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Most models of product adoption predict S-shaped adoption curves. Here

we report results from two country-scale experiments in which we find

linear adoption curves. We show evidence that the observed linear pattern

is the result of active information-seeking behaviour: individuals actively

pulling information from several central sources facilitated by modern Inter-

net searches. Thus, a constant baseline rate of interest sustains product

diffusion, resulting in a linear diffusion process instead of the S-shaped

curve of adoption predicted by many diffusion models. The main exper-

iment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for

the same product with randomly sampled nodes in a social network of

approximately 43 million individuals with about 567 million ties. We find

that the experiment reached over 800 000 individuals with 80% of adopters

adopting the same product—a winner-take-all dynamic consistent with

search engine driven rankings that would not have emerged had the pro-

ducts spread only through a network of social contacts. We provide

evidence for (and characterization of) this diffusion process driven by

active information-seeking behaviour through analyses investigating (a) pat-

terns of geographical spreading; (b) the branching process; and (c) diffusion

heterogeneity. Using data on adopters’ geolocation we show that social

spreading is highly localized, while on-demand diffusion is geographically

independent. We also show that cascades started by individuals who

actively pull information from central sources are more effective at spreading

the product among their peers.
1. Introduction
Social influence plays a prominent role across many social sciences, for example

in the study of contagion in sociology [1], social learning in problem-solving [2],

herding behaviour in economics [3], price bubbles in financial markets [4] and

well-being in public health [5–7]. Regarding economic outcomes such as pro-

duct adoption [8,9], social influence plays an especially important role in

markets where attitudes and tastes are influenced by other individuals. This

can lead to widespread diffusion and popularity of some products, but not

others [10]. Economic outcomes are also affected when people passively receive

information about products from a central source, such as television or radio

advertising.

The rise of the Internet has changed the way information diffuses.

Previously, only a few central broadcast sources (such as radio or TV stations)

could broadcast information about products, but now ordinary individuals

can post information online to be discovered by prospective adopters pro-

actively searching and discovering information. This is social influence—but

influence among strangers, mediated by two steps: (i) posting by the source,

and (ii) searching by the seeker. More generally, in recent history we have
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witnessed the emergence of a novel diffusion mechanism,

where people actively seek information that is facilitated by

online search tools (such as Google) and search functionality

within social media sites (such as Twitter or Facebook)

[11,12]. However, behaviour change through active infor-

mation-seeking behaviour has not been systematically

investigated and is not well understood. Moreover, diffusion

processes often mix and interact [11,13,14] in unknown ways,

leading to complex spreading patterns [15].

Better understanding of on-demand information-seeking

behaviour and mixing with social diffusion can inform our

understanding of important aspects of diffusion processes

on networks that are not well understood [9,15]. Recent

research suggests that central sources or opinion leaders

have limited effect on diffusion processes [16,17]. However,

if a diffusion process is governed by active searching behav-

iour, central sources may play an important role: Even

though central sources may have limited influence to push
information to passive recipients, they can play influential

roles when individuals actively pull information. Combined

with popularity and ranking effects produced by search

engines (which have been investigated separately; see [18]),

central sources can thus dramatically shape diffusion pro-

cesses. As a result, if the prevalent diffusion is on-demand,

this may result in near-linear product adoption rates, driven

by an underlying constant rate of interest in the product

rather than the typical S-shaped curves predicted by social

diffusion [8]. However, depending on the presence and rela-

tive proportion of peer-to-peer sharing and the strength of

on-demand diffusion (ODD) signified by the underlying

rate of search for the product, we may expect a concave diffu-

sion curve. The exact shape of the diffusion curve would

depend on the mixing proportion of the two regimes and

the fitness with which the product spreads overall.1

Several other aspects become apparent when consider-

ing a diffusion process that is strongly driven by ODD.

First, we would expect the absence of geographical clustering

of product adopters. Second, we may see winner-take-all

dynamics among equivalent products that are shaped by

search engine rankings as interested individuals all discover

and adopt the same product, compared with a more equal

distribution across products when product adoption spreads

exclusively along social ties. That is, once product adoption is

driven by on-demand information seeking rather than peer-

to-peer, individuals are presented with a similarly ranked

list through search engines and Top 10 pages, that dispropor-

tionately rewards products at the top of the list [19,21].

Finally, better understanding of product diffusion driven by

active information-seeking behaviour may lead to important

insights into homophilous network connections. These

insights may provide a basis to better predict cascade sizes

and improve targeting [22].

In this paper, we report the results from two country-level

experiments in which we quantify and characterize the adop-

tion of a new product. We track the adoption through 70 000

unique voucher codes (48 000 codes in Experiment 2) result-

ing from active information-seeking behaviour and quantify

the mixing between this ODD process and peer-to-peer diffu-

sion as they occur simultaneously. Our experiments are

among the largest social science experiments ever conducted,

resulting in product adoption by over 1 million customers

across both experiments. We provide evidence for (and a

direct comparison of) product adoption processes driven by
posting/searching behaviour and peer-to-peer diffusion.

We show how active information-seeking behaviour shapes

product adoption curves leading to dynamics that are con-

sistent with those produced by search engines rankings and

can lead to winner-take-all dynamics that are distinctly differ-

ent from those expected if products would diffuse purely

from peer-to-peer.

There is an extensive body of literature on information

diffusion [3,23–26], cascade sizes [22], two-step diffusion

[11,13,14,27,28], product adoption [8,20,29–32] and diffusion

under external influences [12]. With some exceptions

[5,7,10,33–35], most studies of diffusion processes rely on

observational data—which generally confound homophily

and contagion [36]. Our paper differs fundamentally from

the existing empirical literature studying diffusion processes.

The existing research uses observational data in which con-

founding effects can always be present [36]. Instead, we

seed information about a new product with randomly

selected individuals, thus avoiding confounds. In contrast

with studies driven by observational data, all voucher

codes refer to the same product, avoiding confounds with

product differences. Much research on diffusion focuses on

the information flow on social media sites such as Twitter

or Facebook [22,27,37]. Here, we study behaviour change:

the adoption of a product. Findings that hold in the case

of information diffusion may be different in the case of

behaviour change [38].

Onnela and Reed-Tsochas’ work on the adoption of

Facebook applications (‘apps’) [20] is most similar to our

research, but it cannot cleanly distinguish product attributes

and diffusion processes—here, we study adoption of one pro-

duct tracked using many unique codes. The study by Goel

et al. [28] is also closely related to ours in its focus on small

and big online diffusion events using a comprehensive

dataset from Twitter, but it also studies the diffusion of

heterogeneous items. Further, it does not touch on the role

of on-demand information-seeking behaviour in shaping

diffusion events. Instead, it examines popularity gained

through a single, large broadcast. It analyses a weaker ver-

sion of social influence (information sharing) rather than

stronger behaviour change such as the adoption of a new pro-

duct. Work by Karsai et al. [9,39] investigates how spontaneous

adopters arriving at a constant rate affect the social spreading

of a single product. Our analysis builds on and extends this

research by quantifying and characterizing patterns in

product adoption that are driven by on-demand information-

seeking behaviour, the geographical distribution of adopters,

cascade sizes, and the competition between products that

spread simultaneously.
2. Research design
To study the interplay of social and non-social diffusion pro-

cesses in product adoption, we designed two country-scale

network experiments around a marketing campaign. In our

marketing experiments we partnered with a local mobile

phone operator to target 70 000 (48 000 in Experiment 2) ran-

domly sampled individuals through mobile phone text

messages, with 70 000 (48 000) unique voucher codes offering

free data traffic for their cellphone plans (see electronic sup-

plementary material for details of the experimental design

and how seed customers were selected). Each voucher code
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referred to the same product—a one-time allowance of 15 MB

(60 MB in Experiment 2) of data traffic—yet allowed us to

trace many diffusion cascades that were unfolding simul-

taneously. Individuals exposed to a voucher code could (a)

redeem the voucher code themselves (i.e. adopt the product)

and (b) independently of redeeming the voucher themselves, pass

the code on to others. That is, each voucher code uniquely

identifies a diffusion process from a randomly targeted indi-

vidual and how it spreads to a potentially large number of

other individuals. While each code could be adopted an

unlimited number of times, every individual was only

allowed to adopt one code (i.e. redeem only one voucher

code from the campaign). Individuals who redeemed a vou-

cher code were black-listed and not eligible to redeem

another from the same campaign. Redeeming a voucher

code effectively conveyed full ‘immunity’ to any other code.

Thus, the experiment allowed us to study the simultaneous

diffusion of 70 000 (48 000) competing codes referring to the

same underlying new-to-the-world product.

After seeding all voucher codes simultaneously in the

network, we observed the adoption of each code over a

period of two weeks. Using call detail records from the network

of the operator we partnered with, we constructed the complete

social graph of 43 million individuals (nodes) and 567 million

connections between individuals (edges) to study how voucher

codes spread through the network of existing social ties (see

electronic supplementary material). For each voucher code,

we constructed an invasion tree in which every adopter of the

code is linked with prior adopters in the individual’s own

social network. The social network constructed from call

detail records is appropriate to study diffusion for two reasons.

First, prior research has demonstrated that phone records can

be used to construct valid and high-quality social networks

[40]. Second, voucher codes were received via SMS text mess-

ages and could be forwarded via SMS text messages. Since

voucher codes consisted of random alphanumeric sequences,

error-free verbal transmission was cumbersome. Transmission

via SMS was the predominant pathway through which voucher

codes were passed on.

The nature of our research design (randomly seeded unique

codes, referencing the same novel product) offers several

advantages that would make the interpretation of causal pro-

cesses challenging when relying only on observational data.

First, voucher codes were seeded with randomly sampled

nodes in a network of existing social ties (see electronic sup-

plementary material for details on the experimental

protocol). Thus, the starting position for any one code was

uncorrelated with endogenous aspects of the seed’s position

in the social network or the characteristics of the individual

receiving the seed product code. Each code should have the

same chances of adoption and diffusion. Second, studies on

new product diffusion have typically used only aggregated

data on (overall) product sales, rather than the individual-

level observations that our experimental design makes possible

[30]. Third, our research design employed functionally identi-

cal products, each represented by different voucher codes. In

related work studying the spreading of memes on Twitter

[26] or apps on Facebook [20], all products were different and

product selection effects were known to exist. In particular,

individuals are more likely to share better products [31]. Our

research design allows us to disentangle the spreading process

from the nature of the product. Thus, we do not simply observe

the product diffusion and adoption process that happens.
Instead, we deliberately intervene in the data generating pro-

cess to collect data on independent spreading processes that

are independent of node locations in the network (because of

the random assignment), are not conditional on spreading,

and are not confounded with product differences. This allows

us to gain better understanding of human behaviour related

to diffusion and contrasts with studies driven by observational

data, in which confounding effects can always be present [36].
3. Results
The overall adoption activity reveals several notable features

(figure 1a; see electronic supplementary material for detailed

analyses of Experiment 2). First, we find large heterogeneity

of outcomes. Most codes do not spread at all, while some

spread to a substantial number of individuals, starting from

a single seed. Of the initially seeded 70 000 codes, only

3886 were adopted by at least one individual (6% of codes).

Second, codes were ultimately adopted by a total of 886 025

individuals—which corresponds to an average of 12.66 adop-

ters per the total number of codes in the study, and an

average of 228.01 adopters per adopted code. Third, the dis-

tribution of the number of adopters per code is heavy-tailed.

Third, the distribution of the number of adopters per code is

heavy-tailed. Remarkably, the most popular code accounts

for almost 80% (704 466) of all adopters. Only three other

codes were adopted by more than 1000 individuals, the rest

acquired significantly fewer adopters. While we observe a

lot of overall diffusion in terms of the final number of individ-

uals reached—relative to the total number of seeds—most

codes did not spread at all. Fourth, the overall spreading

follows a linear pattern over time—not the typical S-curve

one would expect if diffusion was driven by a social

spreading process (figure 1b).

However, there is substantial variation among the shapes

of the diffusion curves of individual codes (see electronic sup-

plementary material). The most popular code spread in a

linear fashion, adding adopters at an almost constant rate

of 48 686 per day on average (excluding the incomplete first

and last days; s.d.: 2903; figure 1c, inset). In fact, 4749 individ-

uals adopted the most popular code instead of the code they

were seeded with. Assuming a social spreading process, this

linear spreading is unexpected. The transition from exponen-

tial growth to the linear pattern happened within a short time

window after the launch of the experiment. Within 96 min,

the code moved from under 10 adopters per 6-min time

window to over 200 (we confirm a structural change in the

time series at p , 0.001; see electronic supplementary

material). Fifth, the spreading process followed distinct diur-

nal cycles (following an oscillating 24 h curve). The patterns

were extremely similar across the days of the experiment

(figure 1d ). The minimum number of daily new adopters

occurred at around 04.00 with only 46 hourly adopters,

compared with a peak at 19.00 with an average of 5479 adopters.

To compare the observed diffusion process to the pattern

expected in the case of pure social diffusion, we simulate

different stochastic individual contact models: susceptible–

infected (SI), susceptible–infected–recovered (SIR), and a

threshold model [41,42]. We simulate the diffusion processes

on the full observed social network (34M nodes, 567M

edges), seeding the same number of codes with the same

nodes in the network (figure 1e; the electronic supplementary
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material provides additional robustness tests using different

model parameters, seeding procedures and networks that

include additional random ties). The simulation shows that

(a) the observed spreading pattern cannot be explained by

a pure social diffusion process and (b) if the diffusion was

only driven by social spreading, the diffusion process

would have resulted in codes being adopted more equally.

This points to some additional, non-social spreading process

that shaped the observed diffusion outcomes, leading to a

skewed distribution of code adoptions and creating an

unequal distribution in which one code got adopted

significantly more often than any other.

To examine a possible transition from social spreading to

other diffusion modalities, we first examined the number of

prior adopters in an adopters’ social network. When a vou-

cher code appeared at a node in the network that has no

connections to other nodes that have previously adopted

the code, that appearance can only be explained by the influ-

ence of some unobserved exogenous source (or via social ties

that are not part of our observed social network constructed

from phone records, a possibility we investigate in the next

paragraph). We indeed do observe that a large portion of

codes spread via non-social diffusion to individuals who

had no connection to prior adopters. About 37% of all adop-

ters had no prior adopters in their social network, but only a

tiny fraction of them (1%) received a seed code (figure 1f ).
Where did these individuals get the voucher codes from?

As outlined in the introduction, one possibility is that they

actively searched for a ‘free data’ voucher on the Internet.

Indeed, we confirm that several voucher codes have been

posted online on message forums (see electronic supplemen-

tary material). A systematic online search for all voucher

codes in Experiment 2 revealed that every code with more

than 1000 adopters was posted online and discoverable via

Google. Therefore, we have evidence that despite the peer-

to-peer nature of the network in which the codes were

seeded, codes also spread outside social networks via alterna-

tive pathways. Furthermore, we find significant competition

among codes, with 16% of individuals having two or more

unique codes in their social network (figure 1f ). Most inva-

sion trees are shallow, spanning only a few generations

from the source of the cascade (figure 1g). We show example

invasion trees of the two largest cascades in figure 1h.

How does the nature of ODD relate to the geographical

distribution of adopters? To evaluate diffusion dynamics

related to geographical spreading, we analysed adopters’

geolocation (see electronic supplementary material).

We find that spreading along social ties is locally clustered.

240 276 codes spread among individuals within the same

cell tower. The median spreading distance was 704 m and

the mean distance was 21 km (figure 2a). We find significant

decay in adoptions with increasing distance (correlation
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coefficient: 20.19; p , 0.001). We next analysed geographical

interdependence between adopters (figure 2b). We find that

most codes spread in a highly geographically clustered

fashion. This is especially true for codes that spread to rela-

tively few adopters overall. However, the spreading of the

most successful (in terms of total adopters) codes exhibit a

pattern that is geographically independent (the spreading

of the two most popular codes is not spatially clustered and

not significantly different from a random Poisson spreading

process). This provides additional support for our claim

that non-social spreading is indeed non-social and our

claim for two distinct spreading processes: diffusion along

social ties (which is geographically clustered), and on-

demand diffusion (which is geographically independent). If

what we take to be ODD were instead peer-to-peer diffusion

but following some unobserved social ties, then we would

expect the geographical spreading to be geographically clus-

tered. However, we find no such geographical clustering,

providing further evidence for the ODD spreading process.

Having firmly established the presence of ODD, we now

ask: how do social and ODD processes differ? We quantified
the heterogeneity of the ODD and peer-to-peer spreading pro-

cess by plotting the average number of ties each adopter had

with individuals who adopted earlier (figure 2c). Values of

one indicate a tree-like spreading pattern where each new

adopter is linked to exactly one previous adopter. Values

greater than one indicate dense clustering in the social net-

work, such that a new adopter has more than one

connection with previous adopters. Values below one indicate

a mix of ODD and peer-to-peer spreading where some indi-

viduals have no social ties to prior adopters. We find

significant heterogeneity, centred on an average of around

one. The three most popular codes (highlighted) initially

increased in the number of ties—indicating social spread-

ing—but then dropped sharply to close-to-zero ties with

prior adopters—indicating ODD spreading. The most popular

code spread almost exclusively via ODD adopters who had

almost no ties with prior adopters (on average 0.079 ties

between each subsequent adopter between the 100th and

1000th adopters). The plot shows not only heterogeneity of

ODD and peer-to-peer spreading across codes, but also

across time. Early social diffusion turned into non-social
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diffusion once the product information became available

online for on-demand adoption.

To gain more insights into the nature of the diffusion pro-

cesses and the dichotomy between ODD and peer-to-peer

spreading, we analysed the graph structure of invasion

trees. The forest of invasion trees contains 100 966 cascades

of sizes between two and 535 individuals (figure 2d ) and

depths of up to 10 generations (figure 2e). Despite the sub-

stantial spread of the most popular code, the largest

connected component contains only 1266 adopters. Most

codes spread only to a small number of individuals directly

connected to the original seed, resulting in many, small con-

nected components. However, the diffusion of the most

popular code consisted of many disconnected components,

which indicates that the cascade did not exclusively follow

existing social ties. Rather, a heterogeneous mix combining

ODD and peer-to-peer diffusion characterized the diffusion

process. We find many graph components of 2–10 individ-

uals (electronic supplementary material, figure S3).

Effectively, ODD spreading creates many disconnected new

seeds from which the code then spreads via social ties to

several other individuals—thus creating many small clusters

of connected adopters. Ultimately, only 30% of adopters

remain isolated in the final diffusion graph, indicating that

even individuals who initially adopted via the ODD mechan-

ism would subsequently share the code socially. Notable is

the absence of individuals that spread a code to many indi-

viduals (median ¼ 1; mean ¼ 1.15; max ¼ 53). That is, as

predicted by theory [16,34], we do not find super-spreaders.

Next, we explored heterogeneity in diffusion patterns

given the origin of the process: cascades started by an indi-

vidual initially targeted by the experiment, compared to

cascades started by on-demand adopters. We find significant

differences in cascade size (figure 2d ) and cascade depth

(figure 2e) between the two cascade starting points. Cascades

started by original seed adopters are significantly smaller

(0.80 as large [95% CI: 0.68–0.93]), and significantly shal-

lower (0.90 as deep [95% CI: 0.85–0.95]; electronic

supplementary material, table S1) than cascades started by

on-demand adopters. While individuals directly targeted

with codes managed to diffuse the code to about 1.1 contacts

on average, the infection rate decreased with each next gener-

ation reaching a maximum cascade depth of six. Individuals

starting cascades by on-demand adoption only diffused the

code to about 0.6 contacts, thus initially having a lower infec-

tion rate than the original seeds. However, starting in the

second generation, cascades started by on-demand adopters

had a higher infection rate than equal generations in cascades

started by original seeds and reached much greater depths

(e.g. 0.8 versus 0.6 in the second generation). This suggests

that individuals who actively sought product information

were in network regions with other susceptible individuals

(or somehow had the ability to identify individuals in a het-

erogeneous population that were better at spreading the code

than the individuals reached through original seeds). This

allowed ODD to sustain larger and deeper cascades.

To gain deeper understanding into the phenomena of ODD

and to check the consistency of our argument that codes posted

on the Internet spread in a linear fashion with different levels

of fitness, we analysed our data using a simple compartment

model. We adapted the model proposed by Hill et al. [6].

This approach allows us to better describe the ODD spreading

process and to test if the proposed diffusion mechanism is in
line with social dynamical processes observed in the popu-

lation during the experiment. A key feature of the model is

its ability to characterize the relative importance of social trans-

mission by quantitatively comparing rates of ODD versus

social peer-to-peer adoption. We can thus use the model to esti-

mate the proportion of adopters that are due to on-demand

adoption for each code without having to rely on observing

network ties. The model extends the classic SIR model to

include the possibility for ‘automatic’ non-social infection gov-

erned by an additional model parameter a. This parameter a
models the constant rate with which susceptible individuals

can autonomously decide to adopt a code by means of active

information-seeking (see electronic supplementary material

for model details). The motivation for the assumption of a con-

stant background rate of interest in this case is based on the fact

that data packages are constantly expiring in this predomi-

nantly pre-paid market. Furthermore, the ability to separate

social from non-social adoption on the population level

allows us to quantify the ‘fitness’ of each voucher code relative

to the other voucher codes. We fit the model separately for all

codes that accumulated 100 or more adopters using maximum-

likelihood and estimate the relative proportion of adopters

resulting from social (peer to peer) versus non-social (ODD)

diffusion processes (figure 2f shows the proportion of ODD

and peer-to-peer adopters for the most popular code). Model

predictions quantitatively reproduce the actual diffusion data

for all observed codes in the experiment and capture the

large variation in the relative importance of ODD versus

peer-to-peer (electronic supplementary material, table S4).

This indicates that the combination of a social diffusion process

with spontaneous non-social adoption is a plausible mechanism

for the observed spreading dynamic.

We find that the adoption of the most popular code is the

combination of 89% ODD adopters and 11% social peer-to-

peer adopters. Overall, the four most popular codes are predo-

minantly driven by ODD, while the remaining codes spread

predominantly peer-to-peer. We find fitted model parameters

for the spontaneous infection parameter a indicate systematic

inequality in fitness, resulting in vastly different code success.

We can use the model to quantify the fitness—i.e. online

popularity—of different codes and can quantify how many

ODD adopters we expect per day. The code with the highest

fitness attracts 2441 ODD adopters per day while the fourth

most popular code attracts only four ODD adopters (codes

ranked fifth and below attracted less than one ODD adopter

per day). These differences in fitness are likely the result of

voucher codes posted on different websites with different

levels of popularity or position in search engine ranking, ulti-

mately leading to vastly different levels of code success. These

results advance our ability to quantify the influence of non-

social diffusion mechanisms and the enormous role that ease

of discoverability plays in shaping product success.
4. Discussion
We used data from two country-scale network experiments

to quantify and characterize the adoption of a product

(identified through many voucher codes) from active

information-seeking behaviour. We find that the product

adoption process is characterized by: (a) an interplay of

ODD and peer-to-peer diffusion processes interacting simul-

taneously; (b) linear adoption rates being sustained by a
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background rate of interest and on-demand information-seek-

ing behaviour; (c) the failure of most voucher codes to spread;

(d) structural change in diffusion dynamics when diffusion

transitions from peer-to-peer to on-demand; (e) a highly

skewed outcome, such that the most popular voucher code

receives more adopters than it would in a pure peer-to-peer

process; (f ) geographical clustering of social diffusion and

the independent geographical distribution of on-demand

adoption; and (g) longer and deeper cascades of diffusion pro-

cesses originating from active information-seeking compared

to cascades originating from initial seeds.

Understanding the exact pattern, interplay, and preva-

lence of one social influence process over another is critical

to designing successful intervention policies. Diffusion pro-

cesses that start as viral can change and become driven by

on-demand and the ranking of results in online search. The

fact that our experiment randomly seeded 70 000 unique vou-

cher codes referencing the same product in the population

allowed us to study alternative outcomes in different markets

that all start from identical initial conditions. The relative

importance of ODD versus viral spreading depends on (a)

the background level of interest and the relative fitness of

one voucher code over another, and (b) the reproduction

ratio of the viral process. In the case of our experiments, the

background level of search for information was high relative

to the reproduction ratio for the most popular code, but the

pattern was reversed for the less popular codes. While small

cascades were almost entirely driven by peer-to-peer

diffusion, the large cascades were driven almost entirely by ODD.

Furthermore, we find synergies between the two pro-

cesses in that ODD adopters are more likely to spread the

codes in their social network, i.e. ODD allows a vulnerable

population to be found. Product diffusion via on-demand

information-seeking behaviour can create winner-take-all

dynamics driven by the power of rankings on search engines

such as Google that would not occur in pure peer-to-peer dif-

fusion. This shows the tremendous impact that rankings in

online search have on social influence [20]. Given the ease

of posting content to the Internet, the capability for Google

and other companies to rapidly index material, and the

increased sophistication of search algorithms, we believe

that ODD will become an increasingly dominant modality

of social influence.

ODD is different from diffusion models that assume ‘auto-

matic’ infection (such as developing obesity [6] or product

invention [43]), in that it is influence among strangers,

mediated by two steps: (1) posting by the source, and (2)

searching by the seeker. As people navigate the Internet more

by searching than by browsing, concerns about the influence

and potential bias of search engines become crucial [21].

Key design features of our experiment allowed us to iso-

late effects based on the spread of simultaneously unfolding

cascades referencing the same product (that all had randomly

seeded starting locations), using an individual-level process

rather than aggregate system-level outcomes [20]. Our ability

to observe every voucher code’s diffusion process provided

important insights into population-level diffusion processes.

Contrary to traditional broadcast, ODD does not depend on

the reach and skill of those running the broadcast campaign,

but rather on susceptible individuals who choose to adopt

products directly. This choice is driven by their background
rate of interests and the ease (and ranking) by which infor-

mation about products can be found online. The resulting

‘googlization’ leads to significant changes in diffusion

processes [20,44].

While ODD dominated the spreading process for the

most popular codes in our experiments, our model suggests

more generally that product adoption will be guided more

by a combination of multiple diffusion processes that

happen simultaneously, than by pure regimes. Cascades

started by on-demand adopters were larger and deeper

than cascades started by originally targeted individuals.

This demonstrates substantial heterogeneities in the popu-

lation regarding their ability to spread products—and

demonstrates that ODD can in fact find the better diffusers

in the network [45].

Overall, we find consistent results across the two exper-

iments, with linear adoption rates for the most successful

codes in both. Furthermore, we find a similar heavy-tailed

code distribution popularity, with extreme outlier codes

that attracted significantly more adopters than the average

code. We contribute to a better understanding of the mech-

anics of social influence on a global scale, especially in

cases where ODD and peer-to-peer influence interact. These

results highlight the complex spreading logics in the Internet

age [15]. The dominant paradigms of diffusion—peer-to-

peer, central source and their combination—are vastly

inadequate in understanding the rich diffusion phenomena

of the twenty-first century. This paper adds an important

logic to our understanding of diffusion—the posting/search-

ing process that allows information and behaviours to rapidly

spread among strangers.

These findings, in turn generate numerous additional

questions regarding ODD. These future questions include:

what are the motivations of people to post information

online? When, how, and for which information do people

use (the many available) search technologies? How is the

ever-increasing sophistication of search engines expanding

the scope of the domains subject to ODD?
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