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Short Communication
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Abstract: Cigarette smoking is one of the major risk factors of bladder cancer in humans. To date, however, there is no experimental 
evidence for the effects of inhalation exposure to mainstream cigarette smoke on bladder carcinogenesis. The purpose of the present 
study was to evaluate the effect of inhalation of mainstream cigarette smoke on mouse bladder carcinogenesis using a cigarette smoke 
inhalation exposure system. Six-week-old male C57BL mice were administered 0.025% N-butyl-N-(4-hydroxybutyl) nitrosamine 
(BBN) in their drinking water for 8 weeks and then divided into 2 groups and exposed to 0 or 300 mg/m3 wet total particulate matter 
mainstream cigarette smoke for 2 h per day, five times per week, for 22 weeks. The incidences of bladder tumors (papilloma and uro-
thelial carcinoma) tended to increase in the cigarette smoke-exposed group (25.0%) compared with the controls (15.8%), albeit without 
a statistically significant difference. We also evaluated mRNA expression levels of cytochrome P450 (cyp) enzymes and proliferating 
cell nuclear antigen (PCNA) in the bladder epithelium. Expression of cyp1a1 was significantly increased in the cigarette smoke-exposed 
group. Cigarette smoke exposure did not have a significant effect on the expression of cyp1a2, cyp 1b1, cyp 2a4, cyp 2b10, cyp 2e1, or 
PCNA. In conclusion, limited exposure to mainstream cigarette smoke for 22 weeks, caused a significant increase in cyp1a1 expression. 
This increase coupled with the nonsignificant increase in bladder tumors suggests that a longer period of exposure is required to clarify 
the effects of cigarette smoke on bladder carcinogenesis. (DOI: 10.1293/tox.2013-0039; J Toxicol Pathol 2013; 26: 447–451)
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Epidemiological studies have demonstrated that ciga-
rette smoking increases the risk of developing several types 
of cancer including lung, oral, and urinary bladder can-
cer1–4. Cigarette smoke includes more than 7,000 chemicals, 
and at least 250 are known to be harmful. Among the 250 
known harmful chemicals in tobacco smoke, at least 69, in-
cluding arsenic, benzene, cadmium, and benzopyrene, can 
cause cancer4. One of the major causative agents of bladder 
cancer in cigarette smoke is aromatic amine, although the 
underlying mechanism of aromatic amine-induced bladder 
carcinogenesis is not fully understood5. While epidemio-
logical studies have shown that cigarette smoking causes a 
2–4-fold increase in the risk of developing bladder cancer6, 
there have been no experimental studies on the effect of in-
halation exposure to mainstream cigarette smoke on blad-
der carcinogenesis. The purpose of the present study was 
to evaluate the effect of inhalation of cigarette mainstream 
smoke on bladder carcinogenesis using a cigarette smoke 

inhalation exposure system.
A total of 96 male C57BL mice, 5-weeks old, were ob-

tained from Charles River Laboratories Japan (Yokohama, 
Japan). They were housed five per plastic cage with paper 
chips bedding in an experimental animal room with a 12-h 
light/dark cycle at a temperature of 23 ± 2°C and a relative 
humidity of 50 ± 20%. Basal diet and drinking water (CE2, 
Clea Japan Inc., Tokyo, Japan) were available ad libitum 
except for the time when the mice were exposed to clean 
air (control) or cigarette smoke. Experiments were initiated 
after a 1-week acclimatization period. The animals were 
observed daily, and body weights were measured weekly 
throughout the duration of the experiment. The animal ex-
perimentation protocols were approved by the Institutional 
Animal Care and Use Committee of Osaka City University 
Medical School.

The experimental protocol is shown in Fig. 1. Ninety-
six mice were divided into 2 groups (control and cigarette 
smoke-exposed groups). They were given 0.025% N-butyl-
N-(4-hydroxybutyl ) nitrosamine (BBN) in their drinking 
water for 8 weeks, and after a 1-week washout period with-
out BBN, they were exposed to clean air (control) or main-
stream cigarette smoke for 2 h/day (9 to 11 AM), 5 days/
week, for 22 weeks. During exposure, each mouse in both 
groups was placed in an acrylic holder that was attached 
to the inhalation exposure chamber (SIS, Sibata Scientific 
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Technology Ltd., Saitama, Japan) and nose-only exposed 
to cigarette mainstream smoke or clear air. Cigarette main-
stream smoke of 3R4F reference cigarettes (Tobacco and 
Health Research Institute, University of Kentucky, Lex-
ington, KY, USA) flowed from a cigarette smoke generator 
(SG-300, Sibata Scientific Technology Ltd., Saitama, Japan) 
to the inhalation exposure chamber. Humidity in the cham-
ber was 50%. Cigarette smoke was diluted by air to a fi-
nal concentration of 300 mg/m3 wet total particulate matter 
(WTPM), and the air flow was 24.0 L/h. The concentration 
of CO was also monitored during study, and the CO/WTPM 
ratio was set between 1.1 and 1.3 using a Glass Fiber Filter 
(Advantec, Tokyo, Japan). Six mice were found dead in the 
cigarette smoke-exposed group during weeks 8 to 9: these 
mice were not included in this study. Ten mice in each group 
were euthanized at week 22, and all other surviving mice 
were scheduled to be euthanized at week 31 (control group, 
38 mice; exposed group, 32 mice).

All mice surviving for at least 25 weeks were autopsied 
for macroscopic and histological examination, including 
mice that died (3) or were killed under anesthesia when be-
coming moribund (1) during the study. At autopsy, urinary 
bladders were inflated with 10% buffered formalin, fixed 
in 10% formalin solution, and processed for histopatho-
logical examination. All other major organs (liver, kidney 
and spleen) were examined grossly and fixed in formalin. 
After fixation, they were processed for paraffin embedding 
and stained with hematoxylin and eosin for histological ex-
amination. We randomly chose five bladder tissue samples 
without bladder tumor or papillary/nodular hyperplasia 
from each group to determine the Ki-67 labeling index. For 
immunohistochemistry, sections were autoclaved in 10 mM 
sodium citrate buffer (pH 6.0) at 98°C for 20 min, and then 
treated with anti-Ki-67 antibody (Epitomics, Burlingame, 
CA, USA) at a dilution of 1:500. The number of Ki-67-la-
beled cells was counted and quantified per 1000 total uro-
thelial cells to determine a labeling index.

Total RNA was extracted from formalin-fixed paraf-
fin-embedded tissue using an miRNeasy FFPE Mini kit 
(Qiagen, Tokyo, Japan) according to the manufacturer’s in-
structions. Briefly, sections (10 µm thickness) were cut and 
deparaffinized in xylene and rehydrated in alcohol and dis-
tilled water. Needle dissection was performed using forma-
lin-fixed paraffin-embedded bladder tissue without tumor 
lesions (whole layer including muscle), and the sample was 
dissolved in 240 µl of protein kinase digestion buffer. RT-
PCR followed by real-time PCR was performed as previous-
ly described7. The assay IDs used for real-time PCR were 
CYP1a1, Mm00487218_m1; cyp1a2, Mm00487224_m1; 
CYP1b1, Mm00487229_m1; CYP2a4, Mm00487248_g1; 
CYP2b10, Mm00456591_m1; CYP2e1, Mm00491127_m1; 
PCNA, Mm00481100_m1; and β-actin, Mm00607939_s1 
(Applied Biosystems). The thermal cycle program was 20 
seconds at 95°C followed by 40 cycles of 3 seconds at 95°C 
and 30 seconds at 60°C. Gene expression data were normal-
ized to β-actin levels. Statistical analysis between the two 
groups was performed using the Mann-Whitney test.

At the week 22 necropsy, no bladder tumors were 
found except for one papilloma in the exposed group. This 
result led us to continue the study with the surviving mice 
for an additional 9 weeks. Table 1 summarizes body and 
organ weights and the tumor incidence at week 31. Two mice 
were found dead and 1 mouse became moribund in the con-
trol group during weeks 29 to 30; 1 mouse was found dead 
in the cigarette smoke-exposed group at week 30. These 4 
mice were autopsied for histopathological examination and 
included in this study. There were no cigarette smoke-relat-
ed mortalities.

In both groups, food consumption was reduced com-
pared with historical controls toward the end of the BBN 
administration period and through the beginning of the ex-
posure period, and a slight decrease in body weight followed 
decreased food consumption. At approximately weeks 11–
12, after 1 to 2 weeks of being restricted in the acrylic hold-
ers attached to the inhalation exposure chamber for 2 h/day, 
food consumption and body weight began to increase again. 
Exposure to cigarette smoke resulted in significant decreas-
es in food consumption (Fig. 2C) and body weight (Table 1, 
Fig. 2A) in the exposed group compared with the control. 
The body weight loss in the cigarette smoke-exposed group 
was toxicologically relevant. There was also a significant 
decrease in relative liver weight in the cigarette smoke-
exposed group, but no microscopic changes were observed. 
Therefore, the decrease in relative liver weight was not a 
direct effect of cigarette smoke inhalation. There were no 
significant differences in organ weight or histopathological 
changes in the kidney or spleen between the groups.

The incidences of bladder tumor (papilloma and uro-
thelial carcinoma) were slightly higher in the cigarette 
smoke-exposed group, but the increase was not statistically 
significant (25.0% vs .15.8%, P = 0.3810). Invasive bladder 
cancers were seen in 5 and 6 mice in the control and ex-
posed groups, respectively. The average tumor sizes were 
6.0 and 3.8 mm, and the average tumor numbers were 1.2 
and 1.7 per mouse in the control and exposed groups, re-

Fig. 1. Experimental design. Mice were divided into 2 groups. All 
mice were administered 0.025% BBN in drinking water for 
8 weeks followed by a 1-week washout period with BBN-free 
drinking water. Mice in the exposed group were then exposed 
to mainstream cigarette smoke for 2 h/day, five days per week. 
Mice in the control group were also restricted and exposed to 
clean air for the same period. Mice were sacrificed at week 22 
(10 mice each) and week 31 (control group, 35 mice; exposed 
group, 31 mice).
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spectively. The Ki-67 labeling indexes were 2.00 ± 0.53 and 
2.13 ± 1.05 in the control and exposed groups, respectively. 
No statistical significance was found in invasive cancer in-
cidences, tumor size, tumor number, or Ki-67 labeling index 
between the groups.

To evaluate alterations in the mRNA expression levels 
of cytochrome P450 (CYP) enzymes and PCNA in mouse 
bladder tissue after exposure to cigarette smoke, RT-PCR 
followed by real-time PCR was performed using 5 bladder 
tissue samples without tumor lesions from each group. As 
shown in Fig. 3, the cyp1a1 expression level was significant-

ly higher in the cigarette smoke-exposed group (P = 0.0286, 
Mann-Whitney test); no significant differences were found 
in the expression of the other genes examined.

Ohnishi et al. exposed female mice to mainstream and 
sidestream cigarette smoke for up to 12 months8. They re-
ported that cigarette smoke exposure did not result in devel-
opment of neoplastic or preneoplastic bladder lesions. They 
did observe an increase in the Ki-67 labeling index of the 
urothelium at 3 months, but attributed the increased uro-
thelial proliferation to cell cytotoxicity and consequent re-
generative proliferation. The increased Ki-67 labeling index 

Table 1. Final Body and Organ Weights and Tumor Incidences in the 31-week Experiment

Cigarette 
smoke 

inhalation

Final 
number 
of micea

Body 
weight 

(g)

Liver weight Kidney weight No. of 
mice  

examinedc

Tumor incidence

Absolute 
(g)

Relative 
(%)

Absolute 
(g)

Relative 
(%) PN Papilloma UC Total 

tumor
Control 
group - 35 29.9 ± 1.8 1.4 ± 0.1 4.6 ± 0.3 0.4 ± 0.0 1.2 ± 0.07 38 9 (23.7%) 0 (0%) 6 (15.8%) 6 (15.8%)

Exposed 
group + 31 27.6 ± 1.1b 1.2 ± 0.1b 4.3 ± 0.2b 0.3 ± 0.0b 1.2 ± 0.06 32 8 (25.0%) 1 (3.1%) 7 (21.9%) 8 (25.0%)

a Number of mice that survived at week 31. b P<0.05 vs. control. c Number of mice that survived for at least 25 weeks. PN, papillary or nodu-
lar hyperplasia; UC, urothelial carcinoma. PN, papillary or nodular hyperplasia; UC, urothelial carcinoma.

Fig. 2. Body weight, food consumption and water intake in the 31-week experiment. Body weight, food consumption, and water intake of the 
mice are shown. Mice were administered BBN in their drinking water for 8 weeks, followed by a 1-week washout period and then fol-
lowed by exposure to clean air or cigarette smoke. Food consumption was reduced toward the end of the BBN administration period and 
through the beginning of the exposure period. There was a slight decrease in body weight following decreased food consumption. At 
approximately weeks 11–12, food consumption and body weight began to increase again. Body weight and food consumption of the mice 
in the exposed group were significantly lower compared with those in the control group (P<0.0001 and P = 0.0002, respectively). Water 
intake was also lower in the exposed group, but the decrease did not reach statistical significance (P = 0.0703). Statistical analysis was 
performed using the Mann-Whitney test.
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was not present at 6, 9, or 12 months. Accordingly, we used 
an initiation-promotion model in the present study. After 
initiation of carcinogenesis with BBN followed by 22 weeks 
of exposure to cigarette smoke, there were no significant in-
creases in bladder tumors compared with the BBN-initiated 
clean air controls. There was, however, a nonsignificant 
increase in bladder tumors in the cigarette smoke-exposed 
group, suggesting that longer exposure to cigarette smoke 
may enhance bladder carcinogenesis in this model.

The cytochrome P450 family of enzymes plays impor-
tant roles in the biotransformation of drugs, carcinogens, 
and environmental toxicants9–12. Oxygenation of chemicals 
by CYP1A1 serves as an initial step in the conversion of the 
substrates to more polar metabolites, resulting in maintain-
ing chemical homeostasis in the body. CYP1A1 also oxi-
dizes a number of polycyclic aromatic hydrocarbons, some 
of which are found in cigarette smoke, to carcinogenic in-
termediates. A notable feature of cyp1a1 is that it is highly 
inducible at both the mRNA and protein levels by a range 
of chemicals13,14. Because of the critical role of cyp1a1 in 
chemical carcinogenesis and toxicity, cyp1a1 is a central 
focus of interest in cancer research, toxicology, and envi-
ronmental health. Dorrenhaus et al. reported that CYP1A1 
expression in urothelial cells was higher in smokers than in 
nonsmokers (44% vs. 6%)15. Although the underlying mech-
anism of CYP1A1 induction by cigarette smoking remains 
unknown, this study does suggest that human urothelial 
cells may respond to cigarette smoking by increasing ex-
pression of CYP1A1. It is also reported that CYP1A1 levels 
in liver microsomes were increased by cigarette smoke in 

NMRI mice and Wistar rats, but not in hamsters16,17. In the 
present study, we found that exposure to cigarette smoke 
resulted in upregulation of cyp1a1, indicating that exposure 
did influence this metabolic pathway in the bladder epithe-
lium, and this supports the possibility that longer exposure 
to cigarette smoke may enhance bladder carcinogenesis in 
this initiation-promotion model.

We evaluated the effect of cigarette smoke inhalation 
on bladder carcinogenesis using a novel smoke inhalation 
experiment system in this study. Only a nonsignificant in-
crease in bladder tumors was seen in the cigarette smoke-
exposed group, but exposure resulted in a significant up-
regulation of cyp1a1. In conclusion, inhalation exposure to 
mainstream cigarette smoke for 22 weeks caused a signifi-
cant increase in cyp1a1 expression; however, a longer period 
of smoke exposure is needed to clarify the carcinogenic ef-
fects of cigarette smoke on the mouse bladder.
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