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Abstract

Background: Pregnant women with subclinical hypothyroidism are associated with an 
increased risk of spontaneous abortion. This study aims to investigate the mechanisms 
underlying the effects of maternal subclinical hypothyroidism during early pregnancy on 
abortion in the uterus, focusing upon the LIF/STAT3 signaling pathway.
Methods: One hundred five Wistar rats were randomly divided into three groups (35 
rats in each group): control (CON) group, subclinical hypothyroidism (SCH) group and 
overt hypothyroidism (OH) group. We examined the weight of rat uteri, rat placenta 
and embryos. We also determined the number of implantation sites and the embryo 
absorption rates. The protein and mRNA expressions of TSHR, TR-α, TR-β, LIFR, gp130, 
JAK1, p-STAT3 and STAT3 were measured by immunohistochemical staining, real-time 
PCR and Western blotting.
Results: The weights of rat uteri, rat placenta and embryos were significantly reduced in 
the SCH and OH groups. The number of implantation sites was significantly decreased in 
the SCH and OH groups, while embryo absorption rates were significantly increased. The 
mRNA and protein expressions of TSHR were upregulated in the SCH and OH groups, 
while TR-α and TR-β showed no difference when compared between the three groups. 
The expression levels of LIFR, gp130, JAK1 and p-STAT3 were significantly higher in the 
SCH and OH groups.
Conclusions: Clinical and subclinical hypothyroidism during early pregnancy might cause 
adverse pregnancy outcomes. Implantation failure in rats with subclinical hypothyroidism 
was associated with abnormal LIF/STAT3 signaling.

Introduction

Subclinical hypothyroidism (SCH), characterized by 
elevated levels of thyroid-stimulating hormone (TSH) 
with total thyroxine (TT4) within the normal reference 
range, is the most common type of thyroid disorder in 
pregnancy (1). A previous large cohort study in America 
used trimester-specific references to classify the definition 

of hypothyroidism in pregnancy and found that 15.5% of 
pregnant women had increased TSH during pregnancy, of 
which 2.4% were overt hypothyroidism (OH) and 97.6% 
were SCH (2).

Clinical studies have shown that pregnant women 
with OH or SCH are likely to have an increased risk of 
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pregnancy complications such as spontaneous abortion. 
Although SCH leads to a lower incidence of pregnancy 
complication compared to OH, the risk of spontaneous 
abortion still increases with the prevalence of SCH (3, 4). 
Negro et  al. demonstrated that women with TSH levels 
between 2.5 and 5.0 mIU/L in the first trimester and those 
who are negative to thyroid antibody are associated with 
a higher rate of spontaneous pregnancy loss as compared 
with women with TSH levels lower than 2.5 mIU/L (5). 
However, the mechanisms underlying miscarriage caused 
by SCH are still unclear.

Leukemia inhibitory factor (LIF) is known to 
play a vital role in the progression of blastocysts to 
implantation. In humans, LIF regulates the receptivity of 
the uterus by controlling blastocyst implantation via the 
promotion of proliferation and differentiation (6). LIF 
can also regulate extravillous trophoblast (EVT) invasion 
by inducing the phosphorylation of STAT3 and plays an 
important role in the implantation of the embryo into 
the endometrium (7).

For rats, successful implantation only occurs during 
a short limiting period generally from 4 to 6  days of 
pregnancy (8). During 12 to 14 days, the occurrence of 
abortion (in our previous experiments) can be clearly 
observed. In this study, we used a model of rats with 
SCH during pregnancy and observed the implantation 
site and abortion rate on day 5 and day 13 of pregnancy 
respectively, focusing particularly on the LIF/STAT3 
signaling pathway.

Materials and methods

Animals

One hundred five nulliparous female Wistar rats, weighing 
180–200 g (virgin 6–7  weeks old), were maintained on 
a 12:12-h light/darkness cycle and fed normal rat chow 
ad libitum. All animals and experimental procedures 
were approved by the Animal Care and Use Committee 
at China Medical University, which complied with the 
National Institute of Health Guide for the Care and Use 
of Laboratory Animals. The rats were randomly assigned 
to three groups: control group (CON, n = 35), OH group 
(n = 35) and SCH group (n = 35). The rats were treated by 
intraperitoneal (i.p.) injection of 3% pentobarbital sodium 
(0.1 mL/100 g) and placed on an operating table. Rats in 
the OH and SCH groups were subjected to thyroidectomy, 
removal of the thyroid gland, to establish a hypothyroid 
model. Rats in the CON group were given a sham operation 

that did not involve removal of the thyroid gland, as 
described in a previous work (9). After surgery, rats were 
kept at 34 ± 2°C under an electric blanket until they awoke. 
Four weeks after surgery, rats in the SCH group were 
injected subcutaneously with l-thyroxine (l-T4, Sigma) 
1.0 μg/100 g/day on the back. Rats in the CON and OH 
groups were injected subcutaneously with physiological 
saline (50 µL/100 g/day) on the back. Calcium lactate 
(0.1% w/v) was added to the drinking water for all rats 
after surgery. After 9 days of injections, all rats were mated 
with normal male rats (male:female = 1:2). The day of 
vaginal plus was confirmed by microscopic observation 
and designated as E0. We collected tissues on days E0, E5 
and E13. We measured the weight of the uterus on days E0 
and E5 and the weight of the placenta and embryos on day 
E13. We also calculated the number of implantation sites 
(Fig. 2A) and the absorptions (Fig. 2B). We used the ratio 
of number of absorptions and number of all the embryos 
(viable and absorbed) represented the absorption rate.

Measurement of TT4 and TSH

Blood samples obtained from all groups were immediately 
centrifuged at 13,000 g for 13 min and stored at −80°C 
for subsequent measurement of TT4 and serum TSH 
using a supersensitive chemiluminescence immunoassay 
(Immulite). All samples were assayed in duplicate. The 
intra- and interassay coefficients of variation were below 
10% and the sensitivity for TT4 was 1 μg/dL. The results 
below this limit of quantification were recorded at 1 μg/dL 
for statistical purposes.

RNA isolation and quantitative real-time PCR

RNA was extracted from rat uteri from each group 
using TRIzol (Life Tech). First strand of cDNA was 
synthesized using total RNA and RT-PCR was carried out 
by TaqMan expression assays, using glyceraldehyde-3-
phosphatedehydrogenase (GAPDH) as a control (R&D 
Systems). The sequences for TSHR, TR-α1, TR-α2, TR-β, 
LIFR, Gp130, JAK1 and GAPDH were performed through 
the ABI PRISM system. Primer sequences are shown in 
Table 1 and were analyzed with BLAST software on NCBI. 
Reactions were performed in a total volume of 20 μL and 
gene expression was determined by SYBR Premix Ex Taq 
TM II (TaKaRa Biotechnology Co., Ltd.) in accordance 
with the manufacturer’s instructions. Reactions began 
with a 10 s hot activation of Taq polymerase at 95°C, 
followed by 40–45 cycles of amplification in three steps 
(denaturation at 95°C for 5 s, 30 s annealing at 60°C 
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and 30 s extension at 72°C). The mRNA expression was 
measured as a ratio to GAPDH.

Immunohistochemistry

Immunohistochemical studies were conducted on uterine 
tissue. Samples were first embedded in paraffin and then 
sectioned at a thickness of 5 μm. Tissue samples were 
then dewaxed and incubated in 0.3% H2O2 for 10 min. 
For staining, slices were first treated with a heated antigen 
repair protocol in 0.03 M citrate buffer (pH 6.0) for 40 min 
at 95°C. All samples were then incubated in 5% bovine 
serum albumin for 20 min to block nonspecific binding 
sites after different types of antigen repair. All sections 
were incubated with rabbit polyclonal antibodies against 
TSHR (1:500), TR-α (1:100), TR-β (1:300), STAT3 (1:200), 
and p-STAT3 (1:250). All antibodies were purchased from 
Abcam and were incubated with sections overnight at 
4°C. Slices were then stained with secondary antibody 
(Santa Cruz Biotechnology). Sections were then stained 
with DAB (Santa Cruz Biotechnology) and observed under 
microscope in order to develop positive antibody binding 
signals. The nuclei of sections were then counterstained 
with hematoxylin. Finally, sections were dehydrated, 
rinsed and mounted in neutral gum. All sections were 
then analyzed at a magnification of ×200. Five visual fields 
per slide were randomly selected. The area integrated 
optical density (AIOD) of positive cells in each field was 
calculated using a Metamorph/DPIO/BX51 morphology 
image analysis system (Olympus) in order to assess the 
expression of each target. The results were analyzed using 
ImagePro Plus software (Bethesda, MD, USA).

Western blotting

Tissues were lysed in radioimmunoprecipitation (RIPA) 
buffer and total protein concentration was determined 
with a bicinchoninic acid (BCA) assay (Beyotime). Then, 
20 μg of total protein from each sample was separated 
by 10% SDS-PAGE and then transferred to PVDF 

membranes. Membranes were then washed, blocked and 
incubated sequentially with specific primary antibodies: 
rabbit polyclonal antibody LIF (1:1,000), LIFR (1:200); 
p-STAT3 (1:2,000), ER-α (1:1,000); gp130 (1:1,000); JAK1 
(1:5,000) (Abcam) and mouse polyclonal anti-GAPDH 
(1:3,000; Santa Cruz Biotechnology). Incubation in 
primary antibodies was followed by incubation with 
goat anti-rabbit secondary antibody (1:5,000, Santa Cruz 
Biotechnology). Positive antibody binding reactions 
were detected by an enhanced chemiluminescence using 
an ECL system and each experiment was performed in 
triplicate. The relative densitometry of the band was 
measured using ImageJ software (Bethesda).

Statistical analysis

The statistical data are presented as mean ± s.d. SPSS20.0 
(IBM) was used for all data analyses. The t-test was applied 
to assess the statistical significance of the differences 
between paired groups of data, and differences among 
more than two groups were analyzed using one-way 
ANOVA. P < 0.05 was considered as statistically significant. 
All artwork was created by using GraphPad Prism (6.0).

Results

TT4 and TSH levels in maternal rats

To evaluate maternal thyroid function, blood samples 
from the CON, SCH and OH groups were evaluated for 
serum levels of TT4 and TSH. Compared to the CON 
group, the OH group showed a significant increase in TSH 
and a reduction in TT4 (Table 2). Serum TSH in the SCH 
group was significantly higher than in the CON group 
(P < 0.05), but there was no significant difference in TT4 
levels between these two groups. The SCH group also had 
a significantly higher serum level of TT4 than the OH 
group (P < 0.05). Collectively, normal TT4 and higher TSH 
levels confirmed the successful creation of a rat model 
of maternal SCH (Table 2). All maternal rats maintained 
stable levels of TT4 and TSH level when analyzed at E0, E5 
and E13 (Table 2).

Pregnancy outcomes

On E0 and E5, we recorded the weight of rat uteri, it was 
much lower in the SCH and OH group compared to the 
control group (P < 0.05; Fig. 1A and B). Furthermore, on 
E13, the weight of rat placenta and embryos were much 
lower in the SCH and OH groups (P < 0.05; Fig. 1C and D).

Table 1 Primer sequences for the real-time PCR.

Gene Forward primer Reverse primer

Tshr CCCTGTCCCTCACTATCTGC ACTGGTTCTCCTGCCTTCAG
Tr-α1 CCACATGAAAGTCGAGTGCC AAGAGATGGGGGTTCTCCCT
Tr-α2 GGGGAAGGAGAAGGAGCAT AGGGGTAGGAGGGTGGTCTT
Tr-β GGTGGCAAGGTTGATCTGGA CACAGGGCAGCTCACAAAAC
Lifr CCCACGCAACACAGAATACA GGTCAGGAGCCATTTTCAAG
Gp130 ACCACCACCACCACTTGACT GTGCTTCCTCCACCAACATC
Jak1 GGAGGAGCAGAATCCAGACA TCAACCTTCCCAAAGTGACC
Gapdh GACATGCCGCCTGGAGAAAC AGCCCAGGATGCCCTTTAGT
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On E5, we observed and recorded the number of 
implantation sites in each group (Fig. 2A). We found that 
the number of implantation sites of SCH and OH group 
were lower than that in the CON group (P < 0.05; Fig. 2B). 
The OH group was the lowest, but there was no significant 
difference between the SCH and OH groups (Fig. 2B).

On E13, we observed and recorded the number of 
absorptions in each group (Fig.  2C) and calculated the 
embryo absorption rates. We found that the embryo 
absorption rates were significantly higher in the SCH 
and OH groups (P < 0.05; Fig. 2D). The OH group was the 
highest, but there was no significant difference between 
the SCH and OH groups (Fig. 2D).

Uterine TSHR, TR-α1, TR-α2 and TR-β 
mRNA expressions

We measured the mRNA expression levels of TSHR, TR-α1, 
TR-α2 and TR-β in uterus of the three groups. On E0 and E5, 
the SCH and OH groups showed an increased expression 
of mRNA levels for TSHR compared with the CON group, 
with the OH group showing the most significant increase 
on E0 (P < 0.05; Fig. 3A and E).

There was no significant difference between these 
groups in terms of the expression of mRNA levels for 
TR-α1 (P > 0.05; Fig. 3B and F), TR-α2 (P > 0.05; Fig. 3C and 
G) and TR-β (P > 0.05; Fig. 3D and H) on E0 and E5.

Immunohistochemical staining of TSHR, TR-α and 
TR-β in the uterus

Immunohistochemical analysis detected expression of 
TSHR, TR-α and TR-β on E0 and E5 (Figs 4A and 5A, C); 
AOID levels of TSHR in the SCH and OH groups were 
significantly higher than those in the CON group (P < 0.05; 
Fig.  4B), although there was no significant difference  
in TR-α and TR-β between the three groups (P > 0.05; 
Fig. 5B and D).

Uterine expression of LIFR, gp130 and JAK1 mRNA

The mRNA levels of LIFR, gp130 and JAK1 were detected 
on E0 and E5 by real-time PCR. Data showed that on E0, 
the mRNA levels of these three targets were significantly 
higher in the SCH and OH groups than in the controls 
(P < 0.05; Fig.  6A, C and E). There was no significant 
difference between the three groups on E5 (P > 0.05; 
Fig. 6A, C and E).

Furthermore, from E0 to E5, these three indicators 
showed a general tendency to increase in the control Ta
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group (P < 0.05; Fig. 6B, D and F), although no significant 
difference was detected in the SCH and OH groups 
(P > 0.05; Fig. 6B, D and F).

Levels of LIF, LIFR, gp130, JAK1 and p-STAT3 protein in 
the uterus

The protein levels of LIF, LIFR, gp130, JAK1 and p-STAT3 
were examined by Western blotting (Fig. 7A). Data showed 
that on E0, the protein levels in the SCH and OH groups 
were significantly higher than the controls (P < 0.05; 
Fig. 7B (i), C (i), D (i), E (i) and F (i)) and that these five 
proteins showed no difference between the three groups 
on E5 (P > 0.05; Fig.  7B (i), C (i), D (i), E (i) and F (i)).  

From E0 to E5, these five proteins showed a general 
tendency to increase in the control group (P < 0.05; Fig. 7B 
(ii), C (ii), D (ii), E (ii) and F (ii)).

Discussion

The interaction between embryo implantation and 
a receptive uterine environment is a vital aspect of 
successful embryo implantation (10, 11, 12). A range 
of cytokines and growth factors act as either autocrine 
and paracrine factors, with both temporal- and spatial-
specificity, in order to regulate uterine receptivity (13, 
14). Uterine implantation is classified into three phases: 

Figure 1
(A and B) Uterine weight of pregnant rats from 
the CON, SCH and OH groups at 0 and 5 days of 
gestation (*P < 0.05). (C and D) Weight of embryos 
and placenta in pregnant rats from the CON, SCH 
and OH groups at 13 days of gestation (*P < 0.05). 
NS, non-significant.

Figure 2
(A) The arrows point to the implantation sites of 
pregnant rats on 5 days of gestation. (B) 
Implantation sites of pregnant rats from the CON, 
SCH and OH groups at 5 days of gestation 
(*P < 0.05). (C) The arrows point to the embryos 
absorpted on 13 days of gestation. (D) Embryo 
absorption rates from the CON, SCH and OH 
groups at 13 days of gestation (*P < 0.05). NS, 
non-significant.
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pre-receptive (1–3 days after fertilization), receptive (day 
4 after fertilization) and non-receptive phases (day 5 after 
fertilization) (15, 16). Embryo implantation can only 
occur during the receptive phase, and the process cannot 
be completed in the other two phases.

Thyroid hormones play an important role in embryo 
implantation and the early stages of development. In this 
study, we used a model of subclinical hypothyroidism 
in pregnant rats via the complete surgical removal of 
the thyroid and subcutaneous injection of l-T4 (9). The 
results of serological tests in rat models indicated that 
this method was feasible and reproducible. The uterine 
tissues of pregnant rats were collected on E0 and E5, and 
the placentas and embryos were also collected on E13. 
We found that on E0 and E5, the weight of the uteri 

were significantly decreased in the SCH and OH groups 
compared to the controls. On E13, the weight of the 
placentas and embryos were significantly reduced in SCH 
and OH groups. Moreover, the number of implantation 
sites in the SCH and OH groups were significantly 
lower than the controls, while embryo absorption rates 
were significantly increased in the SCH and OH groups. 
These results suggested that hypothyroidism in pregnant 
rats, even mild hypothyroidism, had adverse effects on 
pregnancy outcomes.

The thyroid hormone receptor (TR) hypotype, TRα 
and TRβ, bind to T3 and regulate TSH-related gene 
expression. Previous studies have reported that TR 
and the TSH receptor (TSHR) play a vital role during 
the implantation window and show a wide range of 

Figure 3
TSHR (A and E), TR-α1 (B and F), TR-α2 (C and G) and TR-β (D and H) (mean ± s.d.) mRNA expression in the uterus from the CON, SCH and OH groups at 0 
and 5 days of gestation (*P < 0.05). NS, non-significant.

Figure 4
TSHR immunohistochemical staining of uteri from the CON, SCH and OH groups at 0 and 5 days of gestation. (A) Immunohistochemical images of TSHR 
expression (streptavidin-biotin-peroxidase, Harris hematoxylin, scale bar = 50 μm). (B) Increased AOID levels of TSHR in uteri from the SCH and OH groups 
compared with the CON group at 0 and 5 days of gestation (*P < 0.05). NS, non-significant.
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expressions in the maternal fetal unit, thus confirming 
that TH and TSH in the vicinity of the endometrium and 
fetus may directly or indirectly regulate the process of 
embryo implantation (17, 18). Stewart et  al. suggested 

that abnormal menstruation and increased miscarriage 
are likely to be due to the direct effects of TSH on the 
uterus in women with abnormal thyroid function (19). 
In this study, we found that the mRNA and AOID levels 

Figure 5
TR-α, and TR-β immunohistochemical staining of 
uteri from the CON, SCH and OH groups at 0 and 
5 days of gestation. (A and C) 
Immunohistochemical images of TR-α and TR-β 
expression (streptacidin-biotin-peroxidase, Harris 
hematoxylin, scale bar = 50 μm). (B and D) AOID 
levels of TR-α and TR-β in uteri from the SCH and 
OH groups compared with the CON group at 0 
and 5 days of gestation (no significant difference). 
NS, non-significant.

Figure 6
LIFR (A and B), gp130 (C and D) and JAK1 (E and F) 
(mean ± s.d.) mRNA expression in uteri from the 
CON, SCH and OH groups at 0 and 5 days of 
gestation (*P < 0.05). NS, non-significant.
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of TSHR in the SCH and OH groups were significantly 
higher than those in the controls, while TR-α and TR-β 
showed no significant difference when compared across 
the three groups. This is consistent with the results of 
Stewart et al. (19).

LIF is a vital cytokine expressed in human 
endometrial cells and is known to play a role in the 
process of implantation (20, 21). Many studies have 
confirmed that the abnormal expression of LIF is related 
to abnormal embryo implantation (22, 23). LIF combines 
with the LIF receptor complex (composed of LIFR and 
gp130) distributed on the surface of luminal epithelial 
cells to form a stable LIF-LIFR-gp130 complex (24). This 
complex can activate JAK1 enzymes, resulting in the 
phosphorylation of the intracellular domain, results in 
the recruitment and phosphorylation of the latent signal 
transducer and activator of transcription 3 (STAT3). In 
a number of animal studies, disruption of the JAK-STAT 

pathway, using a variety of models, ultimately resulted in 
the failure of blastocyst implantation (25, 26).

It has been demonstrated that TSH can stimulate LIF 
expression in the thyroid of monkeys (27). An in vitro study 
measured the effects of TSH on the LIF signaling pathway 
in cultured samples of endometrium (17) and showed 
that TSH dramatically increased the expression of LIF in 
stromal cells. Moreover, TSH can also promote the mRNA 
expression of LIFR, which indicated the participation of 
TSH in the mediation of LIF signaling (17). In this study, 
we examined the expression of the LIF-STAT3 pathway 
in each of our treatment groups. Our results showed 
that elevated serum TSH upregulated expression of the  
LIF-STAT3 pathway prior to the uterine receptivity phase, 
thus promoting the upregulation of LIF-STAT3 in the 
CON group, but not in the SCH and OH groups during 
the implantation window. Thus, an abnormal LIF/STAT3 
pathway in uterine tissue may be related to abnormal 

Figure 7
(A) Protein expression of LIF, LIFR, gp130, JAK1 and p-STAT3. LIF (B), LIFR (C), gp130 (D), JAK1 (E) and p-STAT3 (F) protein levels in uteri from the CON, SCH 
and OH groups at 0 and 5 days of gestation (*P < 0.05). NS, non-significant.
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patterns of embryo implantation in rats in the OH and 
SCH groups. This supports the hypothesis that elevated 
TSH may affect the LIF/STAT3 pathway, rendering the 
blastocyst and uterus in a ‘non-synchronous’ state, and 
eventually leading to implantation failure (28).

In conclusion, high levels of TSH exerted influence 
over the LIF/STAT3 signaling pathway and ultimately led 
to implantation failure. This mechanism may participate 
in adverse pregnancy outcomes in women with clinical 
and subclinical thyroid dysfunction.
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