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Abstract

Protein trafficking between the endoplasmic reticulum (ER) and Golgi apparatus is central to cellular homeostasis. ER export
signals are utilized by a subset of proteins to rapidly exit the ER by direct uptake into COPII vesicles for transport to the
Golgi. Norwalk virus nonstructural protein p22 contains a YXWESDG motif that mimics a di-acidic ER export signal in both
sequence and function. However, unlike normal ER export signals, the ER export signal mimic of p22 is necessary for
apparent inhibition of normal COPII vesicle trafficking, which leads to Golgi disassembly and antagonism of Golgi-
dependent cellular protein secretion. This is the first reported function for p22. Disassembly of the Golgi apparatus was also
observed in cells replicating Norwalk virus, which may contribute to pathogenesis by interfering with cellular processes that
are dependent on an intact secretory pathway. These results indicate that the ER export signal mimic is critical to the
antagonistic function of p22, shown herein to be a novel antagonist of ER/Golgi trafficking. This unique and well-conserved
human norovirus motif is therefore an appealing target for antiviral drug development.
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Introduction

Maintenance of cellular homeostasis is directly dependent on the

proper functioning of the Golgi apparatus, which is central to lipid

trafficking and protein secretion. Protein trafficking from the

endoplasmic reticulum (ER) to the Golgi is mediated by vesicles

coated in COPII protein complexes, whereas the retrograde Golgi-to-

ER pathway is mediated by COPI-coated vesicles [1]. Upon export

from the ER at ER exit sites (ERES), cellular proteins accumulate and

traffic into budding COPII vesicles, which are minimally composed

of the GTPase Sar1 and heteromeric complexes of Sec13/31 and

Sec23/24 [2,3]. COPII vesicles then traffic along microtubules

through the ER/Golgi intermediate compartment to the cis Golgi,

where vesicles lose their COPII coat, fuse with the Golgi, and

progress to the trans Golgi [4–6]. A subset of cellular and viral proteins

that rapidly exit the ER employ either di-hydrophobic [7], di-basic

[8] or di-acidic [9,10] ER export signals that mediate their specific

uptake into COPII vesicles by direct interaction with either Sec24 or

Sar1 at ERES. Export of proteins from the ER and subsequent

trafficking of COPII vesicles to the Golgi is mediated by a number of

cellular factors, and proteins of both cellular and microbial origin are

known to antagonize this pathway.

Perhaps the most well-known ER/Golgi trafficking antagonist,

the fungal metabolite brefeldin A (BFA) targets the GTPase ADP-

ribosylation factor 1 (Arf1) responsible for COPI vesicle budding at

the Golgi by stabilizing an Arf/Sec7 intermediate during

nucleotide exchange [11]. This prevents nucleotide dissociation

and ultimately deactivates Arf1 to induce a global inhibition of

cellular protein secretion. The 3A proteins encoded by the

picornaviruses coxsackievirus B3 (CVB3) and poliovirus (PV) also

target Arf1. 3A inhibits GBF1, a guanine exchange factor

necessary for Arf1 activition [12,13], resulting in Golgi disruption

and inhibition of protein secretion. Consequently, surface

expression of MHC Class I decreases and the normal cytokine

release that aids in clearance of infected cells is inhibited [14–16].

This results in a prolonged period of viral replication before the

infected cell can be cleared by the immune system [12,15].

Human noroviruses are the causative agent of approximately 23

million annual cases of gastroenteritis in the U.S. and are classified

as Category B biodefense pathogens [17,18]. Noroviruses are

composed of five genogroups within the family Caliciviridae, and

viruses in genogroups I (GI) and II (GII) are the most frequently

detected in humans [19–21]. Noroviruses code for six nonstruc-

tural and two structural proteins [22]; however, one of these
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proteins, the nonstructural protein p22, has no identified function

in any calicivirus, although an early study on the immune response

following infection with Norwalk virus (NV), the prototype human

norovirus and calicivirus, demonstrated an immune response

directed against p22 in convalescent sera [23]. The study of p22

and other human norovirus proteins is complicated by the lack of

both an efficient tissue culture system to grow noroviruses and a

reverse genetics system to directly examine protein function during

viral infection.

Replication of two cultivatable animal caliciviruses, feline

calicivirus (FCV) and murine norovirus (MNV), induces cellular

membrane rearrangements as well as alterations in Golgi

architecture [24,25], suggesting that Golgi disassembly may be a

common consequence of infection. In support of this, FCV p30, a

homologue of NV p22, is membrane associated and independently

induces ultrastructural changes in several secretory pathway

organelles [26], thus proposing ER-derived membranes as a

source of membranes to anchor viral genome replication.

Similarly, Fernandez-Vega and colleagues demonstrated that the

NV nonstructural protein p48 induces Golgi disassembly [27];

however, the possibility of additional viral proteins contributing to

alterations in Golgi phenotype and antagonism of protein

secretion, as is the case for several picornaviruses [28,29], has

not been examined.

In the current study, we asked if the Golgi rearrangements

observed during animal calicivirus and picornavirus replication

also occur during human norovirus replication, and if p22 has a

role in this process. We discovered that p22 has a highly conserved

motif that mimics a traditional di-acidic ER export signal and is

required for inhibition of ER/Golgi trafficking. This represents a

novel approach to antagonize ER/Golgi trafficking, as no other

cellular or microbial protein has been described to use a motif

similar to an ER export signal to gain access to and antagonize the

secretory pathway.

Results

The Golgi apparatus is disassembled during NV
replication

Due to Golgi rearrangements observed during FCV [24] and

MNV [25] replication, we first determined if the Golgi is

morphologically changed during human NV replication. Golgi

integrity was examined in Huh7 cells 24 hours post-transfection

(hpt) of NV RNA that results in a single cycle of viral replication

[30]. The Golgi was examined in cells that expressed the viral

capsid protein VP1, which is made late in replication and serves as

a marker for cells replicating NV. As evidenced by the elongated,

peri-nuclear re-localization of Golgi marker proteins (asterisks,

Figure 1A and B), which are characteristic of the disassembled

Golgi observed during mitosis [31,32], the Golgi was disassembled

in 53 of 56 (95%) and 42 of 46 (91%) VP1 positive cells based on

immunostaining of the cis and trans Golgi marker proteins GM130

and golgin-97, respectively. This was in contrast to the

phenotypically normal, well-compact and condensed Golgi

observed in almost all (97%) of non-transfected cells. These results

indicate that, like other caliciviruses, NV replication induces

disassembly of the Golgi apparatus.

p22 mediates Golgi disassembly and inhibits protein
secretion

The NV nonstructural proteins are produced from a self-

cleaving polyprotein and are arranged in an order similar to that

Figure 1. NV replication induces Golgi fragmentation. Viral RNA, purified from the stool of a human volunteer infected with Norwalk virus, was
transfected into Huh7 cells grown on coverslips. At 24 hours post-transfection (hpt), cells were fixed and stained for the viral protein VP1 (Alexa 488;
green fluorescence) and either the cis (A) or trans (B) Golgi with antibody against GM130 or golgin-97 (Alexa 594; red fluorescence), respectively.
Nuclei were stained with DAPI (blue fluorescence) and imaged by deconvolution microscopy. * indicate cells with disassembled Golgi.
doi:10.1371/journal.pone.0013130.g001
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of the picornavirus polyprotein [33]. p22 is located within this

polyprotein in the same location as the picornavirus 3A protein;

however, these proteins share no amino acid identity. Although 3A

and p22 also differ considerably in molecular weight (10 kDa vs.

22 kDa, respectively) and predicted secondary structure [7% b-

sheet and 62% a-helix vs. 13% and 45%, respectively, as predicted

by PSIPRID (data not shown)], we hypothesized that p22

contributes to changes in Golgi morpohology during Norwalk

virus replication, as is the case for the 3A protein, which induces

Golgi disruption in several picornaviruses [28,34]. To explore this

possibility, the subcellular localization of p22 was characterized by

expressing p22 with an N terminal GFP tag in 293T cells by

transient transfection, and we used an N terminally GFP-tagged

poliovirus 3A protein as a positive control. At 6 hpt, p22 localized

to the cis Golgi (Figure 2A); however, by 24 hpt p22 showed only

minimal cis Golgi localization and instead was localized immedi-

ately adjacent to a phenotypically disassembled Golgi. Similar

results were observed when analyzing the trans Golgi (Figure S1).

To characterize the Golgi phenotype in cells expressing 3A and

p22, we categorized the morphology of the Golgi in cells as either

intact (well-condensed and compact Golgi adjacent to the nucleus),

fragmented (non-compact and peri-nuclear, but easily detectable

Golgi; indicated by carets) or dispersed (extremely diffuse and

phenotypically unapparent Golgi; indicated by asterisks), the latter

two both constituting disassembled Golgi. In cells expressing GFP

alone, Golgi fragmentation and dispersion were only observed in a

small subset of cells (Figure 2A and B). In contrast, transient

expression of the poliovirus 3A protein (PV 3A) induced significant

fragmentation and dispersion of the Golgi in 18% (p = 0.02) and

62% (p = 0.003) of cells, respectively, compared to the Golgi in

GFP-transfected cells. Similarly, expression of NV p22 led to a

significant increase in the presence of fragmented, though not

dispersed, Golgi present in 43% (p = 0.006) and 11% (p = 0.09) of

cells, respectively. The significant differences between 3A and p22

in Golgi fragmentation (p,0.01) and dispersion (p,0.003)

suggested that the ultimate effect of p22 on Golgi architecture

was markedly different from that of 3A, possibly reflecting a

different mechanism to induce Golgi disassembly.

We next sought to determine the biological relevance of the

observed Golgi structural alterations on cellular protein secretion.

To accomplish this, a secreted alkaline phosphatase (SEAP)

reporter assay was utilized in which GFP-tagged p22 and SEAP

Figure 2. NV p22 induces Golgi disassembly and inhibits protein secretion. (A) Cells expressing GFP, GFP-tagged poliovirus (PV) 3A protein,
or GFP-tagged Norwalk virus (NV) p22 were stained for the cis Golgi marker protein GM130 (Alexa 594-conjugated secondary antibody, red
fluorescence) at the indicated times post-transfection. Nuclei were stained with DAPI (blue fluorescence), and cells were imaged by deconvolution
microscopy. * indicates cells with dispersed Golgi; ‘ indicates cells with fragmented Golgi. (B) Quantitation of Golgi status in cells expressing the
indicated proteins at 24 hours post-transfection (n = 3; minimum of 50 cells per experiment; 6SD). Differences between observed phenotypes are
detailed in the text. Results are representative of four independent experiments. (C) Cells were transfected with the plasmid pCMV-UTR-SEAP
expressing GFP, GFP-tagged PV 3A, or GFP-tagged NV p22. Secreted SEAP was quantified (see Materials and Methods section) as a representative
indicator of cellular protein secretion at the indicated time points, and was defined by the equation: Secreted SEAP = (SEAPextracellular/(SEAPextracellular

+ SEAPintracellular)) 6100. Data are representative of three independent experiments (n = 3 for each time point; 6SD).
doi:10.1371/journal.pone.0013130.g002
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were co-expressed from a di-cistronic vector, pCMV-UTR-SEAP

[28]. This vector encodes the gene of interest under a CMV

promoter and SEAP, a reporter protein that is rapidly secreted

from cells and is a quantitative surrogate of protein secretion [35],

which is translated via an internal ribosomal sequence. All proteins

expressed using this vector system had N terminal GFP tags, which

has been reported to not affect the ability of PV 3A to inhibit

protein secretion [12]. At various times post-transfection, media

and cell pellets were assayed for extra- and intra-cellular enzymatic

SEAP activity, respectively; total SEAP levels did not significantly

differ between all proteins expressed at any time point tested. For

all constructs, enzymatic SEAP activity was first detectable over

background in both fractions at 6 hpt. Expression of GFP alone

led to ,75% secreted SEAP throughout the assay (Figure 2C),

whereas expression of PV 3A led to a significant reduction of

SEAP secretion (p,0.001) with maximal reduction to 38%, or

53% of GFP alone levels, at the final time point, which is similar to

previous results [13,28,36]. With similar kinetics to 3A, NV p22

also ultimately inhibited SEAP secretion to 34%, or 48% of GFP

alone levels. From this, we concluded that, despite their differing

specific effects on Golgi phenotype, NV p22 is able to inhibit

SEAP secretion, and therefore cellular protein secretion, to levels

similar to PV 3A.

To gain a better understanding of potential ultrastructural

alterations induced by p22, cells expressing GFP or GFP-p22 were

flow sorted for GFP expression at 24 hpt. After 24 hours of

recovery following flow sorting, and therefore 48 hpt, cells were

fixed and thin sections were visualized by electron microscopy

(EM). After flow sorting, cells expressing GFP alone had intact and

peri-nuclearly localized Golgi with cisternal stacks clearly visible in

31 of 59 (52%) cells examined (Figure 3A, arrows). In contrast,

cells expressing GFP-p22 had detectable Golgi stacks in just 4 of

57 (7%) cells examined. Instead, GFP-p22 cells exhibited an

abundance of large vacuoles, loose single membranes (Figure 3B,

asterick), and double-membrane structures (Figure 3B, arrow-

heads). Many of these structures had what appeared to be cargo

inside them, but the nature of this cargo was unclear as these

structures were much larger than would be expected for those

containing normal secretory pathway cargo. These results

confirmed the immunofluorescence observations of a disassembled

and phenotypically abnormal Golgi, demonstrating that expres-

sion of p22 led to rearrangements and alterations to various

components of the secretory pathway, as would be expected

during antagonism of this pathway.

Amino acids 50–148 mediate Golgi localization of p22
We next determined which regions of p22 are responsible for

Golgi localization and/or fragmentation. N and C terminal

deletion mutants of p22 with N-terminal GFP tags were generated

(Figure 4A) with respect to predicted a-helices and b-sheets. GFP-

Figure 3. Expression of NV p22 induces alterations in secretory pathway ultrastructure. At 24 hours post-transfection, cells expressing
GFP (A) or GFP-p22 (B) were harvested and flow sorted for expression of GFP. Twenty-four hours after re-plating, cells were fixed and prepared for
visualization by electron microscopy. The boxed regions represent the area magnified to the right. Left scale bars represent 2 mm, right scale bars
represent 0.5 mm. N = nucleus; black arrows indicate intact Golgi cisternae; black arrowheads indicate double-membrane vesicles; the asterisk
indicates free membranes.
doi:10.1371/journal.pone.0013130.g003
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tagged deletion mutants encoding amino acids 50–148 localized to

the Golgi (summarized in Figure 4A), whereas constructs that

lacked either amino acids 50–102 or 103–148 failed to specifically

localize to the Golgi; none of the deletion mutants tested were able

to induce Golgi disassembly equivalent to wildtype p22.

Expression of amino acids 50–102 localized non-specifically

throughout cells (Figure 4B), in contrast to amino acids 103–

148, which predominantly exhibited a reticular pattern through-

out the cytoplasm suggestive of general intracellular membrane

localization. When these regions were expressed together as

p22(50–148), the protein was predominantly Golgi localized and

the Golgi was phenotypically intact.

We next examined the factors between amino acids 50–148 that

mediate the subcellular localization of p22. Computational analyses

of full-length p22 with PHDhtm (available online at www.

predictprotein.org [37]) predicted an amphipathic a-helical trans-

membrane (TM) domain between amino acids 112 and 127. A

membrane association domain (MAD) within p22 would provide

further similarity to the picornavirus 3A protein, which encodes an

amphipathic a-helix that acts as both a TM domain and a MAD at

the C terminus of the protein [38]. The localization of p22(103–148)

and p22(50–148) compared to p22(50–102) (Figure 4B) supported

the hypothesis that p22 localizes to the Golgi in part due to

membrane association contributed by this domain.

To determine if amino acids 103–148 mediate membrane

association of p22, we expressed GFP alone, GFP tagged 3A or

p22, or various deletion mutants of p22 in 293T cells and isolated

cytosolic and membranous fractions. As expected, GFP was

present solely in the cytosolic fraction and PV 3A solely in the

membranous fraction of cells (Figure 4C). p22 was also present in

the membranous fraction, confirming that it is a membrane-

associated protein. Only the p22 deletion mutants that contained

amino acids 103–148 were present in the membranous fraction of

cells, including a construct encoding amino acids 103–148 alone;

all constructs that did not contain amino acids 103–148 were

present in the cytosolic fraction. This indicated that residues 103–

148 are responsible for membrane association of p22, likely due to

an amphipathic a-helix between amino acids 112–127.

p22 contains an ER export signal mimic that is highly
conserved in human noroviruses

Because amino acids 103–148 alone resulted in membrane, but

not Golgi, localization, we next examined the sequence between

amino acids 50–102 for additional factors that might facilitate

Golgi localization of p22. A multiple sequence alignment of p22

and its homologues from the 72 available full-length human

norovirus sequences from viruses classified in different genogroups

(GI.1 to GII.12) found 13% amino acid identity between all

Figure 4. Amino acids 50–148 are sufficient to mediate Golgi localization of NV p22. (A) GFP tagged N and C terminal deletion mutants of
p22 were generated and, following expression in cells for 24 hours, were scored for their ability to localize to the cis Golgi. Amino acid numbering
corresponds to NV sequence (NC_001959). (B) Cells expressing GFP-tagged p22(50–102), p22(103–148), and p22(50–148) were immuno-stained with
antibody against the cis Golgi marker protein GM130 (Alexa 594-conjugated secondary antibody, red fluorescence), stained with DAPI (blue
fluorescence), and imaged by deconvolution microscopy. (C) Cells expressing GFP, GFP-tagged PV 3A, GFP-tagged NV p22, or the indicated deletion
mutants of p22 were harvested at 24 hpt. Cytosolic and membranous fractions of cells were collected and proteins were detected by western blot
with monoclonal antibody against GFP.
doi:10.1371/journal.pone.0013130.g004
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proteins (summarized in Figure 5A). This defined p22 as the most

variable protein in human noroviruses [39]. Despite this, two

regions within amino acids 50–148 showed clear sequence

conservation. The first region was the MAD (Figure 5A, blue

box), indicating that this domain is well-conserved amongst

homologues of p22 and likely serves a similar function between

genogroups. The second was a YXWESDG motif (Figure 5A, red

box), where X is any amino acid and W is a bulky, hydrophobic

residue (e.g. M, I or L), which was fully conserved in 65 of the 72

(90%) sequences available for examination (summarized in

Figure 5A). Unexpectedly, conservation of this motif was limited

to p22 homologues of human noroviruses. It was not present in

either the MNV or FCV homologues of p22, both of which exhibit

very low amino acid identity with NV p22, and was similarly

absent in the 3A protein of poliovirus and coxsackievirus B3.

Further examination revealed that the YXWESDG motif resem-

bled the criteria for a di-acidic ER export signal, which typically

contains a YXXW motif immediately proximal to two acidic

residues separated by a single amino acid [e.g. YXXI(E/D)X(E/

D)], all of which are located on the cytosolic side of a TM domain

(Figure 5B) [9,10]. Such signals increase the rate of protein export

from the ER into COPII vesicles and onward to the Golgi

[9,10,40].

To explore if this conserved norovirus motif could play a role in

the previously demonstrated inhibition of cellular protein secretion

by p22 (Figure 2C), individual alanine mutations were made

within each of the conserved residues within the putative ER

export signal of p22 and tested as before using the SEAP system.

Mutations within the S, D and G residues had no effect on the

ability of p22 to inhibit cellular protein secretion (Figure 5C);

however, mutation of both the Y and E residues led to

intermediate levels of protein secretion. When these two residues

were combined into a single AXWASDG construct, SEAP

secretion at 36 hpt was not statistically different from that of

GFP alone (p = 0.08). Total SEAP expressed by all p22 mutants

did not significantly differ from that of wildtype p22 and similar

levels of all p22 proteins were expressed, as confirmed by western

blot analysis of intracellular fractions at 36 hpt (Figure S2),

Figure 5. A conserved noroviral ER export signal is necessary for p22 to inhibit protein secretion. (A) Amino acids 50–148 from NV p22
were aligned with homologues [‘‘p22-like (p22L) proteins’’] from representative genogroup 1 (GI) and genogroup 2 (GII) human noroviruses of
various genotypes. The figure illustrates six of 72 sequences analyzed. Conserved residues are shown in bold; the blue box indicates conservation of
the membrane association domain (MAD); the red box indicates conservation of the YXWESDG motif. NV is Norwalk virus (NC_001959), CV is Chiba
virus (AB042808), HV is Hawaii virus (U07611), SMV is Snow Mountain virus (AY134748), U201 is Saitama U201 virus (AB039782), and MD145 is MD145
virus (AY032605). (B) Alignment of NV p22 with various cellular and viral proteins that contain an ER export signal. VSV G is the vesicular stomatitis
virus glycoprotein, LAP is lysosomal acid phosphatase, VZV GPI is varicella zoster virus glycoprotein I, and CD3c is a component of the T cell receptor.
Adapted from Nishimura and Balch, 1997 [9]. (C) Cells were transfected with the plasmid pCMV-UTR-SEAP expressing GFP, GFP-tagged NV p22, or the
indicated mutants within the ER export signal of p22. Secreted SEAP was quantified (see Materials and Methods) as a representative indicator of
cellular protein secretion at the indicated time points and was defined by the equation: Secreted SEAP = (SEAPextracellular)/(SEAPextracellular +
SEAPintracellular) 6100. Data are representative of three independent experiments (n = 3 for each time point; 6SD). (D and E) p22 with the YXWESDG
motif mutated to AXWASDG (D; E, bottom panels) or wildtype NV p22 (E, top panels) were expressed as GFP fusion proteins. Cells were fixed at
24 hpt and stained with antibody against the cis Golgi marker protein GM130 (D) or the endoplasmic reticulum marker protein calnexin (E) (Alexa
594-conjugated secondary antibody, red fluorescence). Nuclei were stained with DAPI (blue fluorescence) and cells were imaged by deconvolution
microscopy. The inset in E is an 8X magnification of the boxed region.
doi:10.1371/journal.pone.0013130.g005
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showing that the observed decreases in inhibition of protein

secretion were not due to changes in protein expression or

stability.

To examine Golgi phenotype in cells expressing the AX-

WASDG mutant of p22, we next explored the phenotype of the

Golgi in cells expressing this construct. By electron microscopy at

48 hpt and after flow sorting, cells expressing p22(AXWASDG)

had wildtype Golgi (data not shown) with intact cisternae present

in 26 of 56 (46%) cells, similar to the frequency of intact Golgi in

the presence of GFP alone. Consistent with this observation and

the inability of p22(AXWASDG) to inhibit SEAP secretion, the

Golgi was intact in cells expressing p22(AXWASDG) by immuno-

fluorescence at 24 hpt (Figure 5D). Moreover, the mutant was

much more diffuse throughout the cytoplasm of cells with few to

no puncta, and exhibited a prominent reticular pattern suggestive

of ER localization. To confirm this observation, we next stained

cells expressing wildtype p22 or p22(AXWASDG) for the ER

marker protein calnexin, the use of which was validated by

complete co-localization with protein disulfide isomerase (Figure

S3), another ER marker protein.

Wildtype p22 did not co-localize with the ER-marker protein

calnexin (Figure 5E), as would be expected for a protein that

utilizes an ER export signal [40,41]. In contrast, the AXWASDG

construct of p22 exhibited a more diffuse and reticular staining

pattern, much of which overlapped with the ER (Figure 5E, inset),

suggesting that the mutated residues were either re-localizing the

protein to the ER or slowing the trafficking of the protein from the

ER. Constructs that had individual mutations within the Y and E

residues had intermediate ER localization, and a construct that

had both the glutamic and aspartic acid residues mutated to

alanine exhibited ER localization and SEAP secretion equivalent

to that of the YXWASDG construct (data not shown). These data

indicate that the Y and E residues within the conserved

YXWESDG motif are necessary for the proper localization of

p22 and may constitute a unique arrangement of an ER export

signal.

Taken together, these data demonstrate that despite altered

trafficking within the secretory pathway, p22(AXWASDG) that

was not ER-localized appeared to be retained at the Golgi,

reflecting the ability of ER-localized proteins to be non-specifically

trafficked from the ER to the Golgi in the absence of a specific

export signal [9,10,40]. This indicates that the Y and E residues of

the YXWESDG motif together are critical for the cellular

localization of p22, as well as inhibition of protein secretion and

Golgi disassembly.

Although the conserved YXWESDG motif was clearly critical to

the cellular effects exhibited by p22, two aspects of this signal

remained unclear: 1) if this motif is indeed a functional ER export

signal; and 2) if this motif alone is sufficient to antagonize ER/

Golgi trafficking. To answer both of these questions, we next

directly tested if the conserved motif within p22 could functionally

substitute for a bona fide ER export signal. To do this, the well-

characterized ER export signal within the vesicular stomatitis virus

glycoprotein (VSV G) was replaced with either the conserved

motif found within p22 (G/p22), the mutated p22 signal that

abrogates the downstream effects of p22(G/AXWA), or a construct

of VSV G that has the entire ER export signal mutated to all

alanines (G/6xA) and has a significantly decreased rate of ER

export [40] (Figure 6A). The efficiency of ER export of VSV G or

the various chimeric or mutant G proteins was examined by a

previously described technique [9,10,40,42] in which newly made

protein is metabolically labeled with 35S-methionine. At the

indicated time points, G is purified and digested with EndoH,

which only digests G that has not yet reached the Golgi, resulting

in a shift in its apparent molecular weight following resolution by

SDS-PAGE (Figure 6B). The percent of G that is resistant to

EndoH allows quantitation of the amount of protein that is ER-

associated compared to protein that had reached the Golgi,

thereby yielding a direct measure of ER export efficiency.

As expected, wildtype VSV G rapidly became resistant to

EndoH digestion, whereas G(6xA) exhibited a significant decrease

in kinetics of ER export compared to wildtype G [p,0.00001 for

all time points except 0 minutes post-pulse (mpp)] (Figure 6C). In

contrast, G/p22 demonstrated ER export statistically indistin-

guishable from wildtype VSV G (p$0.07 for all time points except

Figure 6. The ER export signal mimic of p22 can substitute for
the signal of VSV G. (A) Summary of the sequence of the wildtype,
mutant, and chimeric VSV G proteins used. Critical residues of the VSV G
ER export signal and homologous regions of p22 are shown in bold.
(B) Representative individual samples from EndoH sensitivity assay of
VSV G proteins. Wildtype (G), mutant [G(6xA)] and chimeric (G/p22 and
G/AXWA) VSV G proteins were metabolically labeled with 35S-
Methionine at 24 hours post-transfection and incubated for the
indicated period of time, harvested in lysis buffer, immuno-precipitated
with monoclonal antibody against the luminal domain of VSV G and
digested with endoglycosidase H (EndoH). R = EndoH resistant; S =
EndoH sensitive. (C) Cells were transfected with plasmids encoding the
indicated constructs of VSV G. At 24 hours-post-transfection, cells were
labeled with 35S-Met and at various times post-pulse cells were
harvested, immuno-precipitated with antibody against the luminal
domain of VSV G and assayed for their sensitivity to EndoH. Data are
composite (mean 6 SD) of six individual samples (n = 6) for each time
point from two independent experiments.
doi:10.1371/journal.pone.0013130.g006
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0 mpp), indicating that the conserved motif found within p22 can

substitute for the signal found within G and is therefore a

functional ER export signal. In contrast, and similar to G(6xA), G/

AXWA had significantly decreased kinetics of ER export (p#0.001

for all time points except 0 mpp). The ability of G/AXWA to

ultimately become resistant to EndoH digestion more efficiently

than G(6xA) is likely attributable to the presence of the aspartic

acid residue on G/AXWA, which has previously been shown to

improve ER export efficiency compared to alanines alone

[9,10,40]. In addition, the Golgi was phenotypically intact in cells

expressing both wildtype G and G/p22 (data not shown),

suggesting that protein trafficking is not inhibited due solely to

the presence of the YXWESDG motif.

Taken together, these data suggest that the motif found within

p22 can function for the well-characterized ER export signal

found within VSV G and thus this motif constitutes a true ER

export signal. For this reason, we henceforth refer to the

YXWESDG motif within p22 as a mimic of an ER export signal,

or MERES, motif. In addition, mutation of two residues within the

MERES motif that are critical to the function of p22 is sufficient to

decrease ER export efficiency. This observation coupled with the

inability of the MERES motif alone to induce Golgi disassembly

when expressed on VSV G demonstrated that it alone is

insufficient to antagonize ER/Golgi trafficking.

p22 targets COPII, but not COPI, trafficking
We lastly sought to determine, first, what is the fate of the cargo

in the secretory pathway? And second, does p22 target the

anterograde or retrograde pathway of ER/Golgi trafficking? To

answer both of these questions, we utilized the SEAP vector

described above to monitor the localization of COPI and COPII

vesicle marker proteins with respect to secretory pathway cargo, in

this case again monitoring SEAP itself as the cargo, and alterations

that occur due to the presence of p22.

The 3A protein from several picornaviruses inhibits protein

secretion by deregulating COPI vesicle budding from the cis Golgi

[12,13,43]. To determine if p22 might utilize a similar mechanism

of action, the phenotype of COPI vesicle transport in cells

expressing p22 was explored by immunofluoresence of the COPI

marker protein b-COP. In the presence of GFP alone, SEAP was

present only in an intact Golgi, where COPI puncta are

prominently, though not exclusively, localized (Figure 7A). As

expected, SEAP was prominently retained in cells expressing both

PV 3A (Figure 7B) and NV p22 (Figure 7C), although with

different phenotypic localizations. In 3A-expressing cells, COPI

puncta were diffuse and unapparent, and SEAP was retained in

diffuse, minimally punctate cellular structures reminiscent of Golgi

that has been redistributed into the ER due to antagonism of

trafficking by 3A, as has been reported previously [12,34,44]. In

contrast, COPI puncta in cells expressing p22 were apparent but

re-localized widely throughout the cytoplasm, demonstrating a

failure of these vesicles to properly localize and/or traffic within

cells. SEAP in p22-positive cells was present both in discrete

punctate vesicles that did not co-localize with COPI puncta, and

also in peri-Golgi clusters that did co-localize with COPI puncta.

This suggested that SEAP, and therefore cellular cargo, was being

retained in non-COPI puncta and at a cis Golgi site due to the

expression of p22. This suggested that the retrograde, Golgi-to-ER

arm of the secretory pathway was intact, but an aspect of the

forward pathway was non-functional in p22-expressing cells.

These data demonstrate that, in contrast to 3A, p22 does not

specifically target COPI trafficking, but does induce cellular cargo

retention between the ER and Golgi.

Due to these observations and because ER export signals

promote the rapid and direct uptake of cargo into COPII-coated

vesicles, which are necessary for ER-to-Golgi protein trafficking,

we hypothesized that p22 is acting on the forward, ER-to-Golgi

trafficking pathway to inhibit COPII vesicle budding or trafficking

to the Golgi to thereby induce Golgi disassembly and inhibit

protein secretion. To test this hypothesis, we again examined the

specific sub-cellular localization of the retained SEAP that was

present in discrete cytoplasmic puncta. Under the same di-

cistronic SEAP expression system, in the presence of GFP alone

SEAP was again localized exclusively in a phenotypically intact

Golgi with COPII puncta immediately surrounding it, although

with a near complete lack of co-localization with COPII puncta

(Figure 8A). In contrast, in the presence of p22 SEAP was localized

in peri-nuclear puncta (Figure 8B), similar to the phenotype of a

disassembled Golgi previously described (Figure 2A). Both SEAP

and p22 also co-localized with COPII puncta that were also

prominently re-localized to the same presumably peri-Golgi

structures, although there was some diffuse, likely ER-localized,

COPII staining that did not localize with either p22 or SEAP.

Additionally, these discrete p22-positive puncta co-localized with

SEAP and COPII vesicles (Figure 8B, inset). This suggested that

p22 and SEAP are retained with COPII puncta that have properly

budded from the ER, but have been mislocalized and did not

properly traffic into the Golgi. Due to the apparent size of the

p22/SEAP/COPII puncta observed by immuno-fluorescence, it is

tempting to speculate that the cellular vesicles with cargo inside

them that were observed by EM (Figure 3B) may be enlarged

COPII puncta that were mislocalized within cells. When the

AXWA mutant of p22 was expressed, SEAP and COPII puncta

both returned to a wild type distribution (Figure 8C) that was

phenotypically indistinguishable from cells expressing GFP alone.

This demonstrated that, in the presence of p22 and dependent

upon the MERES motif, both COPII puncta and their cargo are

mislocalized, suggestive of a failure of vesicles to either traffic to or

fuse with the Golgi apparatus.

Discussion

We have described for the first time a novel function for the

Norwalk virus nonstructural protein p22. The major new findings

of this study can be summarized as follows: 1) independent

expression of p22 disassembles the Golgi, which also occurs during

NV replication, and inhibits cellular protein secretion; 2)

subcellular localization of p22 depends on a motif that mimics a

cellular ER export signal in both sequence and function, which we

have named a MERES motif; and 3) p22 depends on the MERES

motif likely to antagonize COPII vesicle trafficking, resulting in

Golgi disassembly and an inhibition of cellular protein secretion.

Due to the observed trafficking of p22, we propose that p22 is

initially localized to the membranes of the secretory pathway via

amino acids 103–148, which contain a membrane association

domain. The MERES motif then mediates the uptake of p22 onto

COPII vesicles, which mislocalize within cells and inhibit, by an

as-of-yet undetermined mechanism, proper trafficking to or fusion

with the Golgi. Restricting the proper flow of COPII vesicles then

induces disassembly of the Golgi and ultimately results in an

inhibition of cellular protein secretion.

The MERES motif found within p22 is somewhat unconven-

tional for an ER export signal in that p22 does not encode a signal

sequence to mediate ER import, is not glycosylated, and is not

exclusively ER localized at any point during expression (Figure 4D

and data not shown). Moreover, it has several unique features

compared to other known di-acidic ER export signals. First,
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instead of the tyrosine residue being located between the MAD

and the acidic residues, it is located N terminal to the acidic

residues and MAD. Second, instead of encoding two amino acids

between the Y and W residues, p22 encodes only a single residue.

Third, most, though not all, ER export signals are located towards

the extreme C terminus of proteins, whereas the signal found

within p22 is located in the middle of the protein. The human

asialoglycoprotein receptor H1 subunit is the only other protein

described to have this arrangement of a di-acidic ER export signal

[9]. Additionally, we have no data to support any portion of p22

being present inside the lumen of the ER and instead p22 appears

to be a peripheral membrane protein based on sodium carbonate

extraction (data not shown). For these reasons, the YXWESDG

motif found within p22, though similar in sequence and function

to a traditional di-acidic ER export signal, may in reality simply

mimic the function of these signals to exploit the cellular

machinery responsible for protein secretion in order to recruit

p22 to COPII vesicles. This lends support to the nomenclature of

this motif being a mimic of an ER export signal, as it shares many

of the features and effects of a traditional ER export signal, but

ultimately has a unique composition and function.

Furthermore, p22 seems to depend on the MERES motif to

function as a secretory pathway inhibitor; however this motif alone

is not responsible for antagonism, as replacement of the ER export

signal from VSV G with the MERES motif functionally restored

ER export efficiency without any obvious impediment. In support

of this, none of the deletion mutants of p22 induced Golgi

disassembly, although amino acids 50–148 were sufficient to

mediate Golgi localization. Similarly, these same residues were

sufficient to mediate COPII localization, but do not lead to the

mislocalization of COPII puncta (data not shown) that was

observed for full length p22. Taken together, these data suggest

that the MERES motif of p22 alone is necessary but not sufficient

to inhibit the secretory pathway. A second as-of-yet uncharacter-

ized factor, contained within or dependent on the N and/or C

termini based on deletion mutant experimentation, is required as a

subsequent step in secretory pathway antagonism. This idea is

substantiated by chimeric G/p22 properly trafficking to the Golgi

and becoming resistant to Endo H digestion with kinetics

equivalent to wildtype G. Possibilities for the function of this

second factor are many, including binding to and/or disrupting a

cellular tethering protein [45,46] or a member of the p24 family

that covers COPII vesicles [47], or antagonizing SNARE-

mediated vesicle fusion by interaction with a regulatory protein

such as VAP-A/B [48], all of which are critical components of

ER/Golgi trafficking. This latter possibility is especially attractive,

as VAP-B has previously been demonstrated to be a binding

partner for another Norwalk virus nonstructural protein [49], and

thus may be an over-arching target of the secretory pathway by

noroviruses. Both of these possibilities are currently under

investigation as potential targets for p22 and as scaffolding factors

upon which noroviruses may anchor their genome replication.

The data presented in this study support, but do not prove, that

p22 targets COPII vesicle trafficking; this is further complicated by

the examination of cells by immunofluorescence primarily at

24 hpt, which may not reflect steady-state localization. Proving

this mechanism will require demonstrating a specific binding to or

inhibition of the trafficking of COPII vesicles using in vitro assays.

Unfortunately, these studies have not been possible due to the

inability of producing purified p22 for such studies as well as the

lack of an antibody to p22 that allows for immunoprecipitation

assays. Therefore, until a direct interaction is demonstrated, it

remains possible that p22 could target a non-COPII aspect of the

secretory pathway to mediate inhibition. p22 does not activate

Arf1 or Sar1 (data not shown), making targeting of the formation

of COPI vesicles in the same manner as PV and CVB3 3A, or

COPII vesicles by a unique approach, unlikely. A trans Golgi

mechanism of action seems similarly unlikely based on lack of

localization of wildtype p22 with the trans Golgi marker protein

golgin 97 (Figure S2); the same is also true for possible targeting of

endosomes by p22 (data not shown). Thus, although there are

many possible alternative explanations for the observed effects of

p22, specific targeting and mislocalization of COPII vesicles is at

present the most likely explanation.

Although no other cellular or microbial protein to date has been

described to use the arrangement of a MERES motif that p22

employs to inhibit the secretory pathway, several previously

characterized secretory pathway antagonists have potential ER

export signals or mimics thereof. The Eschericia coli protein NleA

inhibits COPII-dependent export from the ER by direct

interaction with Sec24 [50], and the cellular proteins STAM-1

and -2, which are involved in the signaling of growth factors and

cytokines, regulate Golgi architecture by interaction the Sec13/31

COPII cage components [51]. Examination of the primary amino

acid sequence of NleA and STAM-1/2 revealed motifs similar to a

di-acidic ER export signal (unpublished observation). If further

studies determine these motifs directly contribute to either the

cellular localization or, for STAM-1/2, proper ER export, this

would provide support for the idea that ER export signals or their

mimics can be used not only to facilitate ER export, but also to

promote interaction with COPII vesicles to mediate specific

antagonism of the secretory pathway.

Both similarities and differences were noted between p22 and

the picornavirus 3A protein. Both proteins localize to membranes

via an amphipathic alpha helix, and both inhibit ER-to-Golgi

trafficking to decrease cellular protein secretion. However, the

mechanism of this shutoff appears to be quite distinct between

Norwalk virus and picornaviruses. Inhibition of protein secretion

and Golgi disassembly are in some cases separable and distinct, as

is the case for PV infection [44], whereas in other cases one will

follow the other, for example during cell division [31,52]. There

were also clear ultrastructural similarities between cells expressing

p22 and 3A in inducing the accumulation of free membranes,

double-membrane vesicles and vacuoles [12,34], although cells

expressing p22 did not exhibit the swelling of the ER reported for

PV 3A [34] or the crystalloid ER patterns seen after expression of

the hepatitis A virus 2C and 2BC proteins that also induce

significant membrane rearrangements [53]. This further supports

the similarity of p22 and 3A in secretory pathway antagonism, but

through different arms of this pathway. NV p22 therefore may be

more similar in the cellular effects of the hepatitis C virus NS4A/B

protein, which, though less studied than PV 3A, antagonizes ER-

to-Golgi trafficking, and induces the accumulation of ‘‘membra-

nous webs,’’ vacuoles and double-membrane vesicles, but not ER

swelling [54].

Figure 7. SEAP is differentially retained in the presence of PV 3A and NV p22. Cells expressing GFP alone (A), or GFP-tagged 3A (B) or NV
p22 (C) were fixed at 24 hpt and immuno-stainined with antibody against SEAP (Alexa 594-conjugated secondary antibody) and the COPI marker
protein b-COP (Alexa 647-conjugated secondary antibody), stained with DAPI (blue fluorescence), and imaged by deconvolution microscopy.
Channels were pseudo-colored as indicated for merged images. Insets in B and C represent a 6X zoom of the boxed region.
doi:10.1371/journal.pone.0013130.g007
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Although all the effects of NV infection on the secretory

pathway have not yet been explored, the results presented here

demonstrate that, like PV 3A, direct antagonism of the secretory

pathway is a cause, not an effect, of Golgi disassembly by p22.

However, whereas at least two picornavirus 3A proteins interact

with the cellular protein GBF-1 to inhibit COPI vesicle budding

[13], NV p22 instead appears to target COPII vesicles with

dependence upon a motif that is absent from picornavirus 3A

proteins, suggesting that these two proteins take different

approaches to the same ultimate outcome. It therefore appears

that, like several picornaviruses [28,29], noroviruses encode two

proteins, p22 and p48 (this study and [27]), with redundant

functions of antagonizing the secretory pathway.

FCV p30, a homologue of p22, lacks an ER export signal and

localizes exclusively to the ER when independently expressed ([26]

and our unpublished observation). This is in line with the inability

of BFA to inhibit FCV replication [24], as it does several

picornaviruses, and further supports the notion that caliciviruses

utilize a different architecture of cellular machinery for replication

than do picornaviruses. A recent study has shown that MNV is

also resistant to the cellular effects of BFA and does not have an

effect on gross Golgi morphology [55]. It will therefore be

interesting to determine the roles of p22 homologues from MNV

and FCV in possible antagonism of ER/Golgi trafficking, as this

would shed much light on similarities and differences between

animal and human caliciviruses.

The biological significance of antagonism of the secretory

pathway by p22 remains to be understood. This may facilitate

viral pathogenesis rather than replication in a manner similar to

the effect of the picornavirus 3A proteins that inhibit the immune

response to virus-infected cells [14–16], ultimately leading to a

more pathogenic infection [12]. Future study of the immune

response to norovirus infection should consider secretory pathway

antagonism by p22, as this protein may be key in deactivating

interferon (IFN) and/or cytokine signaling following infection.

Additionally, analysis of the cellular response to NV infection has

demonstrated that NV is sensitive to IFN when exogenously added

to cells replicating the NV genome [56,57]; however, NV does not

induce the IFN pathway or IRF3 activation in Huh7 cells that

support a single round of virus replication [58]. Although p22 may

be contributing to a reduction in IFN release from cells, the

possibility that p22 has additional inhibitory effects on the IFN

pathway remains to be explored.

Since viruses utilize cellular processes and machinery for

replication, understanding the mechanisms by which viruses

parasitize the cell will both increase our understanding of these

pathways and aid in the design of effective anti-viral countermea-

sures. The human norovirus nonstructural protein p22 encodes a

novel and well-conserved motif that mimics a traditional di-acidic

ER export signal. Instead of increasing the rate of protein

trafficking in the secretory pathway, as is the normal function of

these signals, the ER export signal mimic allows p22 to gain access

to the secretory pathway, induce Golgi disassembly and inhibit

cellular protein secretion. This is the first instance in which a

pathogen has been described to use a motif similar to an ER

export signal to ultimately inhibit cellular protein secretion. This

motif constitutes a new target for the design of anti-viral drugs

against noroviruses, as it is necessary for the antagonistic activity of

p22 and is highly conserved in human noroviruses.

Materials and Methods

Vectors and cell lines
All genes were cloned using Gateway technology (Invitrogen)

and expressed in pcDNA-DEST53 after sequence verification.

Mutagenesis was performed using the QuikChange Multi Site-

Directed Mutagenesis Kit (Stratagene). HEK-293T and Huh7

cells were maintained in DMEM supplemented with 10% fetal

bovine serum. 293T cells were grown on plastic or coverslips

coated with 10 mg/ml poly-D-lysine (Sigma). Transfection was

carried out using Lipofectamine 2000 (Invitrogen) as per the

manufacturer’s instructions. cDNA encoding poliovirus 3A protein

was obtained from Richard Lloyd of Baylor College of Medicine.

Transfection of NV RNA
NV RNA was purified from volunteer stool samples and

transformed into Huh7 cells as described previously [30]. Briefly,

virus was purified from volunteer stool samples by sucrose cushion

and cesium chloride gradient extraction, following which viral

RNA was extracted using the QIAamp Viral RNA Mini Kit

(Qiagen) following the manufacturer’s instructions. Five hundred

nanograms of purified viral RNA were then transfected into cells,

which were then cultured for the indicated period of time.

Immunofluorescence and antibodies
Cells were grown on cover slips and, following the indicated

treatments, washed in PBS and subsequently fixed with 4%

paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA)

in 0.1 M PBS and permeablized with 0.5% Triton X-100 in

0.1 M PBS. Cells were then washed in PBS and blocked with 1%

bovine serum albumin (Sigma, St. Louis, MO) for 1 hour at

37uC, incubated overnight at 4uC with primary antibody in

0.1 M PBS, 1% BSA. Anti-human golgin-97 mouse monoclonal

antibody was obtained from Molecular Probes (Invitrogen).

GM130 mouse monoclonal antibody was obtained from BD

Transduction Laboratories (San Jose, CA). Calnexin mouse

monoclonal antibody and rabbit polyclonal antibody against b-

COP were obtained from Affinity Bioreagents (Golden, CO).

Rabbit polyclonal antibody against Sec24C was the generous gift

of Bill Balch of Scripps Research Institute and has been

previously described [59]. Rabbit polyclonal antibody against

VP1 was also previously described [60]. Mouse monoclonal

antibody 8B6 against placental alkaline phosphatase was

obtained from AbCam (Cambridge, MA). Rabbit polyclonal

antibody against protein disulfide isomerase (H-160) was

obtained from Santa Cruz Biotechnology, Inc (Santa Cruz,

CA). After incubation with primary antibody, cover slips were

washed and incubated at room temperature for one hour with the

corresponding AlexaFluor 488-, 594-, or 647-conjugated sec-

ondary antibodies (Invitrogen). Nuclei were stained with 300 nM

DAPI (Invitrogen) at room temperature for 5 minutes. Cells were

then washed and mounted using the ProLong Gold antifade

reagent (Invitrogen). All images shown are representative of at

least three independent experiments and the direct observation of

Figure 8. Secretory pathway cargo is retained in COPII vesicles in the presence of p22, but not p22(AXWA). Cells expressing GFP alone
(A), or GFP-tagged NV p22 (B) or p22(AXWA) (C) were fixed at 24 hpt and immuno-stained with antibody against SEAP (Alexa 594-conjugated
secondary antibody) and the COPII marker protein Sec24C (Alexa 647-conjugated secondary antibody), stained with DAPI (blue fluorescence), and
imaged by deconvolution microscopy. Channels were pseudo-colored as indicated for merged images. Inset in B represents an 8X zoom of the boxed
region.
doi:10.1371/journal.pone.0013130.g008
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no less than 50 cells with GFP expression levels in approximately

the middle 70th percentile.

Fluorescence deconvolution microscopy
Deconvolution microscopy was performed with a Zeiss

AxioVert S100 TV microscope and a DeltaVison restoration

microscopy system (Applied Precision, Inc.) and imaged using

either a 63X objective lens (1.40 NA). A z series of focal planes was

digitally imaged and deconvolved with the Delta-Vision con-

strained iterative algorithm to generate high-resolution images,

from which Quick Projections were obtained. Brightness and

contrast levels were adjusted appropriately in Adobe Photoshop

version CS2.

Flow-coupled electron microscopy
293T cells were transfected with the indicated plasmids and at

24 hpt were harvested in 0.1 M PBS containing 1% BSA. Cells

were then flow sorted for GFP on a BD SORP FACSAria II flow

cytometric cell sorter with elution into 10% DMEM. Cells were

then centrifuged at 5006g for 10 minutes, suspended in 10%

DMEM and plated onto plastic dishes coated with 10 mg/ml poly-

D lysine. Twenty-four hours later, and therefore 48 hpt, all cells

were validated to be GFP positive under an epifluorescence

microscope. Cells were then rinsed once in 0.1 M PBS and fixed in

Karnovsky’s Fixative (2% formaldehyde, 2.5% glutaraldehyde in

0.1 M cacodylate buffer +2 mM CaCl2, pH 7.4) for 1 hour on ice.

After being held overnight at 4uC in weak fix (1 part Karnovsky’s

Fixative: 10 parts 0.1 M cacodylate buffer +2 mM CaCl2), the

cells were rinsed 3 times in 0.1 M cacodylate buffer +2 mM

CaCl2, then post-fixed in 1% OsO4 in 0.1 M cacodylate at 4uC.

After 3 rinses in cacodylate buffer, cells were dehydrated in a

gradient series of ethanols from 30–50%, en bloc stained with

saturated uranyl acetate in 50% ethanol for 1 hour, carried

through to 100% ethanol, then infiltrated in 1 part 100% ethanol:

1 part Spurr’s Low Viscosity Resin overnight at room tempera-

ture. The rest of the infiltration was performed the next day,

through 3 changes of pure resin. A small amount of pure resin was

placed in the bottom of thoroughly drained plates, and the plated

cells and resin were cured at 60uC for 3 days. Sections were cut at

70–80 nm using a Diatome diamond knife and an RMC

MT6000-XL ultramicrotome. Sections were then collected on

100–150 mesh copper grids, counter-stained with Reynold’s lead

citrate and viewed on a Hitachi H-7500 transmission electron

microscope. Image brightness and contrast were adjusted

appropriately in Adobe Photoshop version CS2.

Cytosolic and membrane fractionation
Transfected 293T cells were suspended in 0.5 ml of homog-

enization buffer [200 mM HEPES (pH 7.5), 5 mM sodium

pyrophosphate, 5 mM EGTA, 1 mM MgCl2, 1 mM sodium

orthovanadate, 50 mM leupeptin, 200 mM PMSF, 1 mM pepsta-

tin A], followed by sonication and centrifugation at 100,0006g

for one hour at 4uC, and the resulting supernatant was the

cytosolic fraction. Pellets were resuspended in 0.5 ml extraction

buffer [20 mM Tris-HCl (pH 7.5), 1% Triton X-100, 100 mM

NaCl, 1 mM MgCl2, 1 mM CaCl2, 5 mM NaF, 1 mM sodium

orthovanadate, 50 mM leupeptin, 200 mM PMSF, 1 mM pepsta-

tin A], followed by incubation with rotation at 4uC for one hour

and centrifuged at 100,0006g for 1 hour and the supernatant was

collected as the membrane fraction. Fractions were then

precipitated by addition of trichloroacetic acid to 10% and

centrifugation at 16,0006g for 5 minutes. The pellet was then

washed in acetone, pelleted, and resuspended in 50 ml of 5X

SDS-PAGE sample buffer. Lysate aliquots were boiled for 3

minutes and analyzed by electrophoresis on 12.5% SDS-PAGE

gels. Separated proteins were transferred from the gel to

nitrocellulose membrane (Amersham Biosciences) and mem-

branes were blocked in 5% Blotto (5% fat-free Carnation milk in

0.01 M PBS) and incubated with a mouse anti-GFP monoclonal

antibody (Clontech, Mountain View, CA) in 0.5% Blotto

overnight at RT. Primary antibody was removed and membranes

were washed three times with 0.5% Blotto. Horseradish

peroxidase-conjugated secondary goat anti-mouse immunoglob-

ulin G antibody (Sigma-Aldrich) was incubated with the

membranes for ,2 h at RT and subsequently washed three

times with 0.5% Blotto. Membranes were developed with

SuperSignal sensitivity substrate (Pierce).

SEAP assay
The plasmid pCMV-UTR-SEAP was obtained from J. Lindsay

Whitton (Scripps Research Institute) [28] and was made into a

Gateway-competent vector using the Gateway Vector Conversion

System (Invitrogen) at the NotI site of the vector. 293T cells were

grown to ,60% confluence in 24 well plates and transfected. Two

hours before the indicated time points, cells were washed 2 times

in 0.01 M PBS and the media was replaced with 400 ml of fresh

media. At the indicated time points, the media containing

‘‘extracellular SEAP’’ was removed. At this same time point,

‘‘intracellular SEAP’’ values were obtained by washing cells once

in cold 0.01 M PBS and adding 400 ml of media containing 0.5%

Triton X-100 to lyse cells and solubilize any SEAP that had been

retained in cells, and then incubating cells at room temperature for

,5 minutes. Lysed cells were then collected and spun at 13,0006g

for one minute to remove cellular debris. Enzymatic SEAP activity

in ‘‘intracellular’’ and ‘‘extracellular’’ fractions was assayed with

the PhosphaLight TM System (Applied Biosystems), and overall

Secreted SEAP was calculated with the equation: Secreted

SEAP = (SEAPextracellular/(SEAPextracellular + SEAPintracellular))6
100 [28].

EndoH Sensitivity Assay
Sensitivity of VSV G and chimeras to digestion with

endoglycosidase H was carried out as previously described

[9,40,42] with minor modifications. VSV G or chimeras were

expressed in 293T cells from the plasmid pMD2.G. Twenty-four

hours post-transfection, cells were washed 3X in Cys/Met-free

DMEM and incubated at 37uC for 15 minutes. Cells were then

labeled with 200 mCi/ml 35S-Met (Amersham BioSciences) for 15

minutes at 37uC, washed 3X in DMEM containing 10% FBS, and

400 ml of DMEM containing 10% FBS was added to cells, which

were then incubated at 37uC. At the indicated time post-pulse,

cells were washed 1X in cold PBS and harvested in VSV G Lysis

Buffer (50 mM Tris pH 8, 62.5 mM EDTA, 1% NP-40, 0.4%

deoxycholate, 50 mM leupeptin, 200 mM PMSF, 1 mM pepstatin

A). Supernantants were cleared with 5 ml of Protein A Magnetic

Beads (Invitrogen) and incubated overnight with monoclonal

antibody against the luminal domain of VSV G (clone 8G5) [42],

generously provided by Bill Balch, Scripps Research Institute.

Immuno-complexes were collected by magnetic capture and

washed 2X in VSV G Lysis Buffer, resuspended in 40 ml of 2.5X

SDS-PAGE Sample Buffer and boiled for 5 minutes. Half of the IP

was digested with 1 ml of endoglycosidase H (EndoH) (1 U/200 ml,

Roche) at 37uC for 1 hour. EndoH treated and non-treated

samples were then run on a 7.5% SDS-PAGE gel, transferred to

nitrocellulose, and bands were quantitated following scanning on a

Typhoon Trio Variable Mode Imager (GE Healthcare) and

ImageQuant 5.1 to quantitate band intensity.
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Statistical analysis
Two-tailed, unpaired Student’s t-tests assuming unequal vari-

ance were used to determine statistical significance; p values are

indicated where appropriate.

Supporting Information

Figure S1 NV p22 initially localizes to and induces disruption of

the trans Golgi. Cells expressing GFP or GFP-tagged Norwalk

virus (NV) p22 were immuno-stained for the trans Golgi marker

protein golgin-97 (Alexa 594-conjugated secondary antibody, red

fluorescence) at the indicated times post-transfection. Nuclei were

stained with DAPI (blue fluorescence) and cells were imaged by

deconvolution microscopy.

Found at: doi:10.1371/journal.pone.0013130.s001 (2.88 MB TIF)

Figure S2 Equivalent amounts of protein are made during

SEAP analysis of p22 constructs containing alanine mutations

within the predicted ER export signal. Proteins in lysates from the

36 hpt intracellular fraction of cells utilized in the indicated SEAP

assay were run on a 4–20% SDS-PAGE gel and detected with

monoclonal antibody against either GFP or actin by western blot.

Found at: doi:10.1371/journal.pone.0013130.s002 (0.74 MB TIF)

Figure S3 Calnexin is an appropriate marker of the endoplasmic

reticulum in 293T cells. Non-transfected 293T cells were fixed and

immuno-stained for the ER marker proteins calnexin and protein

disulfide isomerase with mono- (red fluorescence, Alexa594-

conjugated secondary antibody) and poly-clonal antibody (green

fluorescence, Alexa488-conjugated secondary antibody), respec-

tively. Nuclei were stained with DAPI (blue fluorescence) and cells

were imaged by deconvolution microscopy.

Found at: doi:10.1371/journal.pone.0013130.s003 (3.02 MB TIF)
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