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Alteration and dysfunction of ion channels/transporters in a hypoxic
microenvironment results in the development and progression
of gastric cancer
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Abstract
Background Gastric cancer (GC) is one of the most common malignant cancers in the world and has only few treatment options
and, concomitantly, a poor prognosis. It is generally accepted now that the tumor microenvironment, particularly that under
hypoxia, plays an important role in cancer development. Hypoxia can regulate the energy metabolism and malignancy of tumor
cells by inducing or altering various important factors, such as oxidative stress, reactive oxygen species (ROS), hypoxia-
inducible factors (HIFs), autophagy and acidosis. In addition, altered expression and/or dysfunction of ion channels/
transporters (ICTs) have been encountered in a variety of human tumors, including GC, and to play an important role in the
processes of tumor cell proliferation, migration, invasion and apoptosis. Increasing evidence indicates that ICTs are at least partly
involved in interactions between cancer cells and their hypoxic microenvironment. Here, we provide an overview of the different
ICTs that regulate or are regulated by hypoxia in GC.
Conclusions and perspectives Hypoxia is one of the major obstacles to cancer therapy. Regulating cellular responses and factors
under hypoxia can inhibit GC. Similarly, altering the expression or activity of ICTs, such as the application of ion channel
inhibitors, can slow down the growth and/or migration of GC cells. Since targeting the hypoxic microenvironment and/or ICTs
may be a promising strategy for the treatment of GC, more attention should be paid to the interplay between ICTs and the
development and progression of GC in such a microenvironment.
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1 Introduction

Gastric cancer (GC) is the fifth most commonmalignancy and
the third most common cause of cancer-related death

worldwide [1]. Due to the poor prognosis of GC, its related
five-year survival rate does not exceed 30% in most countries
[2, 3]. Therefore, intensive research on the pathogenesis of
GC and the development of novel and effective drugs and
treatment options are essential.

Recent studies have shown that cancer progression and
metastasis depend on bidirectional interactions between can-
cer cells and their environment, which together form the tumor
microenvironment (TME) [4]. The TME is a complex, dy-
namic network composed of cellular and noncellular compo-
nents [5, 6] that is characterized by hypoxia, an acidic extra-
cellular pH (pHe), high lactate levels, strongly elevated aden-
osine concentrations, low levels of glucose, ATP and nutrients
and the presence of VEGF and many other cytokines and
growth factors [7–9]. Among these factors, hypoxia is of par-
ticular concern. Solid tumors generally contain hypoxic re-
gions that can trigger important cellular changes [10].
Moreover, cancer cells metabolize glucose in the form of
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glycolysis (‘Warburg effect’), and hypoxia can further aggra-
vate the dependence on glycolytic fueling, which results in the
production of large amounts of lactic acid [11, 12]. However,
cancer cells maintain an intracellular pH (pHi) equal to or
higher than that of normal cells, which indicates that these
cells can increase the net acid excretion level [13–16]. This
can be achieved by upregulating the expression and/or activity
of acid excretion carriers and/or by downregulating the ex-
pression and/or activity of acid addition carriers. Therefore,
the role of ion channels and transporters (ICTs) has become a
focus of cancer research (Fig. 1).

ICTs are a class of membrane proteins [17] that are closely
related to almost every biological process in the human body,
such as cell proliferation, apoptosis, migration, volume regu-
lation, epithelial secretion, contraction and regulation of
smooth muscle cells, and regulation of the pH balance and
cell cycle [18–22]. Moreover, increasing evidence indicates
that ICTsmay be involved in interactions between cancer cells
and the TME. Recent studies have shown that hypoxia can
simultaneously increase transient receptor almelastatin-like7
channel (TRPM7) expression and induce HIF-1α accumula-
tion in androgen-independent prostate cancer cells. TRPM7
silencing, however, significantly promoted hypoxia-inducible
factor 1 alpha (HIF-1α) degradation through the proteasome
and inhibited EMT changes in androgen-independent prostate
cancer cells under hypoxic conditions [23]. Numerous studies
have shown that HIF-1α acts as a main transcription factor

that mediates hypoxic responses and promotes the transcrip-
tion of angiogenic factors such as VEGF, which leads to an
increase in glycolysis through the inhibition of mitochondrial
oxidative phosphorylation [24]. In contrast, HIF-1α stability
may depend on high levels of reactive oxygen species (ROS)
in hypoxic cancer cells [25, 26], which can activate the
NF-κB, TNF-α and STAT3 signaling pathways in inflamma-
tory cells and tumor cells to release a variety of inflammatory
cytokines involved in changes in the TME [27]. Recent stud-
ies have found that HIF-1α promotes the proliferation, migra-
tion, invasion, angiogenesis and endothelial-mesenchymal
transition (EMT) of GC cells [28]. The levels of ROS have
been found to be significantly increased in patients with GC,
and abnormally high levels of ROS to induce oxidative stress,
which can damage the gastric mucosa and be an important
factor in the development of GC [29]. In addition, hypoxia
can induce autophagy and an acidic extracellular pH through
intermediate components or modes, which are also associated
with GC progression and chemoresistance [30–34].

In this context, deciphering the crosstalk between ICTs and
various components in the TME during hypoxic responses of
GC cells deserves special attention. Previously, the physiolog-
ical and pathophysiological significance of gastric ICTs in GC
have been summarized [35]. Here, we review the ICTs that are
regulated by hypoxia or regulate the response to hypoxia in
GC, including aquaporin 3 (AQP3), chloride intracellular
channel 1 (CLIC1), hERG potassium channel, acid-sensing

Fig. 1 Diagram of ICTs in the hypoxic microenvironment regulating the development of GC. Different ICTs are shown in different colors; red arrows
indicate upregulation and black arrow indicates downregulation
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ion channel 1 (ASIC1), Na+/H+ exchanger1 (NHE1) and tran-
sient receptor potential melastatin 2 (TRPM2), which have not
been discussed in detail before.

2 Ion channels regulate the response
to hypoxia

2.1 AQP3 participates in the development of GC
through the ROS–HIF-1α–AQP3–ROS loop

Aquaporins (AQPs) are members of a specialized superfamily
of membrane integral proteins [36] that includes 13 different
aquaporin (AQP0-AQP12) isoforms, which are widespread
among microorganisms, plants and mammals [37, 38].
Structurally, each ~30-kDa AQP monomer consists of six
transmembrane helical domains (H1 – H6) and two short he-
lical segments (HB and HE). Four AQP monomers aggregate
on the plasma membrane to form a tetramer [39, 40]. AQPs
form the main transcellular route of water transport in the
gastrointestinal tract and are essential for maintaining body
water homeostasis and ensuring digestive and absorptive
functions. Currently, at least 10 aquaporins (including
AQP1–5 and AQP7–11) have been found to be expressed in
the human stomach. Among these AQPs, AQP3, AQP4 and
AQP5 present differential expression levels between GCs and
corresponding normal tissues [41, 42]. Among the AQPs that
have been investigated in GCs, AQP3 is the best studied and
subject of this review. AQP3 localizes to the basal layers of
epithelial cells and is a major player in barrier hydration and
water and osmolyte homeostasis in the human body [43, 44].

A previous study showed that AQP3 is expressed in goblet
cells and is positively correlated with gastric intestinal meta-
plasia (GIM) severity [45]. In addition, it has been found that
AQP3 is highly expressed in GC tissues and regulates the
proliferation, migration and invasion of human GC cells
through a variety of signaling pathways [42]. The PI3K/
AKT signaling pathway is, for example, involved in AQP3-
mediated transport of glycerol, which can lead to the prolifer-
ation of GC cells [46]. A recent study revealed crosstalk be-
tween AQP3 and several components involved in the hypoxia
response in H. pylori-infected gastric mucosa. Several studies
have shown that H. pylori remains the most common bacteri-
um under these conditions and that infection with this bacte-
rium can lead to chronic gastritis and an increased risk of GC
[47]. HIF-1α activation through persistent hypoxia is closely
related to the invasive tumor phenotype and an unfavorable
prognosis in patients with GC. In the gastric mucosa of
H. pylori infected patients, high levels of ROS are produced
by H. pylori itself or NADPH, and increased accumulation of
intracellular ROS stabilizes HIF-1α bound to HIF-1β and
increases the expression of HIF-1α in gastric epithelial cells.
HIF-1α is a well-known inducer of VEGF, and the ROS-HIF-

1α axis plays an important role in the production of VEGF in
H. pylori infected gastric epithelial cells [48, 49]. The HIF-1
complex can activate the transcription of many target genes
under hypoxic conditions, which results in adaptation to the
hypoxic environment. It has been shown that the heterodimer-
ic HIF complex can bind to HREs in the AQP3 promoter
region and thereby activate the transcription and upregulation
of AQP3. Increased AQP3 levels can mediate ROS uptake
and accelerate the accumulation of ROS, and the ROS-HIF-
1α-AQP3-ROS loop can further upregulate the expression of
AQP3. Hypoxia is a characteristic of tumors and in the pres-
ence of persistent hypoxia, the ROS-HIF-1-AQP3-ROS loop
may continue to operate, even in the absence ofH. pylori [48].
Another study showed that AQP3 increases autophagy in GC
cells and promotes the resistance of GC cells to cisplatin
through autophagy, which suggests that AQP3-based therapy
may be employed in future GC treatment strategies [50]. In
summary, it has been found that AQP3may be involved in the
development of GC, and that crosstalk between AQP3 and the
hypoxia response may be one of the underlying mechanisms.

2.2 CLIC1 participates in the metastasis and invasion
of GC cells by regulating hypoxia-reoxygenation-
induced intracellular ROS

Jentsch and co-workers showed that chloride channels can be
divided into six categories: (1) voltage-gated Cl− channels
(ClCs), (2) cystic fibrosis transmembrane conductance regu-
lator (CFTR), a cAMP-activated Cl− channel, (3) volume-
sensitive osmolyte and anion channels (VSOACs), also re-
ferred to as swelling-activated Cl− channels, (4) Ca2+-activat-
ed Cl− channels (CACCs), (5) p64-related chloride intracellu-
lar channels (CLICs) and (6) γ-aminobutyric acid and glycine
receptors, which represent ligand-gated Cl− channels [51].
Among these channels, the CLIC family of proteins consists
of seven different members: CLIC1, CLIC2, CLIC3, CLIC4,
CLIC5, p64 and parchorin [52]. Following the successful iso-
lation of the p64 protein and the subsequent cloning of its
gene, the first human paralogue, NCC27 (later renamed
CLIC1), was cloned from the myelomonocytic cell line
U937. CLIC1 is located on human chromosome 6p21.3 and
encodes a protein of 241 amino acids that is expressed in the
nucleus, cytoplasm and cell membrane [53–55]. Ulmasov
et al. found that CLIC1 is expressed in the apical domains of
several types of simple columnar epithelia, including those of
the glandular stomach, small intestine, colon, bile ducts, pan-
creatic ducts, airways, tail of the epididymis and renal proxi-
mal tubules [56]. Chen et al. also found a trace of CLIC1
expression in normal gastric tissue [57]. In addition, it was
found that CLIC1 may physiologically participate in changes
in cell volume, membrane potential regulation, acidification of
intracellular organelles, proliferation and differentiation of
cells and cell cycle progression [58].
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Increasing evidence indicates that CLIC1 is associatedwith
a variety of malignancies, including pleomorphic human sar-
coma [59], glioblastoma [60], ovarian cancer [61–63], liver
cancer [64], pancreatic cancer [65], gastric cancer [57, 66, 67]
and colorectal cancer [53, 68, 69]. CLIC1 is highly expressed
in GC and is strongly correlated with lymphatic invasion,
lymph node metastasis, perineural invasion and pathological
stage. In addition, it has been found that high CLIC1 expres-
sion may inhibit the proliferation of GC cells and promote
their apoptosis, migration and invasion [57, 67]. It has been
shown that CLIC1 acts as a sensor and effector during oxida-
tive stress [70] and affects the progression of various tumors
through ROS regulation [69–73]. Previous studies have also
shown that hypoxia-reoxygenation (H-R) may increase intra-
cellular ROS levels to activate the MAPK/ERK pathway and
that the CLIC1 protein participates in the migration of LOVO
colon cancer cells by regulating the ROS/ERK pathway dur-
ing H-R [69]. Similar to its role in colon cancer, CLIC1 is
involved in the migration and invasion of GC cells by regu-
lating intracellular ROS production. At has amply been shown
that ROS might act not only to impair cellular and protein
function, but also as second messengers in cellular processes
involving changes in cellular redox status, such as migration,
differentiation and replication. Cellular oxidation can activate
kinases such as mitogen-activated protein kinase (MAPK),
protein kinase C (PKC) and protein kinase B (PKB), and it
has been found that changes in cellular redox status are char-
acteristic of some pathological conditions, particularly chronic
inflammatory conditions, tumor states and degenerative pro-
cesses [70]. Under H-R conditions, the level of ROS in SGC-
7901 GC cells was found to be increased, and the expression
of p-p38, MMP-2 and MMP-9 to be significantly increased.
These processes are regulated by MAPK signal transduction
pathways [71, 74, 75]. Functional inhibition of CLIC1
downregulates H-R-induced intracellular ROS production in
GC cells, and the p38 MAPK inhibitor Sb203580 inhibits H-
R-induced GC cell motility. These results suggest that CLIC1
may regulate the migration and invasion of GC cells through
the ROS-mediated p38 MAPK signaling pathway [71]. In
conclusion, a clear correlation between CLIC1 expression
and the migration and invasion of GC cells has been observed,
and the subsequent finding that CLIC1 regulates the response
to hypoxia during the development of GC contributes to our
understanding of the mechanism underlying GC cell invasion
and metastasis.

2.3 hERG1 channels induce GC and regulate VEGF-A
secretion via HIFs

Potassium channels represent the largest group of ion channels
in the human genome. Based on similarities in amino acid
sequences and functional properties, the genes encoding
pore-forming subunits can be subdivided into three major

families: (1) channel subunits with six or seven transmem-
brane domains and one pore loop (6/7TM-1P), which are
known as voltage-gated and Ca2+-activated K+ channels, (2)
channel subunits with four transmembrane domains and two
pore loops (4TM-2P), which are known as K2P channels and
(3) channel subunits with two transmembrane domains and
one pore loop (2TM-1P), which are considered inward recti-
fying K+ channels [76]. Potassium channels are located on the
outer cell membrane and participate in fundamental processes
such as cell membrane excitability, ion and solute transport
and cell volume regulation. Potassium channels are physio-
logically involved in maintaining the external K+ balance in
epithelial cells of the gastrointestinal system and play an im-
portant role in the production of gastric acid and the secretion
of gastric juice [77, 78]. The ether-a-go-go (EAG) potassium
channel family, which encompasses alpha subunits of six-
transmembrane-domain voltage-gated K+ (VGK) channels,
has been divided into three subfamilies: EAG, EAG-related
gene (ERG) and EAG-like (ELK) K+ channels [79]. The hu-
man EAG-related gene (HERG) was cloned using a human
hippocampal cDNA library, is located at chromosome 7q35–
36, and encodes 1159 amino acids [80]. hERG potassium
channels are normally expressed in heart, vascular smooth
muscle, brain, thymus and adrenal gland, but not in the normal
gastric mucosal epithelium [81, 82].

Up till now, research on hERG channels has focused on the
role of this potassium channel in cardiac repolarization and
long QT syndrome (LQTS) [82]. However, these channels
have also been found to be overexpressed in a wide range of
human cancers [83–85], and it has been reported that the ac-
tivity of hERG affects three major functions related to tumor
cell biology: proliferation, invasion and tumor angiogenesis
[86]. hERG mRNA and protein are expressed specifically in
GC cells, and the hERG protein localizes to the cytoplasm and
membrane of GC cells [87]. hERG1 expression is related to
the Lauren intestinal type GC, its fundus localization, grading,
TNM stage, lymph node involvement, serosal and venous
invasion and VEGF-A expression [86–88]. It has been shown
that hERG1 channels are strongly regulated by hypoxia [89].
Under hypoxic conditions, the accumulation of HIF-1 directly
upregulates VEGF expression and cooperates with a variety of
other factors participating in angiogenesis [90]. Similar to
findings in colorectal cancer, hERG1 channels regulate
VEGF-A secretion in GC through Akt-dependent regulation
of HIF (mainly HIF-2) transcriptional activity. In contrast,
hERG1 inhibition decreases the expression of HIF-1α and
HIF-2α-coregulated (GLUT-1) and HIF-2α-regulated
(ANGPTL-4) genes without affecting the expression of the
LDHA gene. Additionally, it has been found that a hERG1
inhibitor can decrease Akt activity, and that PI3K/AKT inhib-
itor treatment can inhibit HIF-1 activity and significantly de-
crease VEGF-A secretion. Notably, hERG1 is expressed early
during GC progression and may, therefore, be of value in
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predicting the prognosis, clinical course and/or response to
chemotherapy in patients with GC [86, 88]. Considering that
hERG1 is closely related to hypoxia and that HIFs remain
promising anti-angiogenic agents and direct targets for inter-
fering with the energetics of cancer cells to regulate their
growth [91], the possibility of combining hERG channel
blockers with drugs targeting hypoxia-related components or
developing analogous schemes should be considered in future
studies.

3 Hypoxia affects the expression and function
of ICTs in GC

3.1 Hypoxia promotes the opening of ASIC1 channels,
which regulate GC through autophagy

Acid-sensitive ion channels (ASICs), also known as H+-gated
cation channels, are a class of ligand-gated cation channels
belonging to the mechanosensitive epithelial Na+ channel/
degenerin (ENaC/DEG) superfamily. ASICs are sensitive to
amiloride and independent of voltage [92–94]. To date, five
mammalian genes (Accn1–5) encoding seven ASIC subtypes
(ASCI1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4 and
ASIC5) have been cloned [95]. ASICs occur as trimers [96],
and each ASIC subunit is composed of approximately 500
amino acids and consists of two hydrophobic transmembrane
domains, i.e., transmembrane domain 1 (TMD1) and trans-
membrane domain 2 (TMD2), a large cysteine-rich extracel-
lular loop and an intracellular domain containing the carboxyl
(C) and amino (N) ends [97]. ASICs are almost ubiquitously
expressed in the mammalian nervous system in both periph-
eral and central nerves, are involved in neurosensory
mechano-transduction in multiple tissues and organs, and
have been implicated in touch, pain, digestive function, baro-
receptors, blood volume control and hearing [95, 97]. There is
ample evidence indicating that ASICs play an important role
in mucosal homeostasis of the upper gastrointestinal tract
(stomach, esophagus and duodenum). To avoid tissue dam-
age, the secretion of gastric acid must be strictly controlled
according to the body’s needs, and acid-sensitive protective
mechanisms must be present in all parts of the intestine that
may be exposed to excessive lumen acid [98]. Currently, there
is much scientific evidence supporting the notion that ASICs
are expressed in a variety of cancers, play a role in the acidic
microenvironment by regulating multiple malignant processes
in tumors, including proliferation, invasion and migration, and
can affect cell cycle progression [99–106].

It has been shown that cancer is a malignant disease char-
acterized by microenvironmental hypoxia due to abnormal
blood vessels and a poor blood flow. Under hypoxia, cells
convert aerobic respiration into glycolysis, which results in
the intracellular or extracellular accumulation of lactate and

acidification of the extracellular environment. If the extracel-
lular environment is acidified, HIF-1 is activated and binds to
DNA to promote the expression of carbonic anhydrase 9
(CA9). CA9 on the cell membrane can alleviate intracellular
acidosis via anion exchangers, which results in reduction in
extracellular pH and the opening of ASICs [107]. ASIC1 par-
ticipates in acidosis-mediated signal transduction through cal-
cium influx, which is one of the mechanisms through which a
low extracellular pH in the microenvironment promotes the
growth and metastasis of tumors [100, 108–111]. To date, few
studies have investigated the involvement of ASICs in the
occurrence and development of GC. Zhang Q et al. found that
autophagy plays an important role in the regulation of GC cell
growth byASIC1. Previous studies have shown that the acidic
tumor microenvironment can induce the expression of
autophagy-related genes and promote autophagy, and that au-
tophagy represents the lysosomal catabolism pathway of pro-
teins and organelles. It has also been reported that the RNA
and protein expression levels of autophagy-related 5 (ATG5)
and ASIC1 are increased in GC tissues. ASIC1 regulates au-
tophagy through ATG5 activation. In a murine GC xenograft
model, ASIC1 or ATG5 gene knockdown inhibited the
growth of the tumor cells, whereas ASIC1 shRNA treatment
led to decreased tumor volumes and prolonged survival times
of the animals. Therefore, it was concluded that downregula-
tion of ASIC1 inhibits the growth of GC by reducing autoph-
agy [112]. Subsequent studies have shown that the expression
of ASIC1 exhibits a significant correlation with an increased
risk of GC as well as with GC cell migration and invasion
[113, 114]. Thus, hypoxia causes acidification of the extracel-
lular environment, which in turn promotes the opening of the
ASIC1 channel and ultimately regulates GC through autoph-
agy. ASIC1 inhibitors may be used as potential therapeutic
drugs.

3.2 Hypoxia can activate and upregulate NHE1, which
is involved in the proliferation, migration and
invasion of GC cells

Human Na+/H+ exchangers (NHEs) are encoded by the SLC9
gene family classified by solute carriers of transporters, in-
cluding SLC9A1–9 (NHE1–9), SLC9B1–2 (NHA1, NHA2)
and SLC9C1–2. Among them, the human NHE1 protein is
encoded by SLC9A1 and contains a hydrophobic N-terminal
membrane domain responsible for the transport of NHEs and
a hydrophilic, intracellular long C-terminus necessary for
NHE1 regulation [115]. NHE1 controls cell volume and pH,
but is also involved in complex biological processes such as
cell adhesion, migration, proliferation and mechano-sensation
[116]. NHE1 is strongly expressed in the gastric mucosa and
is one of the predominant isoforms in mucous cells that regu-
late the pHi, particularly in the presence of high gastric acid
levels, which is important for gastric barrier action to acids
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and for maintaining a near-neutral pHi in the gastric mucosa
[117]. In addition, NHE1 may be responsible for the initiation
of gastric epithelial restitution [118], but is not essential for
gastric epithelial repair [119, 120]. Interestingly, NHE1 has
also been found to be involved in insulin-like growth factor II-
induced proliferation and carbachol-/insulin-like growth fac-
tor II-stimulated migration of human gastric myofibroblasts
[121].

Hypoxia promotes the upregulation of glycolysis to main-
tain ATP production, which leads to acidosis and thereby
promotes the upregulation of NHEs. To date, several studies
have shown that in solid tumors NHE1, as the most important
cellular pH regulator, is upregulated, which can be regarded as
an adaptive response of cancer cells to hypoxia and acidosis,
and that the resulting intracellular alkalinization and extracel-
lular acidification play crucial roles in cancer cell prolifera-
tion, invasion and metastasis [122, 123]. To date, various GC
cell models have been established to illustrate the influence of
NHE1 on the occurrence and development of GC. In a study
on GC SGC-7901 cells, antisense NHE1-transfected SGC-
7901 cells were found to exhibit proliferation inhibition, G1/
G0 phase arrest, an increased apoptotic rate, recovery of con-
tact inhibition and density contacts, a decreased invasive ca-
pacity, a decreased cloning efficiency in soft agar and in vivo
tumorigenicity in nude mice [124]. In addition, EIPA (an in-
hibitor of NHE1) was found to suppress the proliferation of
human GC MKN28 cells by upregulating p21 expression
through the reduction of cytosolic Cl− [125]. Furthermore, in
human GC MKN45 and MKN74 cells, 2-aminophenoxazine-
3-one (Phx-3) rapidly decreased the pHi by inhibiting NHE1,
which resulted in apoptosis [126]. Notably, in human GC
SGC7901 cells, NHE1 blockade decreased the pHi values,
and this effect was accompanied by a significant decrease in
vascular endothelial growth factor (VEGF) mRNA and pro-
tein expression [127]. The available evidence clearly shows
that VEGF overexpression is critical to tumor formation and
angiogenesis. Overall, the above results suggest that NHE1
exerts a strong effect on the occurrence and malignant biolog-
ical behavior of GC cells. Therefore, regulating the expression
and activity of NHE1 through intervention of the response to
hypoxia may effectively hamper the development of GC.

3.3 Hypoxia promotes the opening of TRPM2
channels and induces GC through autophagy

The transient receptor potential (TRP) channel superfamily
belongs to the voltage-gated ion channel superfamily, which
includes voltage-gated K+, Na+ and Ca2+ channels and related
cyclic nucleotide-gated channels. These proteins form tetra-
mers of the same subunit [128]. The proteins forming the 28
known mammalian TRP channels can be divided into six sub-
families based on amino acid sequence homology (TRPC,
TRPV, TRPM, TRPA, TRPP and TRPML) [128, 129]. In

many ways, the TRPM (transient receptor potential
melastatin) subfamily is the largest and most diverse subfam-
ily of TRP channels [130]. TRPM2, one of the eight members
of the TRPM subfamily, is a Ca2+-permeable cation channel.
TheTRPM2 gene is located on human chromosome 21q22.3
and consists of 32 exons encoding a protein of 1503 amino
acids with a predicted molecular mass of ∼170 kDa [131,
132]. TRPM2 is mainly expressed in the central nervous sys-
tem, immune cells and pancreatic cells [133] and plays a key
role in immune responses [134–136], insulin secretion [137],
oxidative stress [138] and body temperature control [139,
140]. In many physiological processes, TRPM2 plays a pro-
tective role. In cardiomyocytes, sustained Ca2+ entry through
TRPM2 reduces ROS and maintains better mitochondrial bio-
energetics, which protects the heart from oxidative damage
after H-R [141].

A growing body of evidence indicates that TRPM2 is high-
ly expressed in various cancers and protects the viability of
many cell types after oxidative stress [142, 143]. Hypoxia can
cause oxidative stress, and ADP-ribose (ADPR) produced af-
ter oxidative stress activates TRPM2 and binds to its C-termi-
nus, which causes the channel to open. Activation of TRPM2
leads to the expression of a variety of transcription factors and
kinases that are important in cell proliferation and survival,
including HIF-1/2α, CREB, nuclear factor (erythroid-derived
2)-related factor-2 (Nrf2), Pyk2 and Src phosphorylation.
Inhibition of the TRPM2-mediated calcium influx is associat-
ed with increased ROS production, impairments in autophagy
and DNA repair, defective mitochondrial metabolism, re-
duced cellular bioenergetics, decreased tumor growth and in-
creased sensitivity to chemotherapy [143]. To date, only few
studies have investigated the role of TRPM2 in GC. In 2018
Almasi et al. provided the first evidence that TRPM2 is func-
tionally expressed in GC cells and acts as a plasma membrane
ion channel for calcium penetration. The authors found that
shRNA-mediated downregulation of TRPM2 in two GC cell
lines, AGS and MKN-45, led to a slowdown of the growth of
the cells and increased the percentage of apoptotic cells.
TRPM2 knockout has been found to downregulate the c-Jun
terminal kinase (JNK) signaling pathway, which subsequently
impairs autophagy and mitophagy. These impairments led to
the accumulation of damaged mitochondria and decreases in
basal and maximal mitochondrial oxygen consumption and
ATP production, which ultimately caused GC cell death. In
addition, the authors found that TRPM2 downregulation sen-
sitized GC cells to paclitaxel and doxorubicin [144], which
was consistent with the results of neuroblastoma studies. In a
neuroblastoma study, it was found that the expression of HIF-
1/2α in TRPM2-S-expressing tumor cells was significantly
decreased and that the reduction in the survival of TRPM2-
S-expressing cells could be rescued by functional enhance-
ment of HIF-1α or HIF-2α. These results confirm that
TRPM2 plays an important role in the regulation of ROS
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and HIF levels and tumor cell survival, as well as improve-
ments in cell survival observed after doxorubicin treatment
[141]. However, whether HIF exerts an effect on TRPM2 in
GC remains to be investigated. Almasi et al. also found that
the TRPM2 expression level is negatively correlated with the
survival rate of patients with GC, which suggests that the
application of TRPM2 targeting combined with chemothera-
peutic drugs may be used as a strategy to improve current
therapeutic effects and to improve the prognosis of patients
with GC [144]. These researchers also found that TRPM2
promotes the migration, invasion and growth of GC cells
through the AKT signaling pathway [145]. Based on the
above-described findings, TRPM2 may promote the survival
and growth of GC cells by helping them to cope with hypoxia-
induced oxidative stress and by regulating hypoxia-induced
transcription factor expression, mitochondrial function and
mitophagy.

4 Conclusions and perspectives

A hypoxic microenvironment is a key hallmark of solid tu-
mors. Alterations and/or dysfunction of ion channels are en-
countered in almost all cancer types. However, one aspect that
has received less attention is that the activity of ICTs is highly
sensitive to a hypoxic microenvironment, highlighting a puta-
tive important role of ICTs in regulating cancer development
in a such a microenvironment. Here, we outline interactive
connections between multiple ICTs and various components
during the hypoxic response of GC cells. We believe that both
the hypoxic microenvironment and ICTs may serve as effec-
tive targets for the treatment of GC. Obtaining a better under-
standing of the relationship between hypoxia and ICTs in the
context of GC may pave the way for a more efficacious
targeted treatment of GC.
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