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MIF is a 3’ flap nuclease that facilitates DNA
replication and promotes tumor growth
Yijie Wang 1, Yan Chen1, Chenliang Wang1, Mingming Yang1, Yanan Wang1, Lei Bao1, Jennifer E. Wang1,

BongWoo Kim1, Kara Y. Chan2, Weizhi Xu2, Emanuela Capota3, Janice Ortega 2, Deepak Nijhawan3,

Guo-Min Li 2, Weibo Luo 1,4 & Yingfei Wang 1,5✉

How cancer cells cope with high levels of replication stress during rapid proliferation is

currently unclear. Here, we show that macrophage migration inhibitory factor (MIF) is a 3’

flap nuclease that translocates to the nucleus in S phase. Poly(ADP-ribose) polymerase 1 co-

localizes with MIF to the DNA replication fork, where MIF nuclease activity is required to

resolve replication stress and facilitates tumor growth. MIF loss in cancer cells leads to

mutation frequency increases, cell cycle delays and DNA synthesis and cell growth inhibition,

which can be rescued by restoring MIF, but not nuclease-deficient MIF mutant. MIF is

significantly upregulated in breast tumors and correlates with poor overall survival in patients.

We propose that MIF is a unique 3’ nuclease, excises flaps at the immediate 3’ end during

DNA synthesis and favors cancer cells evading replication stress-induced threat for their

growth.
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DNA replication is a central event for cell proliferation and
malfunction of the DNA replication machinery causes
DNA replication stress. While DNA replication stress-

induced genomic instability in normal cells has been thought as a
key driver of tumorigenesis1–4, the continuous abnormal
proliferation-induced DNA replication stress may cause profound
genomic instability in cancer cells and bring a threat to cancer
cells viability5,6. However, cancer cells have evolved in certain
ways to cope with DNA replication stress for their survival.
Understanding and targeting these intrinsic DNA replication
stress-resolving mechanisms in cancer cells may lead to devel-
oping a promising strategy to eliminate tumors.

The accuracy of DNA replication in eukaryotes requires the
faithful DNA polymerases to copy DNA and also involves a
timely precise DNA proofreading process to correct the replica-
tion errors. DNA polymerases (Pol) α, δ, and ε are three key
polymerases contributing to DNA replication in eukaryotes2,7,8.
Pol α does not have a proofreading function9–12, but it is required
for initiating DNA synthesis, which is subsequently carried over
by Pol δ and Pol ε9–12. Although Pol δ and Pol ε are able to excise
the mis-incorporated nucleotides at the 3′ end with their 3’
exonuclease activity to proofread replication errors, germline and
somatic mutations within the exonuclease domain in human
POLD1 (encoding Pol δ) and POLE (encoding Pol ε) have been
identified in human cancers1,13,14. It is not yet completely
understood how the DNA proofreading process is controlled in
cancer cells while DNA polymerases keep incorporating nucleo-
tides at such an amazingly high speed2,5,6. Furthermore, there is a
clear discrepancy of polymerase-mediated nucleotide mis-
incorporation rate between in vitro and in vivo studies. The
nucleotide misincorporation rate of Pol δ and Pol ε in vivo is
about 1/108–1010, which is much lower than their in vitro rate (1/
104–105)2. Mismatch repair has been counted as one of the main
contributors to correct in vivo replication errors that escape
proofreading2. However, the efficiency of mismatch repair varies
at different positions in the genome2. It is not known if additional
proofreading mechanisms may be involved in replication to
correct replication errors in vivo.

DNA replication produces both 5’ flap and 3’ flap DNA
overhang structures, which are detrimental to cell proliferation.
Resolving 3’ flap and 5’ flap DNA structures is equally important.
A group of 5’ flap structure-specific nucleases, including Flap
endonuclease 1 (FEN1) and DNA replication helicase/nuclease 2
(DNA2), have been implicated in the process of DNA incision to
remove the 5’ flap structure in a 5’->3’ direction during DNA
replication15–18. Pol δ and Pol ε have been well recognized for
their functions in the removal of mis-incorporated nucleotides in
a 3’->5’ direction. However, it is unknown if additional 3’
nucleases are required to cooperate with nuclease-proficient Pol δ
and Pol ε to maintain high-speed elongation, or to proofread
DNA elongated by Pol α or other 3’->5’ exonuclease-deficient
polymerases-like translesion DNA polymerases or mutant Pol δ
and Pol ε identified in certain human cancers, including color-
ectal cancer, breast cancer, and glioblastoma14.

Our recent study identified microphage migration inhibitory
factor (MIF), a previously known pleiotropic cytokine-like pro-
tein highly conserved in mammals, as a novel poly(ADP-ribose)
polymerase 1 (PARP1)-associated nuclease (PAAN), which pos-
sesses a Mg2+- and Ca2+-dependent 3’ exonuclease activity19.
MIF’s 3’ exonuclease activity is involved in DNA fragmentation
in ischemic stroke19. MIF is widely expressed in various cell types,
including cancer cells, neurons, monocytes, macrophages, vas-
cular smooth muscle cells, and cardiomyocytes, and plays an
important role in inflammation, immune response, and tumor
growth20,21. A large body of evidence has implicated a strong
association of MIF in human cancers22,23. MIF is upregulated in

human tumors and promotes tumor growth, which is indepen-
dent of its tautomerase activity22–24. However, the role of MIF’s
nuclease activity in DNA replication and tumor growth remains
completely unknown.

In this study, we identified MIF as a hitherto unrecognized 3’
flap nuclease involved in DNA replication. MIF recognizes and
cleaves the 3’ flap at Y-shaped dsDNA. Genetic deletion of MIF or
inhibition of its nuclease activity in cancer cells significantly
increases mutation frequency, reduces DNA synthesis, causes cell
cycle delay, inhibits colony survival, and attenuates the growth of
breast tumors, glioblastoma, and colon tumors in mice. These
findings uncover a possible mechanism of MIF-mediated tumor
growth by removing the 3’ flap structures during DNA
replication.

Results
MIF recognizes and cleaves mismatched nucleotides at the 3’
end of Y-shaped dsDNA. To study whether MIF excises mis-
incorporated nucleotides at the 3’ end of Y-shaped dsDNA, which
mimics the intermediate products during DNA replication, we
designed a series of “damaged” dsDNA substrates based on its
stem-loop (SL) ssDNA substrate identified recently19 but
removed the loop and altered the length of mismatched nucleo-
tides at the 3’ end with or without biotin labeling for in vitro
nuclease assay (Fig. 1a). We found that MIF cleaved away
unpaired nucleotides varying from 1 to 7 nt at the 3’ end of non-
biotin-labeled dsDNA substrates, which had the Y-shaped
structure but no loop structure (Fig. 1b, c). However, MIF
could not excise the dsDNA substrate without unpaired nucleo-
tides at the 3’ end (DS-0 nt, Fig. 1b, c). Using 3’-biotin-labeled Y-
shaped dsDNAs as substrates, we discovered that MIF exhibited
no cleavage or rather weak cleavage ability to 3’ biotin-labeled Y-
shaped DNA substrates that had 3 or longer unpaired nucleotides
at the 3’ end (Fig. 1d, e), which is consistent with previous
findings that biotin labeling blocks the exonuclease activity19.
Interestingly, with inhibition of its exonuclease activity, MIF still
selectively cleaved away biotin alone (DS-0b) that served as an
overhang, biotin +1 nt (DS-1b), and biotin +2 nt (DS-2b)
unpaired nucleotides at the 3’ end (Fig. 1d, e). Its cleavage effi-
ciency was negatively correlated with the length of unpaired
nucleotides (Fig. 1d, e). Moreover, MIF cleaved the unpaired 3’
end nucleotide regardless of its sequence as “T”, “A” or “C”
(Supplementary Fig. 1a). These data indicate that MIF recognizes
Y-shaped dsDNA as the substrate and possesses both 3’ exonu-
clease activity and 3’ flap endonuclease activity to selectively
cleave away the short flap at the 3’ end, which depends on the
substrate structure but not sequence.

The glutamate 22 (E22) residue is required for MIF’s nuclease
activity towards ssDNA with the stem-loop structure19. To
determine whether MIF’s nuclease activity is required for excision
of the Y-shaped dsDNA substrate, we expressed and purified
wild-type (WT) MIF and E22A-MIF mutant from bacteria
(Fig. 1f). The purity of MIF protein was determined by Coomassie
blue staining using bovine serum albumin (BSA, > 98% purity) as
control (Fig. 1f) and further confirmed by mass spectrometry. No
known bacterial or human nuclease contaminants were found in
the MIF preparation (Supplementary Table 1). Next, MIF
proteins were incubated with the biotin-labeled Y-shaped DNA
substrate (DS-1b or 0b) in in vitro nuclease assay. We found that
mutation of E22 into alanine clearly blocked MIF’s nuclease
activity towards DS-1b or 0b substrate in vitro (Fig. 1g). These
results indicate that MIF cleaves away the unpaired nucleotides
from the Y-shaped dsDNA substrate through its nuclease activity.

We further studied the nuclease kinetics of MIF by incubating
purified MIF protein for 1–60 min with 1 nt overhanged
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Fig. 1 MIF recognizes Y-shaped dsDNA and cleaves 3’ unpaired nucleotides. a Second structure of MIF substrates ssDNA with the stem-loop (SL) and Y-
shaped dsDNA with different lengths of unpaired nucleotides at the 3′ end. b, c In vitro MIF (2 μM) nuclease cleavage assay using Y-shaped dsDNA as
substrates. Data were quantified in c (mean ± SEM, n= 3 biologically independent experiments). ****P < 0.0001, ***P < 0.001; by one-way ANOVA
Dunnett’s multiple comparisons test vs 0 nt group. EtBr ethidium bromide. d, e In vitro MIF (2 μM) nuclease cleavage assay using 3′ biotin-labeled Y-
shaped dsDNA as substrates. Data were quantified in e (mean ± SEM, n= 3 biologically independent experiments). ****P < 0.0001, *P < 0.05; by one-way
ANOVA Dunnett’s multiple comparisons test vs 7b group. Red dot indicates biotin (d). Arrow indicates the cleavage products. f Protein purification of wild-
type (WT) MIF and nuclease-inactive E22A mutant shown by Coomassie blue staining. BSA (0.5–3 μg) was used as control. g In vitro nuclease assay of
MIF and E22A mutant (2 μM) using 3′ biotin-labeled Y-shaped dsDNA (0.8 μM) as substrates. h, i MIF (2 μM) cleaves DS-1 nt substrate (0.8 μM) in a
time (1, 5, 10, 15, 30, 60min)-dependent manner. Representative image is shown in h. Data are quantified in i (mean ± SEM, n= 3 biologically independent
experiments). j, k MIF (2 μM) cleaves DS-1 nt substrate in a concentration (0.2, 0.4, 1, 2, 4 μM)-dependent manner. Representative image is shown in j.
Data are quantified in k (mean ± SEM, n= 3 biologically independent experiments).
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Y-shaped dsDNA at concentrations varying from 0.2 to 4 μM. We
found that MIF cleaved away 1 nt overhang at the 3’ end of Y-
shaped dsDNA (DS-1 nt) in a time-dependent manner with a t1/2
of 7.7 min, and also in a concentration-dependent manner with
an affinity for the substrate (KM) of 0.9 μM and the catalytic
efficiency (kcat) of 0.02/min (Fig. 1h–k). Biotin-labeled Y-shaped
dsDNA (DS-1b) was similarly tested. MIF cleaved DS-1b in a
time- and concentration-dependent manner with a t1/2 of 10.8
min, KM of 0.7 μM and kcat of 0.02/min (Supplementary
Fig. 1b–e).

Collectively, these findings reveal that MIF has the known 3’
exonuclease activity as well as a novel 3’ flap endonuclease
activity, which contributes to the excision of unpaired nucleotides
at the 3’ end of Y-shaped dsDNA in vitro.

MIF nuclease activity is essential for nuclease-deficient poly-
merase-mediated DNA elongation and fidelity in vitro. Y-
shaped dsDNA mimics the replication fork during DNA repli-
cation. To directly test whether MIF plays a role in DNA
proofreading during DNA replication, we next used three dif-
ferent nuclease-deficient polymerases as tools and performed
in vitro DNA elongation assay with a 99-nt DNA as the template
and a 5’ biotin-labeled oligo containing 18 nt completely com-
plementary to the DNA template as the primer #1 (Fig. 2a). For
comparison, we also used three other primers (#2-4) containing
18 nt complementary to the DNA template and additional 1–3
unpaired nucleotides at the 3’ end, respectively (Fig. 2a). The
main eukaryotic DNA Pol δ and its proofreading-deficient
mutant D402A (Pol δ-M)25,26 were applied to elongate DNA in
the presence or absence of MIF. We found that both Pol δ and its
D402A mutant successfully completed the elongation and pro-
duced a 99-nt biotin-labeled DNA product regardless of the
presence or absence of MIF when the primer #1 completely
complementary to the DNA template was used (Fig. 2b). In
contrast, when the primer (#2-4) contains 1–3 unpaired nucleo-
tides at the 3’ end, D402A Pol δ failed to complete DNA elon-
gation to yield a 99-nt DNA product as Pol δ did (Fig. 2b), which
was consistent with the previous observation that mismatched
nucleotides significantly block Pol α and other nuclease-deficient
polymerase-mediated DNA elongation9–12. Strikingly, in the
presence of MIF, D402A Pol δ was able to produce a 99-nt DNA
product as shown by both ethidium bromide (EtBr) staining and
biotin staining (Fig. 2b), suggesting that MIF facilitates DNA
elongation by removing the 3’ unpaired nucleotides (Fig. 1). MIF
itself did not possess the polymerase activity (Fig. 2b, lane 8). The
amount of elongation product was gradually decreased along with
the increased length of unpaired nucleotides at the 3’ end (Fig. 2b,
c), which was correlated with the cleavage efficacy of MIF on
dsDNA with the different length of unpaired nucleotides at the 3’
end (Fig. 1b, c). Pol α, which is another key eukaryotic DNA
polymerase involved in DNA replication but lacks a 3’->5’
nuclease activity9–12, and Taq DNA polymerase without a 3’
nuclease activity was also selected to elongate DNA in the pre-
sence or absence of MIF. Similar results were observed with these
two 3’ nuclease-deficient DNA polymerases (Supplementary
Fig. 2a, b). Proliferating cell nuclear antigen (PCNA), which has
been shown previously to enhance the nucleotide incorporation
rate27, did not obviously alter the effect of MIF on DNA elon-
gation (Supplementary Fig. 2c).

Next, we studied whether the nuclease activity of MIF is
required for DNA elongation using a nuclease-deficient E22A
MIF mutant. Successful DNA elongation with primer #1 was
observed in the presence of WT MIF or E22A MIF mutant
(Fig. 2d and Supplementary Fig. 2d). However, unlike WT MIF,
E22A MIF failed to ensure the success of D402A Pol δ mutant- or

Pol α-mediated DNA elongation with #3 and #4 primers, which
contain 2–3 unpaired nucleotides at the 3’ end (Fig. 2d and
Supplementary Fig. 2e). The protein purity of POLA1 (Pol α) and
POLD (Pol δ) was confirmed by Coomassie blue staining
(Supplementary Fig. 2f, g). Together, these data indicate that
MIF is able to cleave away mismatched nucleotides at the 3’ end
of dsDNA and coordinates with low-fidelity DNA polymerases to
ensure the DNA elongation process.

To further determine the effect of MIF on the efficiency and
fidelity of DNA synthesis, we performed M13mp18 DNA gap-
filling and mutagenesis assay (Fig. 2e), as previously described28.
The gapped M13mp18 substrate was generated by hybridizing
ssM13mp18 with dsM13mp18 that had removed the LacZα-
coding sequence by restriction digestions with Pst1 and Bsu36I28.
The 283-nt gap was filled by Pol δ, D402A/L606M Pol δ mutant
(Pol δ-DM) or 3’ nuclease-deficient Taq DNA polymerase at
37 °C for 1 h in the absence or presence of MIF-WT (2 μM),
nuclease-inactive MIF-E22A (2 μM), or negative control glu-
tathione S-transferase (GST). The mutation frequency was
determined by a blue-white screen in the presence of IPTG (1
mM) and X-gal (250 μg/ml) and all mutant M13mp18 DNAs
were verified by Sanger DNA sequencing. Consistent with the
previous report25,26, D402A/L606M Pol δ mutant, which has a
reduced 3’ exonuclease activity but an increased polymerase
activity, significantly increased the mutation frequency of the
elongation products (76 mutants/104) in comparison with Pol δ
(9 mutants/104) (Fig. 2f, g). However, in the presence of MIF-
WT, the mutation frequency of D402A/L606M Pol δ mutant-
mediated gap-filling assay was significantly reduced to 17
mutants/104, which was comparable to that of Pol δ. In contrast,
nuclease-inactive E22A mutant and GST did not obviously alter
the mutation frequency of D402A/L606M Pol δ mutant-mediated
gap-filling assay (Fig. 2f, g). Moreover, Sanger sequencing analysis
of mutant clones showed that point mutations were dominant in
these nuclease-deficient polymerase groups and another portion
of random mutations including insertion and deletion were also
observed, whereas Pol δ only caused a very low frequency of
single-point mutations (Fig. 2h). MIF-WT significantly reduced
the point mutation frequency caused by D402A/L606M Pol δ
mutant, although its mutation types were still more than those by
Pol δ alone (Fig. 2h). We also examined the effect of MIF-WT on
Pol δ-mediated mutagenesis and found that MIF did not further
reduce the mutation frequency induced by Pol δ (Fig. 2f–h).

We next performed a gap-filling assay with another Taq DNA
polymerase, which lacks 3’->5’ nuclease activity. The mutation
frequency in Taq + MIF-WT group was about 7 mutants/104

clones, which was much lower than those (14–22 mutants/104

clones) observed in the nuclease-inactive E22A mutant, GST, or
Taq alone experimental group (Supplementary Fig. 2h). More-
over, point mutations were enriched in these three groups,
whereas only several clones with a single G deletion were found in
the MIF-WT group (Supplementary Fig. 2i). These data indicate
that MIF is able to improve the efficiency and fidelity of nuclease-
deficient polymerase-mediated DNA synthesis.

MIF facilitates the DNA replication process. To investigate
whether MIF plays a role in DNA replication process at the
cellular level, we established two MIF knockout (KO) MDA-
MB-231 cell lines using CRISPR/Cas9 single-guide RNAs
(sgRNAs) targeting two different regions of the MIF gene
(Supplementary Fig. 3a) and the rescued cell lines by transdu-
cing MIF KO cells with lentivirus carrying Flag-tagged WT or
nuclease-inactive E22A MIF mutant (Fig. 3a). Cell cycle pro-
gression was analyzed after 0–9 h-release from double
thymidine-induced G1/S synchronization. Both MIF KO1 and
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KO2 cells displayed a prolonged G1 phase and delayed S phase
progression as compared with parental cells (Fig. 3b and Sup-
plementary Fig. 3b, c). Restoring WT MIF expression in MIF-
KO2 cells (KO2-MIF) rescued the cell cycle progression,
whereas expression of E22A mutant in MIF-KO2 cells (KO2-
E22A) failed to do so (Fig. 3b). To determine whether MIF
controls DNA synthesis in cancer cells, we assessed bromo-
deoxyuridine (BrdU) incorporation in parental, MIF KO and its

rescued cells in the S phase. Both MIF KO1 and KO2 MDA-MB-
231 cells showed a robustly reduced number of BrdU foci per
cell as well as a lower percentage of BrdU-positive cells as
compared with parental cells (Supplementary Fig. 3d–f).
Expression of WT MIF in MIF-KO2 cells restored DNA
synthesis, whereas expression of E22A MIF in MIF-KO2 cells
had no detectable effects (Fig. 3c–e). Similar results were also
observed in human colon cancer HCT116 cells that are defective
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independent experiments). Statistical significance was determined by one-way ANOVA Dunnett’s multiple comparisons test.
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in mismatch repair (MMR) due to biallelic deletion in the MLH1
gene (Supplementary Fig. 3g, h).

DNA fiber assay is a valuable tool to visualize and follow the
spatial and temporal progression of DNA replication fork29. We
labeled MDA-MB-231 cells with IdU (25 μM, 20 min) and CldU
(250 μM, 20 min) to monitor the individual fork progression and
found that the total tracks of IdU and CldU were much shorter in
MIF-KO2 cells (18.7 μm) than parental cells (30.6 μm), indicating
a slower speed of DNA synthesis (Fig. 3f–h). Expression of WT
MIF, but not E22A MIF, restored DNA synthesis speed, which
was comparable to that in parental cells (Fig. 3f–h). Taken
together, our data indicate that MIF and its nuclease activity play
a critical role in regulating DNA replication speed.

To study whether MIF KO cells are more sensitive to DNA
replication stress, hydroxyurea (Hu, 2 mM for 2 h) was applied to
parental and MIF KO MDA-MD-231 cells. As expected,
hydroxyurea treatment decreased the replication frequency and
length (21.2 μm) in parental cells, which were further reduced in
MIF KO cells (10.6 μm, Supplementary Fig. 3i, j). The stalled
replication fork number was significantly increased in MIF KO
cells (Supplementary Fig. 3k), which was reversed by the
expression of WT but not E22A MIF (Supplementary Fig. 3i–k).
In line with this observation, the colony survival of MIF KO cells
was significantly reduced in response to hydroxyurea varying at
25–100 μM as compared with those of parental cells, which was
rescued by the expression of WT but not E22A MIF
(Supplementary Fig. 3l). These data indicate that MIF-deficient
cells are more sensitive to DNA replication stress.

The hypoxanthine-guanine phosphoribosyltransferase (HPRT)
gene on the X chromosome has been used as a model gene to
investigate mutability in mammalian cell lines30,31. To further
explore the effect of MIF on replication fidelity, we established
POLD1 knockdown (KD) and POLD1 KD/MIF KO MDA-MB-
231 cells using CRISPR/Cas9 sgRNAs (Supplementary Fig. 3m)
and performed HPRT mutation assay following 6-TG treatment
(20 μM, 12 days). We found that the HPRT mutation rate was
very low (2.6 × 10−7) in Pol δ-proficient MDA-MB-231 cells
(Fig. 3i), whereas MIF KO increased the HPRT mutation rate
(1.43 × 10−6), which was mainly due to the nucleotide mis-
incorporation (Fig. 3i, j). Since POLD1 KD MDA-MB-231 cells
were not able to form colonies for HPRT assay (Supplementary
Fig. 3n), we instead established MIF KO in colorectal cancer cell
line DLD1 cells, which have Pol δ mutations R689W and R506H
in the conserved DNA polymerase III and exonuclease III motifs,
respectively32. The overall mutation frequency in Pol δ-deficient
DLD1 cells was about 8.68 × 10−5, which was increased by 1.6-
fold in MIF KO cells (1.4 × 10−4, Fig. 3k). It is of note that the
nucleotide misincorporation rate in parental DLD1 cells was quite
low (7.1 × 10−6) and MIF KO significantly increased the
misincorporation rate by 13.6-fold (9.65 × 10−5, Fig. 3l). MIF
KO DLD1 cells expressing WT MSH6 (DLD1+MSH6) were also
established, as DLD1 cells are deficient in MMR due to the
mutation in MSH6 (Supplementary Fig. 3o, p). Restoring MSH6
expression in DLD1 cells reduced the overall mutation rate to
1.55 × 10−5, as expected. However, MIF KO still significantly
increased the overall mutation frequency (1.0 × 10−4, Fig. 3k).
Notably, the misincorporation rate in the MMR-proficient
DLD1 cells was only about 3.5 × 10−6, which was increased by
19-fold in MIF KO cells (6.67 × 10−5, Fig. 3l). These findings
indicate that MIF has a significant impact on correcting
nucleotide misincorporation in vivo.

MIF is recruited to the nucleus and locates at the DNA repli-
cation site in the S phase. MIF primarily locates in the cytosol
under physiological conditions. Next, we questioned when MIF is

translocated to the DNA replication site in the nucleus. To this
end, we synchronized MDA-MB-231 cells at the G1/S boundary
with double thymidine block (Fig. 4a) and examined MIF nuclear
translocation at different time points varying from 0 to 8 h after
synchronization. We found that MIF started to be translocated
into the nucleus at 1 h-release after synchronization (Fig. 4b, c).
MIF’s nuclear translocation further increased and peaked at 2 h-
release after synchronization, whereas its nuclear translocation
dramatically decreased at 8 h-release after synchronization when
most cells entered into the G2/M phase (Fig. 4b, c). These data
reveal that MIF is translocated into the nucleus mainly in the S
phase.

Next, we investigated whether MIF is recruited to the DNA
replication site after its nuclear translocation. We performed
iPOND (isolation of proteins on nascent DNA) assay and found
that MIF was indeed associated with newly synthesized DNA at
the replication forks (Fig. 4d). However, unlike PCNA, MIF
persistently bound to newly replicated chromatin even after a
thymidine chase. To further study if MIF locates at the DNA
replication site, we examined whether MIF physically interacts
with the DNA replisome protein PCNA, which serves as a
scaffold protein to recruit other proteins involved in DNA
replication. By immunoprecipitation (IP) with the antibody
against either MIF or PCNA, we found that MIF and PCNA
reciprocally interacted with each other in MDA-MB-231 cells
(Fig. 4e, f). PCNA bound to both WT and E22A MIF with a
similar binding affinity (Supplementary Fig. 4a). Immunostaining
assay showed that the majority of MIF located in the nucleus and
colocalized with EdU and PCNA in the S phase (Fig. 4g–i).
Together, these findings reveal that MIF locates at the DNA
replication site in the S phase.

PCNA-interacting proteins often contain a conserved PIP box
(QxxLXXFF) that binds to PCNA33. We analyzed the MIF amino
acid sequence across multiple species and identified a PIP box-
like motif (Supplementary Fig. 4b). To determine whether MIF
directly binds to PCNA through the PIP box-like motif, we
mutated two conserved residues L47 and F49. We found that
L47A, F49Y, or double-mutant L47A/F49Y failed to disrupt MIF-
PCNA interaction by co-IP (Supplementary Fig. 4c), suggesting
that MIF is likely to interact with PCNA through other proteins
rather than the PIP box-like motif.

PARP1 is required for MIF recruitment to the DNA replica-
tion site. To understand the molecular mechanism of MIF
recruitment to the DNA replication site, we immunoprecipi-
tated MIF in HeLa cells with or without DNA damage induced
by the treatment of alkylating agent N-Methyl-N′-nitro-N-
nitrosoguanidine (MNNG, 50 μM) for 15 min followed by
additional 4 h culture and then performed mass spectrometry
analysis to identify MIF-interacting proteins (Fig. 5a). MIF-
KO2 cells were used as a negative control (Fig. 5a). We iden-
tified 483 MIF-interacting proteins under physiological con-
ditions and 1282 MIF-interacting proteins following DNA
damage (Fig. 5b). Among them, 386 proteins including PARP1,
POLD1, PCNA, the minichromosome maintenance protein
complex (MCM) 2–7, XRCC5, XRCC6, FEN1, MSH2, RPA1,
and Mus81, were overlapped (Fig. 5b). The functional anno-
tation analysis using David bioinformatics resources revealed
that the majority of these overlapped proteins were involved in
either rRNA/mRNA processing or DNA repair/DNA replica-
tion/cell cycle regulation (Fig. 5c). To validate our findings, we
performed co-IP experiments in MDA-MB-231 cells and found
that endogenous MIF interacted with endogenous PARP1,
PCNA, XRCC5, and Mus81 in MDA-MB-231 cells (Fig. 4e, f
and Supplementary Fig. 5a–c).
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PARP1 is a DNA damage sensor activated by ssDNA or
dsDNA breaks. Recently, PARP1 activation was shown to be
detected at DNA replication sites in the S phase34,35. Therefore,
we hypothesized that PARP1 is activated by 3’ unpaired DNA
during DNA replication and then recruits MIF to the DNA

replication site. To test whether 3’ unpaired DNA activates
PARP1, we first performed an in vitro PARylation assay. As
expected, without DNA, PARP1 was not activated even in the
presence of NAD+ (Supplementary Fig. 5d, e). Interestingly,
dsDNA with -OH at both 3’ and 5’ ends activated PARP1 to
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produce a basal level of PAR (Fig. 5d and Supplementary Fig. 5d).
dsDNA with 1–3 mismatched nucleotides at the 3’ end clearly
further increased PARP1 activity as evidenced by elevated levels
of PAR (Fig. 5d, Supplementary Fig. 5d, e). The levels of PARP1
activation were not obviously correlated with the number of
unpaired nucleotides (Supplementary Fig. 5d, e). These data
indicate that PARP1 is activated by DNAs with 3’ flap structure
caused by mis-incorporated nucleotides.

To determine the direct effect of PARP1 on the recruitment of
MIF to the DNA replication site, we generated PARP1 KO MDA-
MB-231 cells using the CRISPR/Cas9 technique and compared
MIF-PCNA interaction in both parental and PARP1 KO cells
(Fig. 5e). The KO efficiency of PARP1 was confirmed by analysis
of levels of PARP1 protein and PARP1 activation product PAR
(Fig. 5e, f). Loss of PARP1 almost completely abolished the
interaction of MIF and PCNA in MDA-MB-231 cells, as shown
by co-IP (Fig. 5e, g). To further confirm if PARP1 directly binds
to MIF, GST-MIF-bound Sepharose beads were incubated with
purified PARP1, PCNA, or GST protein. We found that PARP1,
but not PCNA or GST, directly bound to GST-MIF (Supple-
mentary Fig. 5f). V5-tagged full-length (FL) PARP1 and a series
of PARP1 truncates including ΔZn, ΔZn-BRCT, ΔWGR-CAT,
ΔCAT were generated to systematically map MIF’s binding
domain on PARP1 by co-IP (Supplementary Fig. 5g). We
observed that MIF mainly bound to the N-terminal zinc finger
domain, as deletion of the zinc finger domain abolished PARP1-
MIF interaction (Supplementary Fig. 5g, h). Immunostaining
further showed that PARP1 KO blocked MIF-PCNA colocaliza-
tion at the DNA replication site in MDA-MB-231 cells (Fig. 5h, i).
To our surprise, the treatment of PARP inhibitor Olaparib (5 μM,
2 h) did not block MIF nuclear localization. Conversely, it even
increased MIF-PCNA nuclear colocalization (Fig. 5h, i). In line
with this, the treatment of Olaparib (5 μM, 2 h) following double
thymidine synchronization clearly increased MIF-PCNA interac-
tion in MDA-MB-231 cells (Fig. 5j–l).

To rule out the possibility that MIF is PARylated leading to
inhibition of MIF-PCNA interaction, we performed an in vitro
PARylation assay and found that MIF was not PARylated by
incubating with the purified PARP1 protein in the presence of
NAD+ and activated DNA (Supplementary Fig. 5i). As expected,
PARP1 itself was successfully PARylated. However, PARylated
PARP1 was mainly in the supernatant and very little if any bound
to GST-MIF-bound beads (Supplementary Fig. 5i). In line with
this observation, the treatment of MNNG (50 μM, 15 min)
increased PAR levels but decreased MIF binding to PARylated-
proteins, which was determined by immunoprecipitation of PAR
antibody (Supplementary Fig. 5j). In addition, MIF itself was not
PARylated (Supplementary Fig. 5j). Taken together, these data
indicate that PARP1 is required for MIF recruitment to the DNA
replication site and PARylation of PARP1 suppresses MIF and
PCNA interaction, thereby allowing MIF to dissociate from the
DNA replication sites.

MIF guards against DNA damage and genomic instability in
cancer cells through its nuclease activity. Our results above
showed a critical role of MIF and its nuclease activity in regulation
of DNA replication, we next studied the impact of loss of MIF or
its nuclease activity on DNA damage and genomic stability. We
found that MIF KO1 and KO2 remarkably increased the levels of
DNA damage marker γH2AX in MDA-MB-231 cells (Fig. 6a). The
DNA damage foci of γH2AX and 53BP1 were also significantly
elevated in MIF-KO2 MDA-MB-231 cells (Fig. 6b, c and Supple-
mentary Fig. 6a–d). Notably, expression of WT MIF, but not
nuclease-inactive E22A mutant, reduced the number of DNA
damage foci in MIF-KO2 MDA-MB-231 cells comparable to the

levels in parental cells (Fig. 6b, c and Supplementary Fig. 6a–d). In
line with these observations in MDA-MB-231 cells, MIF KO sig-
nificantly increased accumulation of γH2AX foci in LN229 cells as
well as HCT116 cells (Supplementary Fig. 6e–j). This effect was
reversed by re-expression of WT MIF but not nuclease-inactive
E22A MIF (Supplementary Fig. 6e–j), indicating that MIF guards
against DNA damage through its nuclease activity.

To further test the role of MIF in the maintenance of genomic
stability, we studied the formation of micronuclei, nuclear bridge/
budding as well as chromosome abnormality in parental, MIF-
KO2, and rescued MDA-MB-231 cells by metaphase spread assay.
MIF-KO2 cells exhibited a significant increase in abnormal
micronuclei and nuclear bridge/budding (Fig. 6d–g). Moreover,
loss of MIF increased chromosome aberrations, such as
chromosome breaks and fusions, which could be reversed by
expression of WT but not E22A MIF (Fig. 6h, i). These data
indicate that MIF plays an important role in maintaining genomic
stability in cancer cells.

MIF promotes cancer cell growth in vitro and in vivo through
its nuclease activity. To determine if MIF promotes cancer cell
growth, parental and MIF KO MDA-MB-231 cells were subjected
to cell proliferation assay in vitro. MIF loss in Pol δ−proficient
MDA-MB-231 cancer cells significantly reduced cell proliferation
(Supplementary Fig. 7a). MIF KO similarly suppressed Pol δ-
deficient cancer cell growth, although loss of Pol δ already sig-
nificantly inhibited MDA-MB-231 cell growth (Supplementary
Fig. 7a). Clonogenic assay showed that MIF KO significantly
decreased colony survival of MDA-MB-231, LN229, and HCT116
cells (Supplementary Fig. 7b–d). Consistently, MIF KD by any of
three independent short hairpin RNAs also reduced colony sur-
vival of HCT116 cells (Supplementary Fig. 7e–h). Notably,
expression of WT MIF partially restored reduced colony forma-
tion conferred by MIF-KO2, whereas E22A MIF mutant failed to
do so (Fig. 7a, b). These findings reveal that MIF promotes cancer
cell survival and growth in vitro through its nuclease activity.

We next determined the role of MIF in normal cell growth.
MIF was knocked out in a non-tumorigenic mammary epithelial
cell line MCF-10A cells using two independent sgRNAs
(Supplementary Fig. 7i) and the growth pattern was compared.
We discovered that MIF KO1 or KO2 did not obviously alter
MCF-10A cell proliferation, although they repressed MCF-10A
colony survival (Supplementary Fig. 7j, k). Similar results were
observed in mouse embryonic fibroblasts. Additional studies are
required to explore if MIF is more vulnerable for growth of
cancer cells than normal cells in future.

We then performed orthotopic implantation of parental and
MIF KO1 and KO2 MDA-MB-231 cells into the mammary fat
pad of NOD/SCID mice, respectively, to examine the effect of
MIF on tumor growth in vivo. Consistent with in vitro findings
above, MIF deletion robustly impaired tumor growth in mice
(Supplementary Fig. 7l–o). Loss of MIF protein expression was
verified in all KO tumors (Supplementary Fig. 7o). Similar results
were observed in LN229 and HCT116 xenograft mouse models
(Supplementary Fig. 7p–w). Reduced MDA-MB-231 tumor
growth conferred by MIF-KO2 was partially rescued by over-
expression of WT but not E22A MIF (Fig. 7c–e). To complement
the loss-of-function studies, we conducted gain-of-function
studies by implanting EV, WT MIF, and E22A MIF over-
expressed MDA-MB-231 cells into the mammary fat pad of
female NOD/SCID mice, respectively. Overexpression of WT
MIF promoted tumor growth, whereas E22A MIF had no effect
on tumor growth as compared with the EV group (Fig. 7f–i).
These findings reveal that MIF promotes tumor growth in vivo
through its nuclease activity.
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To determine the clinical relevance of MIF in human cancers,
we analyzed MIF mRNA expression in The Cancer Genome Atlas
(TCGA) breast carcinoma dataset. MIF mRNA levels were
significantly increased in primary and metastatic breast tumors
as compared with normal breast tissues (Fig. 7j). Moreover, MIF
mRNA upregulation was detected in breast tumors with
histological stages 1–4 and luminal A, luminal B, HER2+ ,
basal-like subtypes (Fig. 7k, l). Kaplan–Meier analysis (GSE1456)
revealed that overall survival in breast cancer patients with high

MIF expression was significantly shorter than that in patients
with low MIF expression (Fig. 7m). Missense mutations of MIF,
including P2R, M3I, N7H, R12P/L, S14F, V15M, G18W, A39T,
D45V, R74H, S75F, L84M, A85V, R89P, N98I, Y99C, M102I, had
been found in human cancer patients according to the COSMIC
database. However, its overall mutation rate was 0.2% (59 out of
29614 in the COSMIC database). Similarly, the cBioPortal
database showed that the overall mutation rate of MIF is
relatively lower than its amplification rate in human tumors
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Fig. 6 Loss of MIF and its nuclease activity caused genomic instability. a The basal levels of γH2AX protein in parental and MIF KO MDA-MB-231 cells.
Representative blots from three independent experiments are shown. b, c Representative images of γH2AX and 53BP1 foci in parental, MIF-KO2, KO2+
MIF-WT and KO2+MIF-E22A MDA-MB-231 cells (b). Data were quantified and shown in c (mean ± SEM). Scale bar, 20 μm. n= 58 cells (parental), n=
67 cells (MIF-KO2), n= 57 cells (KO2-MIF), and n= 59 cells (KO2-E22A) from three independent experiments were analyzed. Statistical significance was
determined by one-way ANOVA Dunnett’s multiple comparisons test. d, e Representative images of micronuclei indicated by DAPI staining in parental,
MIF-KO2, KO2+MIF-WT, and KO2+MIF-E22A MDA-MB-231 cells (d). Data were quantified and shown in e (mean ± SEM). Statistical significance was
determined by one-way ANOVA Dunnett’s multiple comparisons test. Scale bar, 20 μm. f, g Representative images of chromosome bridges indicated by
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E22A) were analyzed from three independent experiments. Statistical significance was determined by one-way ANOVA Dunnett’s multiple comparisons
test. Scale bar, 10 μm.
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(Fig. 7n). Taken together, these data indicate that MIF is
upregulated in human breast tumors and correlates with the
poor clinical outcome in breast cancer patients.

Discussion
MIF was recently identified as a Mg2+- and Ca2+-dependent 3’
exonuclease involved in ischemic brain injury19. Upon DNA
damage, MIF binds to the 5’ unpaired arm of ssDNA with the
stem loop structure and cleaves it at the 3’ end19. Here we
discovered that MIF is a novel 3’ flap nuclease. It recognizes Y-
shaped dsDNA and selectively cleaves 3’ unpaired flaps to
facilitate DNA elongation. MIF’s 3’ flap endonuclease activity is
dramatically reduced with increased numbers of mismatched
nucleotides (>2 nt) at the 3’ end. In contrast, its 3’ exonuclease
activity leads to the cleavage of both shorter and longer
nucleotides at the 3’ end, which is blocked by biotin labeling at

the 3’ end mimicking the 3’ end protection by DNA-binding
proteins. The selectivity and potency of MIF’s 3’ nuclease
activity, especially its flap endonuclease activity that is
not interfered by the shield protection at the 3’ end, make MIF
an efficient guardian during DNA replication against 3’
flap structures, which can be produced not only by mis-
incorporation of nucleotides, but also other factors like mis-
incorporation of ribonucleotides, disruption of the balance
between purine and pyrimidine, DNA damage, or DNA sec-
ondary structures6,36,37.

Pol δ and Pol ε have the 3’ exonuclease activity and have been
well recognized for proofreading DNA during replication. How-
ever, given the fact that increasing numbers of germline and
somatic mutations within the exonuclease domain in human
POLD1 and POLE have been identified in human cancers1,13,14

and that our in vitro nuclease assay, DNA elongation assay, and
gap-filling assay clearly showed that MIF cooperates with Pol α
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and nuclease-deficient Pol δ to proofread DNA and ensure the
success of DNA elongation, MIF is likely to play a role in
proofreading in Pol δ- or Pol ε-deficient cancer cells. This is
further supported by in vivo HPRT mutation analysis showing
that MIF KO increases 13.6-fold nucleotide misincorporation rate
in Pol δ-deficient DLD1 cells. Interestingly, our studies showed
that MIF also plays an important role in nuclease-proficient
MDA-MB-231 cancer cells that do not have POLD1 and POLE
mutations, as MIF KO increases misincorporation mutations and
genomic instability, delays cell cycle, and inhibits DNA synthesis
and cancer growth in vitro and in mice. Pol α plays an important
role in initiation of DNA replication and Okazaki fragment on
the lagging strand, but it lacks 3’ exonuclease activity for proof-
reading errors. Our data indicate that MIF may cooperate with
Pol α to ensure the accuracy and success of the primer elongation
in Pol δ- and Pol ε-proficient cancer cells. In addition, polymerase
dissociation from DNA occurs when a second structure like R-
loop, hairpin, stem-loop, G-quadruplex, fork reversal, or slippage
is formed during replication38–40. Pol δ and Pol ε are also less
stringent in discriminating dNTPs and rNTPs. Misincorporation
of rNTPs occurs and causes replication stress36. Under these
conditions, MIF may resolve second structures like hairpin and
stem-loop and correct misincorporation, which is supported by
our in vitro MIF nuclease assay and in vivo mutation analysis.
Thus, MIF may also cooperate with nuclease-proficient Pol δ and
Pol ε and allow them to maintain high speed of DNA replication.
Further investigation is required to explore how MIF cooperates
with polymerases during DNA replication.

DNA replication errors must be removed and repaired in an
efficient way to ensure high fidelity of DNA synthesis. Many 5’
nucleases, including FEN1, DNA2, and EXO1, have been impli-
cated to contribute to replication fidelity by removing replication
errors using their 5’ flap endonuclease and 5’ exonuclease
activities41. The MMR pathway is also shown to correct errors
post DNA replication to maintain DNA fidelity42. However, to
our knowledge, no 3’ flap nuclease other than polymerases has
been reported so far to proofread DNA during replication. Here,
we showed that MIF is a novel 3’ flap nuclease that monitors
replication errors in a real-time with its 3’ nuclease activity to
promote cancer cell growth. On the other hand, we found that the
proofreading ability of MIF is not as precise as that of Pol δ does,
because more mutations were generated in gap-filling reactions
carried out by proofreading-deficient Pol δ supplemented with
MIF than those conducted by Pol δ (Fig. 2h). Given the high level
expression of MIF in cancer cells and that MIF promotes cancer

growth (Fig. 7g–n), the less-active proofreading activity of MIF
may allow cancer cells not only to effectively deal with 3’ flap-
induced replication stress for cell survival, but also to generate
sufficient mutations in favor of cancer development and
progression.

Our mass spectrometry analysis of MIF purification revealed
very little if any protein contamination (Supplementary Table 1),
which is supported by Coomassie blue staining. The purity and
specificity of the MIF preparation is also confirmed by the parallel
studies of nuclease-inactive mutant E22A and GST protein, which
exhibited no obvious nuclease activity under the same experi-
mental conditions. Moreover, the unique nuclease selectivity of
purified MIF protein on various DNA substrates with different
structure or length of nucleotides at the 3’ end reinforces the
selectivity and potency of MIF’s 3’ nuclease activity. Although the
kinetic analysis of MIF activity revealed a relatively slow reaction
with t1/2 at 7.7–10.8 min, KM at 0.7–0.9 μM and kcat at 0.02/min, it
is comparable to some well-recognized nucleases including
MutsS2, exoribonuclease (ExoN), ribozyme, and EcoRI43–47. For
example, the nuclease activity of Thermus thermophilus MutS2
(ttMutS2), which is known to play an important role in MMR,
has been reported to have a KM at 290 nM and kcat at 0.041/
min44, which are comparable to those of MIF. The restriction
nuclease EcoRI’s t1/2 is 9.7 min calculated by UV linear
dichroism46 and about 8 min monitored by fluorescence
changes47. As with many nucleases, it is possible that the addi-
tional enhancer may help MIF bind and cleave DNA efficiently
in vivo, which requires further investigation.

We showed that MIF primarily locates in the cytosol but is
translocated to the nucleus when cancer cells enter S phase, which
is supported by the previous clinical data showing that nuclear
MIF protein is detected in a large number (79.7%) of human
tumors including glioblastoma, bladder tumors, and lung
adenocarcinoma48–50. Our biochemical and cell biology studies
revealed that PARP1 is required for MIF recruitment to the DNA
replication sites through their physical protein-protein interaction
after MIF is translocated to the nucleus in the S phase. As a DNA
damage sensor, PARP1 dynamically binds to DNA and recog-
nizes DNA damage, thereby recruiting nucleases and DNA repair
proteins to the sites of DNA damage to facilitate DNA repair18.
Recent studies revealed that PARP1 is activated by unligated
Okazaki fragments in S phase and promotes Okazaki fragment
maturation34. In line with this report, our study illustrated that
PARP1 senses DNA with 3’ flap structures and is required for
MIF recruitment to the replication fork as deletion of PARP1

Fig. 7 MIF promotes cancer cell growth in vitro and in vivo through its nuclease activity. a, b Colony formation of parental, MIF-KO2, KO2-WT, and
KO2-E22A MDA-MB-231 cells cultured for 14 days. Representative images from three experiments were shown in a and quantification of colony numbers
was shown in b (mean ± SEM). Statistical significance was determined by one-way ANOVA Dunnett’s multiple comparisons test. c–e Growth of parental,
MIF-KO2, KO2-WT, and KO2-E22A MDA-MB-231 tumors in mice. Tumor volume, image, and weight were shown in c, d and e, respectively (mean ± SEM,
n= 5 mice). ****P < 0.0001 parental vs MIF-KO2, ****P < 0.0001 MIF-KO2 vs KO2-WT, **P= 0.0013, KO2-WT vs KO2-E22A by two-way ANOVA
Tukey’s multiple comparisons (c) and statistical significance in e was determined by two-tailed Student’s t test. f–h Growth of parental, WT MIF-, and
E22A-MIF-overexpressed (OE) MDA-MB-231 tumors in mice. Tumor volume, image, and weight were shown in f, g, and h, respectively (mean ± SEM, n=
5 mice per group). ****P < 0.0001 by two-way ANOVA Tukey’s multiple comparisons (f) and one-way ANOVA Dunnett’s multiple comparisons test (h).
i Immunoblot analysis of WT and E22A MIF protein levels in overexpressed tumors. j–l Analysis of MIF mRNA levels in human breast tumors and normal
breast tissues. Data were retrieved from the TCGA dataset and presented as mean ± SEM. n= 112 normal breasts, n= 1041 primary tumors, n= 7
metastatic tumors (j); n= 112 normal breast, n= 422 Luminal A, n= 194 Luminal B, n= 67 Her2+ , n= 142 basal-like (k); n= 112 normal breast, n= 133
Stage 1, n= 445 Stage 2, n= 175 Stage 3, n= 15 Stage 4 (l). **P < 0.01, ****P < 0.0001, versus normal breast, by one-way ANOVA Dunnett’s multiple
comparisons test. m Kaplan–Meier survival analysis for patients with breast cancer. Patients were divided by median expression levels of MIF mRNA. Data
were retrieved from the GEO dataset (GSE1456). Statistical significance was determined by log-rank test. n MIF genetic alteration analysis in TCGA
PanCancer Atlas studies (cBioPortal database). o A proposed model of MIF in the regulation of DNA proofreading and tumor growth. PARP1 interacts with
MIF and recruits MIF to the DNA replication sites, where PARP1 detects DNA damage including 3’ flap structures and MIF excises unpaired flaps to
facilitate DNA synthesis executed by polymerases in cancer cells, leading to cancer cell proliferation. Inhibition of MIF suppresses DNA replication and
cancer cell growth.
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blocks MIF colocalization with DNA replication protein PCNA.
However, PARylation of PARP1 disrupts the PARP1-MIF inter-
action and decreases the amount of MIF protein at the replication
sites, which is supported by our data that PARP inhibitor treat-
ment increases MIF-PCNA interaction and colocalization in the
replication sites. Increase of MIF at the DNA replication sites is
likely to increase replication speed as MIF loss decreases the DNA
replication speed (Fig. 3f–h). Consistent with these findings, a
recent study showed that PARylation controls the velocity of
replication forks and that inhibition of PARylation by PARP
inhibitors increases the speed of fork elongation35. Although our
data support that PARP1 plays a pivotal role in recruiting MIF to
DNA replication sites, the primary nuclear localization of
PARP1 suggests that PARP1 may not mediate MIF translocation
from the cytosol to the nucleus. Future studies are required to
investigate the molecular mechanism underlying MIF nuclear
translocation. Taken together, our findings support a possible
working model that PARP1 interacts with MIF during S phase
and forms a complex prior to binding to the damage sites. PARP1
as the DNA damage sensor detects DNA damage including 3’ flap
structures during replication. Then MIF-PARP1 complex is
recruited to the damage sites at the replication fork to resolve the
replication stress, facilitating DNA synthesis and promoting
cancer cell growth (Fig. 7o). Future in vivo studies are required to
further support the proposed model.

Tumor cells suffer with high levels of DNA replication stress,
which poses a threat to their viability. Our oncogenic studies
clearly showed that MIF promotes cancer cell growth in vitro and
in vivo through its nuclease activity, which provide the functional
evidence that MIF’s proofreading function helps cancer cells cope
with DNA replication stress for their survival. However, MIF loss
does not obviously alter the growth of non-tumorigenic epithelial
cells MCF-10A or mouse embryonic fibroblasts, and MIF
knockout mice are normal without obvious defects, suggesting
that the expression of MIF is more favorable for cancer cell
growth rather than normal cells. An early study reported that
homozygous loss of MIF increases the development of B-cell
lymphomas and multiple types of carcinoma in p53-null mice51.
This finding, together with our current data, suggests that MIF’s
action on genomic stability in normal cells and cancer cells may
have the distinct oncogenic consequences. This is consistent with
the idea that genomic instability in normal cells has been thought
to be a key driver of tumor initiation41,52–54. Previous studies
showed that MIF has a variety of pleiotropic actions involved in
inflammation and immune response. Further investigation is
required to understand if MIF’s nuclease activity contributes to
inflammation and immune response and their impact on tumor
growth.

In conclusion, we found that (1) MIF is a novel 3’ flap nuclease
and specifically recognizes Y-shaped dsDNA to excise unpaired 3’
flaps. (2) MIF cooperates with nuclease-deficient polymerases
(Pol α and mutant Pol δ) to proofread DNA and facilitates DNA
elongation. (3) Loss of MIF nuclease activity increases mutation
frequency, reduces the DNA replication speed, and causes cell
cycle delay in cancer cells. (4) PARP1 senses DNA with 3’ flap
structures and recruits MIF to the DNA replication sites in the S
phase. (5) MIF facilitates cancer cell growth in vitro and in vivo
via its nuclease activity. MIF is upregulated in human breast
tumors and high levels of MIF are correlated with patients’ overall
poor survival. Thus, MIF’s nuclease activity is a therapeutic vul-
nerability in cancers. Collectively, this study uncovers that MIF
surveils DNA replication fidelity in cancer cells and identifies a
hitherto unknown intrinsic mechanism to help cancer cells evade
DNA replication stress for their survival (Fig. 7o). Because MIF
is upregulated in many types of human cancers, including
breast tumors, lung adenocarcinoma, hepatocellular carcinoma,

colorectal cancer, pancreatic ductal carcinoma, prostate cancer,
head and neck squamous cell carcinoma, and bladder
cancer49,50,55–57, our findings here provide a strong rationale for
targeting MIF and its nuclease activity to treat human cancers.

Methods
Mice. In total, 2 × 106 breast cancer MDA-MB-231 cells were suspended in 100 μl
PBS/Matrigel (1:1, Corning) and injected into the second left mammary fat pad of
female NOD/SCID mice (6–8-weeks old, The Jackson Laboratory). In all, 2 × 106

glioblastoma LN229 or colorectal cancer HCT116 cells were subcutaneously
injected into male NOD/SCID mice (6–8-weeks old, The Jackson Laboratory).
Tumor volume was measured every three days starting on 11–18 days after cell
implantation, and calculated with the formula: V= 0.52 × L ×H ×W (V: volume, L:
length, H: height, W: width). Tumors were harvested when their volume reached
~1500 mm3. UT Southwestern Medical Center is fully accredited by the American
Association for the Accreditation of Laboratory Animal Care (AAALAC). All
research procedures performed in this study were approved by UT Southwestern
Medical Center Institutional Animal Care and Use Committee (IACUC) in com-
pliance with the Animal Welfare Act Regulations and Public Health Service (PHS)
policy.

Cell culture and transfection. MDA-MB-231, LN229, HCT116, DLD1, and
HEK293FT cells were cultured in DMEM or McCoy’s 5a supplemented with 10%
heat-inactivated FBS at 37 °C in a 5% CO2/95% air incubator. All cell lines were
mycoplasma-free and authenticated by short tandem repeat DNA profiling
analysis.

Plasmid constructs and virus production. Mouse MIF (NM_010798) and MIF-
E22A cDNAs were subcloned into an AgeI- and EcoRI-linearized lentiviral cFugw-
Flag vector. MIF expression was driven by the human ubiquitin C (hUBC) pro-
moter as previously described19. MIF sgRNA targeting was constructed by
annealing DNA oligonucleotides and ligating into BsmBI-linearized lenti-
CRISPRv2 vector (Addgene, #52961). Primers used for sgRNA constructs are listed
in Supplementary Table 2. Human MIF shRNAs were designed using the online
“tool “[http://katahdin.cshl.org/siRNA/RNAi.cgi?type=shRNA]. The program
provided 97-nt oligonucleotide sequences for generating shRNAmirs. Using PacI-
SME2 forward primer 5′ CAGAAGGTTAATTAAAAGGTATATTGCTGTTGAC
AGTGAGCG 3′ and NheI-SME2 reverse primer 5′ CTAAAGTAGCCCCTTGC
TAGCCGAGGCAGTAGGCA 3′, we then PCR amplified them to generate the
second strand and added PacI and NheI restriction sites to clone the products into
pSME2, a construct that is inserted an empty shRNAmir expression cassette in the
pSM2 vector with modified restriction sites into the cFUGw backbone. This vector
expresses GFP. V5-tagged full-length human PARP1 and its various truncated
cDNAs were generated by PCR using pTY-U6-hPAPR1 (provided by W. Lee Kraus
lab) as the template and subcloned into an XhoI/XbaI-linearized lentiviral Plvx-
hUbc-Flag-C vector, which was modified by inserting Ubc promoter into pLVX-
mCherry-N1 vector (Addgene). Primers for full-length PARP1 and truncates are
shown in Supplementary Table 2. Lentivirus was produced by transient transfec-
tion of the recombinant cFugw vector into HEK293FT cells together with three
packaging vectors: pLP1, pLP2, and pVSV-G (1.3:1.5:1:1.5). The viral supernatants
were collected at 48 and 72 h after transfection and concentrated by ultra-
centrifugation for 2 h at 50,000 × g.

Generation of KO and KD cell lines. MIF KO cell lines were generated using the
CRISPR (Clustered regularly interspaced short palindromic repeat)/Cas9 techni-
que. Briefly, cells were transiently transfected with sgRNA vector using PolyJet
(SignaGen). Forty-eight hours post transfection, cells were treated with 1 μg/mL
puromycin for 3 days, and a single cell was selected and verified by genotyping and
immunoblot assays. HCT116 MIF KD cell lines were generated by infecting cells
with lentivirus encoding MIF shRNA and knock down efficiency was verified by
immunoblot assays.

Protein expression and purification. Human MIF (NM_002415) cDNA and their
variants were digested by EcoRI and XhoI restriction enzymes and subcloned into
GST-tagged pGex-6P-1 vector (GE Healthcare). The protein was expressed in E.
coli and purified by glutathione sepharose as described previously19. The GST tag
was then removed with PreScission Protease (GE Healthcare) cleavage. The purity
of MIF protein preparations was confirmed by Coomassie blue staining and mass
spectrometry (n= 3) to exclude the protein contamination (Supplementary
Table 1). GST protein was used as a negative control in in vitro nuclease assay.

Pol α protein was expressed by infecting Sf9 insect cells with P2 baculovirus
prepared using a pFastBac plasmid 6xHis-Tev-hPOLA1 containing the catalytic
fragment of POLA1 corresponding to residues 335-1257 as described previously58.
Cells (grown in SF-900 media) were incubated with the virus for 48 h at 27 °C,
pelleted, and frozen. Frozen pellets were pulverized using a Retsch Cryomill. Pol α
powder (5 ml) was resuspended in 50 ml lysis buffer containing 20 mM Tris, pH
7.8, 150 mM NaCl, 10 mM KH2PO4, 3% glycerol, 3 mM BME, 0.5 mM PMSF, 1×
Sigma inhibitor tablet, passed through 22-G needle twice, and centrifuged at
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20,000 × g for 30 min at 4 °C. Pol α protein was then purified with affinity
chromatography on Ni-NTA column (Qiagen) followed by size exclusion
chromatography on Superdex 200 (GE Healthcare) equilibrated in 10 mM Tris-
HCl, pH 7.8, 500 mM NaCl, 1% glycerol, and 1 mM DTT. The purified protein
sample was concentrated using a centricon filter (Millipore) and frozen as single-
use aliquots in 10 mM Tris-HCl, pH 7.8, 50 mM NaCl, 1% glycerol, and
1 mM DTT.

Pol δ, Pol δ D402A, Pol δ D402A/L606M mutant proteins were purified using
the baculovirus system as described previously26. Pol δ mutants D402A and
D402A/L606M were defective in the 3’->5’proofreading nuclease activity, which
was confirmed by in vitro elongation assays26.

In vitro nuclease assay. dsDNA substrates were prepared by annealing ssDNA
oligos with or without 3’-end biotin labeling (IDT). dsDNA substrates (0.8 μM)
were incubated with WT MIF or catalytically inactive MIF at a final concentration
of 2 μM in 10 mM Tris/HCl buffer (pH 7.0) containing 10 mM MgCl2 for 1 h at
37 °C. The reaction was terminated with 2× formamide loading buffer containing
5 mM EDTA. Samples were boiled at 95 °C for 5 min and immediately separated
on a 25% TBE-urea polyacrylamide (PAGE) gel. The gel was subsequently stained
with 0.5 μg/ml EtBr followed by electrophoretic transfer to nylon membrane.
Biotin-labeled DNA was further detected by chemiluminescence using a Chemi-
luminescent Nucleic Acid Detection Module Kit (Thermo Fisher Scientific).

In vitro DNA elongation assay. A 99-nt DNA oligo was used as the template. The
template-primer complex was prepared in the following reaction, including 4 μl of
100 μM 99-nt DNA template, 4 μl of 100 μM 5’-end biotin-labeled DNA primer,
and 2 μl of 10× universal buffer (200 mM Tris/HCl, pH 7.8, 100 mM MgCl2,
20 mM DTT, and 500 mM NaCl). The mixture was heated to 95 °C followed by
gradually cooling down to the room temperature and then diluted at 1:10. The
elongation was performed by incubating Pol δ, Pol δ D402A mutant, Pol α or Taq
with the elongation reaction buffer, including 2 μl of the template substrate, 2 μl of
10 mg/ml BSA, 0.2 μl of 50 mM MgCl2, 0.4 μl of 2.5 mM dNTPs in the presence or
absence of WT or catalytically inactive MIF at 37 °C for 1 h. The reaction was
terminated by adding 10 μl of 2× formamidine loading buffer and resolved on a
25% TBE-urea gel. The gel was subsequently stained with 0.5 μg/ml EtBr followed
by electrophoretic transfer to nylon membrane. Biotin-labeled DNA was further
detected by chemiluminescence using a Chemiluminescent Nucleic Acid Detection
Module Kit (Thermo Fisher Scientific).

DNA gap-filling and mutagenesis assay. DNA gap-filling assay was performed
as described previously28. In brief, a 283-nt gap of DNA substrate M13mp18
(100 ng) was filled in 10 μl reaction buffer containing 20 mM Tris/HCl (pH 8.0), 10
mM MgCl2, 2 mM DTT, 250 μM dNTP, 2.5 U Taq DNA polymerase or Pol δ, or
Pol δ D402A/L606M mutant proteins in the presence or absence of MIF protein,
E22A, or GST at 37 °C for 1 h. The gap-filling reaction was terminated by adding
15 mM EDTA. DNA was then precipitated and transformed into XL-1 blue
competent cells. The amplified transformed cells (30 μl) were mixed with 3 ml soft
agar containing 20 μl X-gal (40 mg/ml), 4 μl IPTG (1M) and 200 μl amplified XL-
1-blue cells, and plated onto the agar plate. The mutation rate was calculated based
on the ratio of white/total clones and the mutant plaques were selected for Sanger
DNA sequencing.

HPRT gene mutation assay. HPRT gene mutation assay was modified and con-
ducted as described previously30,31. DLD1 and DLD1+MSH6 cells were cultured
for several passages in RPMI-1640+ 10% FBS containing 100 μM hypoxanthine,
0.4 μM aminopterin, and 16 μM thymidine to pre-clean of the pre-existing
mutants. Approximately 2 × 105 cells were seeded in triplicate onto 10-cm dishes
treated with 20 μM freshly prepared 6-TG and incubated for about 12 days. Sur-
vived colonies were isolated and expanded to extract mRNA. The HPRT1 cDNA
was amplified with primers (HPRT1-F- GCGCGCCGGCCGGCTCCGTT; HPRT1-
R-GGCGATGTCAATAGGACTCCAGATG) targeting the entire coding region
and sequenced. Plating efficiency was determined by seeding 100 cells in the
absence of 6-TG. After 10 days-culture, colonies were visualized by staining with
0.1% crystal violet. The mutation frequency was determined by dividing the
number of 6-TG resistant colonies by the total number of cells plated after being
corrected for the colony-forming ability. Specifically, mutation frequency= num-
ber of mutant colonies/(cloning efficiency × cells seeded for mutation assay) and
cloning efficiency= no. of colonies/no. of cells seeded.

Cell cycle analysis. Proliferating cells were synchronized at G1/S boundary with
double thymidine treatment. Briefly, cells were first treated with 2 mM thymidine
(Sigma) for 18 h. After 9 h release in the fresh medium, cells were further treated
with 2 mM thymidine for another 15 h. Cells were then harvested at different time
points varying from 0 to 9 h after release in the fresh medium and fixed in pre-cold
70% ethanol at −20 °C for at least 2 h. Subsequently, cells were stained in PI/Triton
X-100 solution (PI: 2 μg/ml, Triton X-100: 0.1%(v/v)) with RNase A (0.1 mg/ml) at
37 °C for 30 min. Cell cycle distributions were assessed in a population of 20,000
cells by flow cytometry and analyzed with Flowjo software.

BrdU staining assay. Cells were released from double thymidine synchronization
and cultured in fresh medium for another 3 h followed by BrdU (10 μM) incor-
poration for 30 min. Cells were fixed with fresh 4% paraformaldehyde at room
temperature for 15 min and permeabilized with 0.2% Triton X-100 solution for
15 min. Subsequently, DNA was denatured by incubation for 30 min with 2M HCl.
Cells were then washed with PBS twice and blocked with 3% BSA at room tem-
perature for 30 min. Cells were stained overnight with anti-BrdU (1:250) antibody
at 4 °C followed by Alexa-568 secondary antibody incubation for 1 h at 37 °C. After
washing with PBS, cells were stained with DAPI and mounted with anti-fade
solution (Shandon). Immunofluorescence images were observed with Axio
Observer Z1 microscope using Zen 2 software (Carl Zeiss).

DNA fiber assay. DNA fiber assay was performed using an adapted method as
described previously59. Briefly, 25 μM IdU (Sigma-Aldrich, I7125) was added to
asynchronously growing cells, and incubated for 20 min at 37 °C. After washing
twice with PBS, cells were incubated with CldU (250 μM, Sigma-Aldrich, C6891)
for 20 min. Cells were then trypsinized and resuspended in PBS at 1 × 106/ml. The
cell suspension (2.5 μl) was applied to the glass slide and lysed with 7 μl of lysis
buffer (50 mM EDTA and 0.5% (w/v) SDS in 200 mM Tris/HCl, pH 7.6). Slides
were tilted at 15° angle to allow DNA fibers to spread across the slide and air-dried.
After this, fibers were fixed with methanol/acetic acid (3:1) for 10 min and then air-
dried. Fibers were denatured with 2.5 M HCl for 30 min and washed with PBS.
Next, the fixed fibers were blocked with 3% BSA for 30 min at room temperature
and incubated overnight with anti-BrdU antibody (BD Biosciences, #347580)
specifically recognizing IdU at a 1:50 dilution and anti-BrdU antibody (Abcam,
#ab6326) recognizing CldU at a 1:250 dilution respectively in 3% BSA at 4 °C.
Slides were then washed with PBS for three times and incubated for 1 h with Alexa-
568-conjugated anti-mouse (1:500) and Cy2-conjugated anti-rat (1:250) antibodies
(Jackson ImmunoReaserch) in 3% BSA at room temperature in the dark. After
secondary antibody incubation, cells were washed and mounted. Immuno-
fluorescence images were observed with Axio Observer Z1 microscope (Carl Zeiss).
To assess fork speed at least 50 fibers per sample were measured using the line tool
in ImageJ software.

iPOND assay. iPOND assay was performed according to the protocol described
previously60. Double thymidine synchronized LN229 cells (1 × 108 cells) were
treated with 10 μM EdU (Thermo Fisher Scientific, A10044) for 20 min followed
with or without 10 μM Thymidine chase for 1 h. Then, cells were immediately
crosslinked with 1% formaldehyde (Sigma, F1635) for 10 min at 37 °C and quen-
ched with 0.125M glycine for 5 min. Cells were collected and washed with 1x PBS
for three times. Cell pellets were resuspended in permeabilization buffer containing
0.25% Triton X-100 (Sigma, T8787) at 1 × 107 cells/ml and incubated at room
temperature for 30 min. After washing once with cold PBS containing 0.5% BSA
and twice with PBS, cell pellets were incubated by rotation at room temperature for
2 h in Click-it reaction buffer containing 10 mM sodium ascorbate (Sigma A4034),
2 mM CuSO4 in PBS with or without 1 μM Biotin azide (Thermo Fisher Scientific,
B10184) or 1 μM DMSO. Then, cells were lysed in lysis buffer containing 50 mM
Tris-HCl (pH 8.0) and 1% SDS supplemented with protease Inhibitor. Chromatin
was solubilized with sonication using BRANSON Digital Sonifier at amplitude
10%, 1-s pulse on and 1-s pulse off for 200 cycles. The supernatant was collected
after the centrifugation at 16,100× g for 10 min and further diluted by PBS con-
taining protease inhibitor (1:1). The resulting supernatant was further incubated
for 16 h with 100 μl streptavidin agarose beads (Novagen, 69203) at 4 °C. After
washing twice with lysis buffer and once with 1M NaCl, proteins were eluted with
2× Laemmli buffer and boiled at 95 °C for 25 min before detection by immunoblot.

Chromosome spread assay. Cells were grown to reach 70% confluence and
treated with 1 μg/ml colcemid for 2 hr. Cells were then harvested and suspended in
1 ml KCl (75 mM) for 30 min at 37 °C. After centrifugation, cells were fixed with
cold methanol/acetic acid (3:1) buffer and incubated at room temperature for
15 min. Metaphase spreads were made by dropping cells onto the slide and air-
dried. The spreads were stained with DAPI and visualized under the microscope.

Clonogenic survival assay. Cells were seeded at 100 cell/well onto a six-well plate
and cultured at 37 °C for 2 weeks. Colonies were fixed with methanol and stained
with 0.1% crystal violet (Sigma). After staining, colonies were gently washed with
PBS and counted. Colonies with ≥50 cells were counted for quantification.

GST pull-down assay. GST, GST-MIF-WT, and GST-MIF-E22A proteins bound
to GSH beads (500 ng) were incubated with MDA-MB-231 cell lysates, or 75 ng
PCNA or 5 U PARP1 recombinant proteins respectively in binding buffer con-
taining 0.2% Triton X-100, 50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 15 mM
EGTA, 1 mM DTT, and 1 mM PMSF by rotation overnight at 4 °C. After washing
with lysis buffer (0.5% Triton X-100, 50 mM Tris-HCl (pH 7.5), 100 mM NaCl,
15 mM EGTA, 1 mM DTT, and 1 mM PMSF) for three times, proteins bound on
beads were eluted with 20 μl 1× Laemmli buffer, boiled, and subjected to SDS-
PAGE gel, followed by immunoblot assay.
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In vitro PARylation assay. In vitro PARylation assay was conducted as previously
described with some modifications61. Briefly, GST and GST-MIF (500 ng) bound to
GSH beads were incubated with 1 U recombinant PARP1 protein (Trevigen) in the
reaction buffer containing 50 mM Tris-HCl (pH 8.0), 20 mM NaCl, 10 mM MgCl2,
1 mM DTT, 1× activated DNA (BPS Bioscience) and 500 µM NAD+ at 37 °C for
30 min. The reaction was terminated by collecting supernatant and beads sepa-
rately with the addition of SDS loading buffer. PARylation of interested proteins
was detected by immunoblot assay with an anti-PAR antibody.

Immunoprecipitation and immunoblot assays. Cells were lysed with NETN lysis
buffer (150 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl, pH 8.0, 0.5% IGEPAL, and
protease inhibitor cocktail) for 30 min on ice. After centrifugation at 15,000× g for
15 min, the supernatant was incubated overnight with antibodies against to MIF
(2.5 μg/ml), PCNA (2.5 μg/ml), poly(ADP-ribose) (2.5 μg/ml) in the presence of
protein A/G magnetic beads (Bio-Rad) at 4 °C. On the next day, after washing five
times with NETN lysis buffer, proteins bound on beads were boiled in 1× SDS
loading buffer, separated on SDS-PAGE gel, and transferred to a nitrocellulose
membrane. The blot was incubated with indicated primary antibody followed by
HRP-conjugated secondary antibody (Supplementary Table 3). The immune
complexes were detected by the ECL prime western blotting detection reagent (GE
Healthcare). Images were taken using Image Lab (Version 6.0.1).

Statistics and reproducibility. The data were expressed as mean ± SEM (standard
error of the mean). Statistical evaluation was performed by unpaired two-tailed
Student’s t test between two groups and by one-way ANOVA Dunnett’s multiple
comparisons or two-way ANOVA Tukey’s multiple comparisons within multiple
groups using GraphPad Prism 8.0 software. *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001 are considered significant and ns is not significant. Kaplan–Meier
survival curve was analyzed by log-rank test. Cells with Pearson’s correlation
coefficient (r) > 0.5 is considered as the positive correlation of MIF-PCNA colo-
calization, r > 0.7 is considered as a strong correlation, and r < 0.4 is considered as a
weak or no correlation. All immunoblots were repeated at least three times inde-
pendently with similar results. The precise sample number (n) was provided to
indicate the number of independent biological samples in each experiment.

Data availability
MIF expression data in human breast tumors in the TCGA dataset were downloaded
from the UCSC Cancer Browser (https://genome-cancer.ucsc.edu). MIF mRNA
expression was queried in adjacent normal breast tissues, and primary and metastatic
breast tumors with different subtypes or stages. Kaplan–Meier survival analysis for
patients with breast cancer by log-rank test was retrieved from the GEO dataset
(GSE1456). MIF genetic alteration analysis in TCGA PanCancer Atlas studies was from
cBioPortal database (https://www.cbioportal.org/). All data generated or analyzed during
this study are included in this article and its supplementary information files. Any
additional data presented in this paper are available from the corresponding author upon
request. Source data are provided with this paper.
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