxia microenvironments, HIF-1a promotes fatty acid uptake by inducing fatty acid binding protein and PPARg, inducing
phosphatidic acid phosphatase LIPIN1 production, regulating fatty acid synthesis, and promoting lipid storage by regulating the expression
of acylglycerol-3-phosphate acyltransferase 2 (AGPAT2) and LIPIN1. This results in chemotherapy resistance in tumor cells.

Gong et al. (63) EC AGR2, a member of the endoplasmic reticulum resident protein disulfide isomerase family, induces lactate dehydrogenase A (LDHA),
phosphoglycerate kinase 1 (PGK1), kallikrein 2(HK2), and enolase 1-a(ENO1) expression, glucose uptake, and lactic acid production as well
as promotes the progress of EC through the MUC1/HIF-1a pathway.

Gao et al. (64) Ovarian
cancer

As it is a key regulator of glucose metabolism in ovarian cancer cells, activation of the PI3K/AKT/HIF-1a signaling pathway plays an
important carcinogenic role in promoting the growth and metastasis of ovarian cancer.
June 2022 | Volume 12 | Article 881252
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affecting the treatment outcome and/or disease progression of
patients (70). The ERRa axis is a central regulator of metabolism
in malignant tumors, especially in BRCA (71). High levels of
ERRa activity maximize energy production by promoting
mitochondrial metabolism and angiogenesis, thus meeting the
energy metabolic needs of rapid cell proliferation (72, 73). These
observations provide a causal relationship to explain how ERRa
regulates tumor metabolism (Table 2).
HIF-1a AND ERRa CROSSTALK
IN CANCER, ESPECIALLY IN
ENDOMETRIAL CARCINOMA

Metabolic reprogramming is essential for the survival of cancer
cells in hypoxia and nutrient deficient environments.
Frontiers in Oncology | www.frontiersin.org 5
The surviving cancer cells have higher metabolic plasticity (92)
and show more malignant biological behaviors such as
invasiveness and chemotherapy resistance. The glycolytic
activity of EC cells is considerably higher than that of non-
tumor cells and contributes to the progression of EC (93).
Therefore, it is very important to screen metabolic genes
related to the progression of EC and select targeted treatments
to improve the prognosis of EC patients. Jiang et al. (94) used
The Cancer Genome Atlas database to analyze the expression of
metabolism-related genes (MRGs). In this way, they could screen
for differentially expressed MRGs (DE-MRGs) significantly
related to the prognosis of EC patients. Functional enrichment
analysis of DE-MRGs showed that most of these MRGs were
enr i ched in amino ac id , g l yco ly s i s , and g lycero l
phospholipid metabolism.

It is known that HIF-1a regulates a large group of genes/
proteins involved in cell metabolism, pH, and EMT, thus making
TABLE 2 | Studies on ERRa regulation of glucose and lipid metabolism and promotion of hromone-related tumor progression.

Author Cancer
type

Main finding

Fujimoto
et al. (74)

EC ERRa binds to steroid receptor coactivator family without any ligand, drives the transcription activity of target gene, and inhibits estrogen
response element-dependent transcription activity in the presence of estrogen, which is related to the growth and progress of EC.

McGuirk
et al. (75)

BRCA After using lapatinib to inhibit receptor tyrosine kinase, BRCA cells increased glutamine metabolism and lipid de novo synthesis, while reducing
ROS production through the PGC-1a/ERRa axis, promoting cell metabolic adaptation.

Deblois
et al. (76)

BRCA ERRa triggers the adaptive change of mitochondrial energy metabolism in drug-resistant cells by increasing glutamine metabolism and
detoxification of active oxygen required for cell survival under the condition of therapeutic stress, which leads to lapatinib resistance in BRCA.

Zou et al.
(77)

PCa ERRa can cooperate with HIF-1a to regulate angiogenesis and glycolysis, thus promoting the growth of tumor cells under hypoxia

Matsushima
et al. (78)

EC SiRNA-ERRa inhibits VEGF and cell proliferation and induces cell cycle arrest during mitosis followed by apoptosis through caspase-3 signal.

Park et al.
(79)

BRCA ERRa antagonist destroys mitochondrial function, inhibits lactic acid utilization, damages the activity of cancer cells, and increases the activity
of PI3K/mTOR inhibitor.

Audet-
Walsh et al.
(80)

BRCA PGC-1a/ERRa axis, as an inhibitor of folate cycle metabolism and purine biosynthesis, targets PGC-1a/ERRa to make BRCA cells sensitive to
folate treatment.

Huang et al.
(81)

EC ERRa directly binds to the promoter of TGFB1, thus increasing its transcription and triggering the migration and invasion of EC cells.

Sun et al.
(82)

EC Down-regulation of ERRa can inhibit TFEB, which is mediated by PGC1a and participates in the mTOR signal pathway. In addition, under the
mediation of Tcf, down-regulation of ERRa can increase the expression of Oct3/4 and participate in the Wnt signaling pathway.

Kokabu
et al. (83)

EC ERRa may play a role in the upstream of Akt and/or regulate the Akt/mTOR signaling pathway in EC. XCT790 significantly inhibits tumor
growth and angiogenesis in vivo and induces cell apoptosis.

Mao et al.
(84)

EC TAM combined with XCT790 can promote the proliferation inhibition and apoptosis of EC endothelial cells when targeting ERa and ERRa.

Yoriki et al.
(85)

EC ERRa inhibits the TGF-b-induced EC metastasis through tumor-stromal interaction.

Park et al.
(86)

BRCA ERRa inhibition interferes with pyruvate transport into mitochondria by inhibiting the expression of mitochondrial pyruvate carrier 1, revealing
that the NADPH generation pathway is a therapeutic direction for BRCA.

Chen et al.
(26)

EC Overexpression of ERRa increases the expression of PGC-1 a and the activity of TFEB in EC cells and promotes EMT.

Huang et al.
(18)

EC As a potential agonist of PPARg, ERRa inhibitor promotes cell proliferation and inhibits apoptosis through the Bcl-2/Caspase3 pathway in EC.

Schoepke
et al. (87)

PCa As a selective ERRa/g inverse agonist, SLU-PP-1072 can inhibit the Warburg effect, change the metabolism and gene expression of PCa cells,
and lead to cell cycle disorder and apoptosis.

Brindisi et al.
(88)

BRCA Cholesterol and mevalonate are related to the progression, invasiveness, and drug resistance of BRCA by activating the ERRa pathway.

Casaburi
et al. (89)

BRCA Cholesterol has been identified as a natural ERRa ligand. High cholesterol content and ERRa activity can promote ERRa-mediated proliferation
of BRCA cells and expression of metabolic target genes by producing different cytokines, thus contributing to the inflammatory environment.

Li et al. (90) BRCA ERRa enhances the resistance of BRCA to lapatinib by targeting the region of SHMT2 promoter and activating transcription and then
regulating the metabolic adaptability of mitochondria.

Casaburi
et al. (91)

BRCA Cholesterol promotes ERRa-mediated metabolic target gene expression, and increases NADPH level and cell proliferation.
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tumor cells more aggressive than that of other phenotypes (95).
Hypoxia is related to angiogenesis in EC in which the transition
frommetabolism to aerobic glycolysis (Warburg effect) and tumor
cell resistance to pyroptosis are very important for tumor growth
(96). EC patients with tumors highly expressing HIF-1a exhibit a
decreased disease-free survival. The expression of HIF-1a is an
important prognostic factor in patients with EC and is related to
myometrial invasion, histological grade, and recurrence after
radiotherapy (59, 60). However, at present, no studies have
examined the effect of differences in HIF-1a expression in
relation to the different molecular types of EC. Furthermore, the
exact mechanism underlying the role of HIF-1a in the malignant
progression of EC is not clear. Byrne et al. (97) also found that
glycolysis and lipogenesis are highly related to the malignant
phenotype of EC. Inhibition of GLUT6 expression can inhibit
glycolysis and the survival of EC cells, which reflects the key role of
energy metabolism in tumor progression.

ERR is composed of ERRa, ERRb, and ERRg and is referred to
as the central regulator of energy metabolism; its natural ligand
has not been determined (98). An imbalance in ERRa activity can
significantly affect cell metabolic homeostasis, causing metabolic
disorders and cancer. In 2006, Sun et al. proposed that an
imbalance in ERRa expression may be an important reason for
the carcinogenesis of EC (99). Subsequently, when a lentiviral
vector overexpressing ERRa was constructed and transfected into
EC cells, the proliferation of EC cells was promoted (84, 100).
XCT790 can effectively inhibit the expression of ERRa in EC. The
expression of ERRa is closely related to the proliferation and
apoptosis of EC cells (82). In 2018, it was proposed that ERRa is a
key regulator of cell metabolism and plays an important role in
gynecological endocrine-related tumors and energy metabolism
(101). A knockout of ERRa can inhibit the invasion, metastasis,
and angiogenesis of EC and promote apoptosis (83, 102).
Endogenous or exogenous inhibition of the expression and
function of ERRa has obvious anticancer effects (82). ERRa is
also expressed in BRCA, PCa, ovarian cancer, and other malignant
tumors, and the increase in ERRa expression is positively
correlated with the late progression of malignant tumors (103),
indicating that ERRa plays a regulatory role in tumor growth. Xia
et al. (104) used in vivo and in vitro experiments to regulate the
activity of ERRa. Through integration of gene expression profiles
and genome-wide chromatin immunoprecipitation techniques,
they determined the key role of ERRa in lipid and carbohydrate
metabolism and mitochondrial function under physiological and
pathological conditions. Furthermore, they were able to clarify the
targeting of ERRa as a new way to treat metabolic disorders and
other related diseases. Although a high expression level of ERRa in
EC indicates a poor prognosis, the specific mechanism of the role
of ERRa in the progression of EC has not been elucidated.

Functional studies in BRCA cells showed that ERRa can
promote cancer growth through a variety of transcriptional
regulatory networks or mechanisms, including enhancing HIF-
1-dependent hypoxic cell growth (86), activating vascular
endothelial growth factor promoting tumor angiogenesis (105),
and enhancing glycolysis producing the Warburg effect (79).
Studies by Zou et al. (77) showed that the regulation of
carcinogenicity by ERRa in PCa is a key hypoxic growth
Frontiers in Oncology | www.frontiersin.org 6
regulator and an important cofactor of HIF-1a in hypoxic
microenvironments. ERRa enhances HIF-1a signal transduction
by interacting with HIF-1a, which makes ERRa-overexpressing
PCa cells better adapted to a hypoxic microenvironment.

The activation of ERRs involves genes related to mitochondrial
biogenesis and OXPHOS. However, this enhanced mitochondrial
oxidation capacity is mainly targeted at fatty-acid metabolism
because ERRs upregulate PDK4 preventing glucose oxidation.
Since HIF-1a can activate PDK1 (106), it is essential for the
transformation from glucose oxidation via the tricarboxylic acid
cycle to glycolytic metabolism under hypoxic conditions. This
shared function of inhibiting glucose respiratory metabolism may
represent the internal relationship between ERRa and HIF-1a.
The change in glucose and lipid metabolism is an important
feature of the occurrence and development of EC. Combined with
the regulation of glucose and lipid metabolism by ERRa and HIF-
1a, the regulation of HIF-1a/ERRa may be a means to inhibit
malignant progression, such as invasion and metastasis, of EC.
THE INVOLVEMENT OF PYROPTOSIS IN
ENDOMETRIAL CARCINOMA

Cell resistance to pyroptosis is very important for tumor growth.
Pyroptosis is widely involved in the occurrence and development of
tumors, infectious diseases, metabolic diseases, nervous system-
related diseases, and atherosclerotic diseases, but its specific
regulatory mechanism is not clear (107). NOD-like receptor
family, pyrin domain-containing protein 3 (NLRP3) activation of
inflammatory bodies can activate caspase-1, which in turn, mediates
the conversion of gasdermin D (GSDMD) and pro-IL-1b into active
forms. GSDMD is a key effector of pyroptosis, forming pores in the
plasma membrane that eventually leads to cell expansion and
membrane dissolution. Pyroptosis resistance can inhibit anti-
tumor immunity and promote the development of many types of
cancers. Pyroptosis induces the production of inflammatory factors,
such as IL-1 b, which act as alarm signals to activate and recruit
immune cells to mediate the immune response. The upregulation of
GSDMD protein induces the infiltration of M1 macrophages,
CD4+, CD8+T lymphocytes, and other immune cells, and
increases the sensitivity of cells to anti-PD-1 monoclonal
antibody (108).

EC patients with POLE mutations and MSI exhibited high
expression of PD-1 and PD-L1, accompanied by a large number
of tumor-infiltrating lymphocytes, which indicates their
suitability for immunotherapy (109). Liang et al. (110) found
pyroptosis-related lncRNAs in TCGA database, which can be
used to predict the prognosis and suitability for immunotherapy
in EC. Pyroptosis-related genes in EC, such as GSDMD, are
involved in the Wnt signaling and the substance metabolism
pathways (111). Pyroptosis is closely related to the proliferation,
invasion, and metastasis of cancer cells and can affect the efficacy
of chemotherapy (112). However, the mechanisms by which
tumor cells promote pyroptosis resistance by remodeling the
energy metabolism need more exploration and confirmation,
both in vivo and in vitro.
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At present, there are various targeted therapies for EC. For
example, anti-angiogenic drugs, such as bevacizumab, combined
with vascular endothelial growth factor (VEGF), are used to
inhibit tumor growth and metastasis (113). Abnormal activation
of the PI3K/AKt/mTOR pathway is related to tumor metabolism,
cell growth, invasion and migration, and angiogenesis. As a
rapamycin analogue, ridaforolimus can effectively inhibit
mTOR, thus inhibiting tumor growth and improving the
progression-free survival of EC patients (114, 115).
Immunotherapy, such as the pembrolizumab anti-PD-1
monoclonal antibody, can inhibit tumor progression (116).
Some scholars have suggested that tumors with a mutation in
the POLE gene can exhibit the differential regulation of tumor
cell metabolism through glucose metabolism (117). Targeted
therapy for EC provides a new treatment direction for
advanced and recurrent EC. The clinical effects of
chemotherapy in EC patients are different. Chemotherapy
resistance is mediated by bypassing pyroptosis (108). The
inhibition of ERRa enhances the chemotherapeutic effect in
tumors (67). However, whether ERRa inhibition can promote
chemotherapy resistance in tumor cells by blocking
mitochondrial respiration, increasing ROS production, and
then inducing cell pyroptosis needs further research. By adding
targeted therapy, especially targeting a specific cell metabolic
process, to chemotherapy, the survival of EC can be improved.

Hypoxia can lead to malignant progression of tumor cells
through the following mechanisms: inhibiting the activity of
immune cells, providing energy support for tumor cells,
improving immune resistance of tumor cells, inhibiting
apoptosis of tumor cells, and promoting metastasis of tumor
Frontiers in Oncology | www.frontiersin.org 7
cells (118, 119). ERRa cooperates with HIF-1a to regulate
angiogenesis and glycolysis, thus promoting the growth of
tumor cells under hypoxia, while stable HIF-1a further
increases the expression of ERRa at the transcriptional level
(77). HIF-1a/ERRa interaction promotes the adaptation of
tumor cells to hypoxia, suggesting that there is a positive
circuit among HIF-1a, ERRa, and mitochondrial biogenesis.
However, in regard to the hypoxic microenvironment formed by
the rapid proliferation of tumor cells, there have been studies on
the effects of HIF-1a/ERRa interactions with glycolysis and
angiogenesis. Whether EC cells with high expression of ERRa
show enhanced anti-pyroptosis properties through interactions
with HIF-1a, or whether they can show an anti-pyroptosis effect
independent of HIF-1a, remains to be further studied. The effect
of HIF-1a and ERRa on tumor microenvironment remodeling
and chemotherapy resistance in EC is not clear, and their
interaction may be an important mechanism for EC cells to
resist pyroptosis (Figure 2).
CONCLUSION

EC is a gynecological disease accompanied by metabolic
impairment, which requires management to improve the glucose
and lipid metabolism of the patients, in addition to cancer
treatment. Complications in EC patients can be resolved
through a combined treatment strategy with inputs from
gynecological oncology, nutrition, endocrinology, cardiology,
and other disciplines. Tumor cells metabolically adapt to their
microenvironment through metabolic reprogramming to meet
their energy needs for proliferation and differentiation.
Metabolic dysfunction in the cancer microenvironment can
cause different outcomes. MRGs can be used as prognostic
markers of tumors. Inhibition of hypoxia-induced metabolic
pathways may be a new and promising therapeutic strategy. In
this review, we presented evidence for the regulatory effect of HIF-
1a and ERRa on MRGs through various signaling pathways in
malignant tumors, thus changing the energy metabolism of tumor
cells and causing tumor cell resistance to pyroptosis, clarifying the
role of key genes in metabolic pathways. With continued
exploration of natural endogenous ERRa ligands and
understanding of the regulation of HIF-1a, the key goal in the
future is to develop drugs that regulate the transcriptional activity
of HIF-1a/ERRa to prevent and treat metabolism-related
malignant tumors and other diseases. A future challenge for
cancer researchers is to transform basic research into clinical
application by designing clinical trials based on the molecular
characteristics of EC, to study novel drugs for targeted
monotherapy, or in combination with existing cytotoxic drugs.
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