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Background: Less than 50% of patientswithMajor Depressive Disorder (MDD) reach symptomatic remissionwith
their initial antidepressant medication (ADM). There are currently no objective measures with which to reliably
predict which individuals will achieve remission to ADMs.
Methods: 157 participants withMDD from the International Study to Predict Optimized Treatment in Depression
(iSPOT-D) underwent baseline MRIs and completed eight weeks of treatment with escitalopram, sertraline or
venlafaxine-ER. A score at week 8 of 7 or less on the 17 itemHamilton Rating Scale for Depression defined remis-
sion. Receiver Operator Characteristics (ROC) analysis using the first 50% participants was performed to define
decision trees of baseline MRI volumetric and connectivity (fractional anisotropy) measures that differentiated
non-remitters from remitters with maximal sensitivity and specificity. These decision trees were tested for rep-
lication in the remaining participants.
Findings: Overall, 35% of all participants achieved remission. ROC analyses identified two decision trees that pre-
dicted a high probability of non-remission and that were replicated: 1. Left middle frontal volume b 14 · 8 mL &
right angular gyrus volume N 6 · 3 mL identified 55% of non-remitters with 85% accuracy; and 2. Fractional an-
isotropy values in the left cingulum bundle b 0 · 63, right superior fronto-occipital fasciculus b 0 · 54 and right

superior longitudinal fasciculus b 0 · 50 identified 15% of the non-remitters with 84% accuracy. All participants
who met criteria for both decision trees were correctly identified as non-remitters.
Interpretation: Pretreatment MRI measures seem to reliably identify a subset of patients who do not remit with a
first stepmedication that includes one of these commonly usedmedications. Findings are consistent with a neu-
roanatomical basis for non-remission in depressed patients.
Funding: Brain Resource Ltd is the sponsor for the iSPOT-D study (NCT00693849).
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Major depressive disorder (MDD) is a chronic disease with a relaps-
ing and remitting course. Antidepressant medications (ADMs) form the
front-line treatment for MDD and less than 50% of patients respond or
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remit to their first treatment (Gartlehner et al., 2012; Hansen et al.,
2008). There are currently noobjectivemeasures to guide the treatment
decisions in MDD, and the clinical standard is to use a “watch and wait”
strategy relying on trial and error (Rush et al., 2008). The time taken to
conduct iterative trials of differentmedications represents an enormous
source of direct healthcare costs, indirect economic losses and an in-
crease of the total healthcare burden associated with MDD.

Prompted by this context, there has been a recent focus on thedevel-
opment of neurobiological markers (“biomarkers”) including tech-
niques that are able to capture disruptions to the underlying brain
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circuitry (Insel et al., 2010; Leuchter et al., 2010). These biomarkers are
yet to be validated for sufficient clinical utility (Fu et al., 2013;
Labermaier et al., 2013). Neuroimaging provides a means to noninva-
sively capture the spatiotemporal circuitry relationships in the brain
that may reflect the functional abnormalities present in depression —

hence approaches that use imaging measures of brain abnormalities
represent excellent candidates for tests of treatment prediction. Evi-
dence of structural and functional abnormalities in MDD comes from
molecular imaging (McGrath et al., 2013), and frommultiple MR imag-
ing modalities including diffusion tensor imaging (DTI) (Korgaonkar
et al., 2011, 2012, 2014a), gray matter (GM) volume from T1 weighted
MRI scans (Grieve et al., 2013a), as well as task-based and resting-
state functional MRI (Korgaonkar et al., 2013; Greicius et al., 2007).
Most studies have concentrated on key circuits thought to be central
to the development andmaintenance ofMDD (e.g., limbic structures in-
cluding the cingulate cortex and the dorsolateral prefrontal medial
orbitofrontal cortices). This approach, however, may limit the power
of imaging to capture whole brain patterns of dysfunction.

Also, different imaging measures may capture different aspects of
malfunctioning circuits in MDD, and may therefore contribute to treat-
ment prediction in a unique, and likely an independent (and potentially
additive) manner. Integrating data across different imaging measures
can therefore provide a powerful approach to isolate groups of patients
with similar pre-treatment impairments. These groups of patients with
commonpatterns of brain alterationsmay therefore respond in a similar
way to treatments tailored to their underlying circuitry abnormalities.
Signal detection analyses employing receiver operator curve (ROC)
analysis procedures are well suited to developing dichotomous out-
comes from multiple measures (Kraemer, 1992). This analysis assesses
different variables at all possible cut points identify an optimal trade-
off between sensitivity and specificity.

This report addresses the question of whether pre-treatment brain
measures from T1weighted (volume) and DTI (structural connectivity)
MR Imaging sequences can identify individuals who will, or will not,
remit during acute phase ADM treatment. Both these imaging se-
quences are routinely prescribed in clinical neurological assessments
and offer an easy translation of findings to a clinical setting. We use sig-
nal detection ROC analyses with structural imaging measurements of
both GM volume and connectivity across the entire brain, to identify
the best possible combination of pre-treatment imaging measures and
cut-points to prospectively predict remission status following acute
treatment with ADMs. Our aim was to identify general predictors of
which patients remit and which patients do not, with the goal of devel-
oping a practical algorithm to help inform clinical decision making
about ADMs. We tested this aim using data drawn from the imaging
sub-study of the International Study to Predict Optimized Treatment
in Depression (iSPOT-D). Following the planned design of iSPOT-D, we
first evaluated our aims in the test cohort, the first subsample of pa-
tients, and then tested for replication in the second validation sub-
sample.

2. Methods

2.1. Participant Characteristics and Study Protocol

Data was gathered from participants in the International Study to
Predict Optimized Treatment in Depression (iSPOT-D), for which the
study protocol, clinical assessments, inclusion/exclusion criteria and di-
agnosis procedures have been previously described (Williams et al.,
2011; Grieve et al., 2013b). In short, the Mini-International Neuropsy-
chiatric Interview, usingDSM-IV criteria, and a 17-itemHamilton Rating
Scale for Depression (HRSD17) score ≥16 confirmed the primary diag-
nosis of MDD. Participants were not currently suffering or had a history
of bipolar disorders, schizophrenia, schizoaffective, psychosis not other-
wise specified, anorexia, bulimia, obsessive compulsive disorders or pri-
mary post-traumatic stress disorder. All MDD participants were either
ADM-naïve or had undergone a wash-out period of at least 5 half-lives
of a previously prescribed ADM. Participants were randomized to receive
flexibly-dosed, open-label escitalopram, sertraline or venlafaxine-
extended release (venlafaxine-ER) for eight weeks. Our study recruited
from primary care, community and academic psychiatry settings with
the goal of representing a broad sample of antidepressant treatment
seekers. Medications were prescribed and doses adjusted by treating
clinicians according to routine clinical practice, but following the recom-
mended dose ranges. An HRSD17 of ≤7 was used to ascribe remission.
In addition to the HRSD17 score, participant age, gender, age of onset of
depression, depression duration, number of previous depression
episodes, previous treatment, melancholia, and score of the 42 item
depression-anxiety-stress scale were recorded at baseline.

As per the analysis plan, the first 50% of the MDD participants who
completed imaging at baseline visit were used as the test cohort (n =
102) and the second 50% of the MDD participants as the validation co-
hort (n= 102) (Grieve et al., 2013b). Fig. 1 provides the CONSORT dia-
gram. 80 and 87 participants completed their 8-week course of assigned
ADM in the test and validation cohorts respectively. Of the 80 partici-
pants from the test cohort, six participants did not complete the DTI
scan while four participants did not complete the T1 structural scan
resulting in 74 and 76 participants for each analysis. For the validation
cohort, DTI and T1 data from 83 participantswho completed the clinical
follow-up at week 8were available for analysis. These sample sizes rep-
resent the biggest cohort to be used to identify imaging prognostic
markers for ADM treatment. Based on effect sizes from previous work
in the field, we anticipated these sample sizes to provide sufficient
power for analysis. The Western Sydney Ethics Committee approved
this study and all participants provided written informed consent.

2.2. Image Acquisition and Analysis

DTI and T1-weighted sagittal 3D SPGRMRI data were acquired using
a 3 Tesla GE Signa HDx scanner (GE Healthcare, Milwaukee,Wisconsin)
as previously described (Grieve et al., 2013b). Volumetric analysis was
performed using voxel-based morphometry (VBM8), and 116 cortical
and subcortical brain regions were generated using the Automated An-
atomical Labeling (AAL) atlas (Grieve et al., 2013a; Tzourio-Mazoyer
et al., 2002). DTI data analyzed using Tract-Based Spatial Statistical anal-
ysis (TBSS) to generate fractional anisotropy (FA) measurements for 46
major white matter tracts in the brain using the Johns Hopkins Univer-
sity International Consortium for Brain Mapping (JHU ICBM)-DTI-81
whitematter labels atlas (Korgaonkar et al., 2011;Mori et al., 2008). De-
tails for theMRI sequences and volume andDTI analyses are provided in
the supplementary section.

2.3. Statistical Analyses

ROC analyses, based on signal detection methods (Kraemer, 1992)
were used to identify which MRI measures (GM region/white matter
tract), and at what level (volume or FA), optimally discriminate non-
remitters and remitters. This analysis is non-parametric and operates
via a recursive partitioning procedure. This approach is designed to han-
dlemultiple variables and as compared to traditional regression analysis
methods can analyze all possible interactions, rather than only those
specified a priori and can analyze interactions even when the main ef-
fects are not included in themodel. More specifically, for eachmeasured
potential predictor, cutoff points are generated at all values observed in
the variable. The quality of a cutoff point is based on its ability to divide
the sample into 2 subsamplesmaximally distinct in discriminating non-
remitters and remitters. A kappa statistic is calculated for each cut-
point, and the largest kappa coefficients correspond to cut-points with
maximum sensitivity and specificity (Kraemer, 1992) (QROC available
at mirecc.stanford.edu).

The cutoff point that yields the best prediction is identified across all
values of all variables. That cutoff point is then used to divide the total



Fig. 1. iSPOT-D study CONSORT Diagram. Abbreviations: ADMs, antidepressant medications; DTI, diffusion tensor imaging; MDD, major depressive disorder; sMRI, structural T1 MRI.
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sample into 2 subsamples. The same procedure is repeated systemat-
ically in each of the 2 subsamples. This iterative process continues
until failure to reach a significance group difference at p b 0.01 for
any candidate cutoff value. After the last step of the ROC analysis is
reached, the probability of remission for each subgroup is calculated
and the results presented as hierarchical decision tree diagrams (as
in Fig. 2 or 3).

Three separate ROC analyses were conducted: 1. Using volumet-
ric measures for all 116 cortical–subcortical brain regions, 2. Using
FA measures for all 46 white matter tracts, 3. Using all volumetric,
FA, demographic and clinical measures. For each analysis, optimal
cutoff points for prediction of remission status were first identified
using the test cohort, following this, the performance of these cutoff
values was assessed in the validation cohort using the binomial test.
We also tested if these cutoff points performed better than chance
(i.e. better than a remission rate of 35% of patients based on existing
literature and on remission rates observed in the overall iSPOT-D
study cohort, n = 1700 at time of analysis) (Thase et al., 2001;
Rush et al., 2006). The proportion of non-remitters in the validation
cohort was much higher than that observed in the test cohort and
previously published prevalence rate for ADM use (Table 1). To re-
move this bias in testing the validity of the decision trees, an addi-
tional cross-validation procedure was performed using 1000
iterations of 100 MDD participants randomly chosen across both co-
horts. This approach would also provide the confidence interval for
the classification accuracy for the identified cutoffs. The limited
sample size of remitters vs. non-remitters after splitting by treat-
ment arms precluded us from testing treatment arm effects in our
analysis.
3. Results

3.1. Participant Characteristics

Table 1 shows the clinical and demographic characteristics of the
test (n = 74) and validation (n = 83) cohorts overall and for each
group subdivided by remission status at 8 weeks. The average daily
doses (mg/day) (±S.D.) at week 8 for the treatment arms were:
escitalopram = 13 ± 5; sertraline = 61 ± 27; and venlafaxine-ER =
100± 35. Remission rates within each cohort were similar across treat-
ment arms. Significant cohort differences existed for baseline and week
8 symptom severity (HRSD17 Baseline, HRSD17 Week 8: validation co-
hort N test cohort; p b 0 · 05), however, improvement in symptoms
(HRSD17% change), age of onset and duration of illness was similar for
both cohorts. The remission rates were lower in the validation cohort:
46% (34/74) of the MDD participants from the test cohort achieved re-
mission, while 24% (20/83) of theMDD participants from the validation
cohort achieved remission (χ2 = 8 · 02; p = 0 · 005).

3.2. Identification of Optimal Cutoffs for Remission Status Using the Test
Cohort

Fig. 2 shows the decision tree identified using the DTI measures
alone. The ROC model identified three key cutoff points (in order):

(1) FA= 0 · 63 for the left cingulum portion of the cingulum bundle
(L-CgC), where 77% of patients greater or equal to this valuewere
remitters (17/22; with no further significant decision points ap-
plying to this group) and 67% of patients less than this value
were non-remitters (35/52).



Fig. 2. Decision tree for prediction of remission using the DTI measures. Abbreviations: R, remitters; NR, non-remitters; FA, fractional anisotropy; CgC, cingulum portion of the cingulate
gyrus; SFOF, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus.
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(2) FA = 0 · 54 for the right superior fronto-occipital fasciculus (R-
SFOF) (threshold applied to the L-CgC b 0 · 63 group), where
90% of patients greater or equal to this value were non-
remitters (18/20; no further decision points applying to this
group); and 53% of subjects less than this value were non-
remitters (17/32).
Fig. 3. Decision tree for prediction of remission using the volumet
(3) FA= 0 · 50 for the right superior longitudinal fasciculus (R-SLF)
(threshold applied to the R-SFOF b 0 · 54 group), where 85% of
the patients less than this value were non-remitters (11/13).

Based on this analysis, therewere two decision pathswhich had suf-
ficient classification accuracy (N80%) for clinical action i.e. to identify a
ric measures. Abbreviations: R, remitters; NR, non-remitters.



Table 1
Demographics and clinical measures summary.

Test cohort Validation cohort

Characteristics All Remission All Remission

Yes No Yes No

N % N % N % N % N % N %

Number 74 100 34 46 40 54 83 100 20 24 · 1 63 75 · 9
No. of Females 37 50 16 47 21 53 42 51 11 55 31 49

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Age (years) a 33 · 0 12 · 7 28 · 2 7 · 4 37 · 1 14 · 8 35 · 5 11 · 2 33 · 2 10 · 5 36 · 3 11 · 4
HRSD17 Baselinec 20 · 7 3 · 6 21 · 2 3 · 8 20 · 3 3 · 4 22 · 3 3 · 4 21 · 2 3 · 3 22 · 7 3 · 4
HRSD17 Week 8a,b,c 9 · 0 5 · 0 4 · 6 1 · 9 12 · 8 3 · 5 11 · 3 4 · 8 5 · 2 1 · 3 13 · 2 3 · 8
HRSD17% changea,b 55 · 1 27 · 2 78 · 2 9 · 4 35 · 6 21 · 2 49 · 2 21 · 0 75 · 2 6 · 2 41 · 0 16 · 8
Age of onset (years) 20 · 2 11 · 1 18 · 9 7 · 7 21 · 4 13 · 4 22 · 4 8 · 5 20 · 6 9 · 2 23 · 0 8 · 3
Disease duration (years)a 12 · 2 12 · 0 8 · 8 6 · 5 15 · 2 14 · 7 12 · 6 11 · 0 12 · 1 12 · 1 12 · 8 10 · 8

Abbreviations: HRSD17, 17-item Hamilton Rating Scale for Depression; SD, Standard deviation.
a Difference between remitters and non-remitters at p b 0 · 05 for test cohort.
b Difference between remitters and non-remitters at p b 0 · 05 for validation cohort.
c Difference between the test and validation cohorts at p b 0 · 05.
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meaningful proportion of depressed patients who were unlikely to
remit acutely to medication: 1. Participants with L-CgC b 0 · 63 & R-
SFOF N 0 · 54; and 2. Participants with L-CgC b 0 · 63, R-SFOF b 0 · 54
& R-SLF b 0 · 50.

Fig. 3 shows the decision tree identified using the volumetric mea-
sures alone. The decision tree for the combined measures model i.e.
FA, volume, clinical and demographic measures was identical to the vol-
umetric decision tree i.e., only volumetric parameters were significant
contributors and no DTI or characteristic parameters were selected as
critical decision points. Two key cutoff points were identified in this
model (in order):

(1) Volume=14 · 82ml for the leftmiddle frontal gyrus, where 76%
of patients greater or equal than this value were remitters (25/
33; with no further significant decision points applying to this
group) and 77% of patients less than this value were non-
remitters (33/43).

(2) Volume = 6 · 25 ml for the right angular gyrus (threshold ap-
plied to the left middle frontal b 14 · 82 ml group), where 50%
of patients less than this value were remitters (7/14); while
90% of patients greater than or equal to this value were non-
remitters (26/29).

From this analysis, participants with the left middle frontal b 14 · 82
& right angular gyrus volume N 6 · 25 were most unlikely to remit.

3.3. Performance of Identified Cut Points in the Validation Cohort & Relative
to Chance

The performance of the identified decision trees in the validation co-
hort is shown in Figs. 2 & 3 (gray boxes marked as validation cohort at
each cut point).

Of the two decision tree cut-offs identified using the FA measures,
only one was found to replicate in accuracy. Accuracy of identification
of non-remission in patients with L-CgC b 0 · 63 & R-SFOF N 0 · 54
was 69% in the validation cohort (i.e. 9/13 and significantly different
at p=0 · 034 as compared to 90% for the test cohort using the binomial
test); while that for patients with L-CgC b 0 · 63, R-SFOF b 0 · 54 & R-
SLF b 0 · 50 replicated at 83% (5/6 and as compared to 85% for the test
cohort; p N 0 · 05 using the binomial test).

The decision tree cut-offs identified using the volume measures
i.e. left middle frontal volume b 14 · 82 ml & right angular gyrus vol-
ume N 6 · 25 ml for higher probability for non-remission, accurately
predicted non-remission in 82% of patients (i.e. 31/38) and were not
significantly different in identification accuracy as compared to that
from the test cohort (90% or 26/29 for the test cohort; p N 0 · 05
using the binomial test).

Of the two replicated decision trees, the volumetric measures deci-
sion tree identified a more meaningful number of patients who did
not remit (55%of all non-remitters pooled across the Test and validation
cohorts i.e. 57/103), compared to the DTI-based decision tree which
identified only 15% of all non-remitters (i.e. 16/103). This decision tree
also performed significantly better than chance in identifying non-
remission status for the test (p = 0 · 002), validation (p = 0 · 019)
and also for the pooled cohort (p b 0 · 001).

3.4. Cross Validation Analysis of the Volumetric Decision Tree Using the
Pooled (test and validation) MDD cohort

The remission rateswere lower in the replication cohort (χ2=8.02;
p = 0.005): 46% (34/74) of the MDD participants from the test cohort
achieved remission, while 24% (20/83) of the MDD participants from
the replication cohort achieved remission. To remove any bias of this
high proportion of non-remitters in the replication cohort on the pre-
dictive accuracy in this cohort and to provide a distribution and confi-
dence interval of this classification accuracy, a multiple sampling
bootstrap analysis procedure was employed. This cross-validation pro-
cedure was performed on MDD participants pooled across the test and
replication cohorts and was tested for the volumetric decision tree
that identified the largest number of non-remitters. One thousand ran-
dom groups with 100 MDD participants randomly chosen from the
pooled cohorts each time in each group were analyzed for classification
of non-remitters using the volumetric decision tree. The mean specific-
ity from this analysis was 85.0 ± 5.7% and was found to match that ob-
tained from the analysis above suggesting that our findings were not
biased due to the incidental low remission rate in the validation cohort.
The distribution of percentage of non-remitters correctly identified was
51.7 ± 6.3%.

3.5. Description of Non-remitted Patients Identified Using the Decision Tree

The decision tree based on volumetric measurements identified a
significant cohort of all non-remitters; we therefore characterized the
demographic and clinical features of this selected non-remitter (S-NR)
sample using the pooled sample. We compared the demographic and
clinical characteristics of this group to the non-selected non-remitters
(N-NR) and to the rest of the group (i.e. all remitters + N-NR) using in-
dependent t-tests or chi-squared tests (Table 2).

The only significant difference between the S-NR and N-NR was in
the proportion of melancholics (χ2 = 4 · 27; p = 0 · 039; 89%



Table 2
Characteristics of selected non-remitting participants compared to non-selected subject groups.

Characteristics Selected NR Non-selected NR All non-selected (non-selected NR + all
remitters)

(n = 57) (n = 46) (n = 102)

n in Rx arm (E/S/V) 23/14/20 16/18/12 NS 34/38/30 NS

N % N % N %

Females 27 47 · 4 25 54 · 3 NS 52 51 · 0 NS
Melancholic⁎ 6 10 · 5 12 26 · 1 0 · 039 23 22 · 5 NS
Previous treatment 17 30 · 4 17 40 · 0 NS 53 52 · 0 0 · 009

Mean SD Mean SD Mean SD

Age 37 · 7 12 · 2 35 · 1 13 · 2 NS 32 · 1 11 · 3 0 · 004
Rx dose (mg/day) 63 · 2 51 · 5 54 · 6 41 · 7 NS 52 · 5 38 · 6 NS
HRSD17 Baseline 21 · 4 3 · 6 22 · 5 3 · 5 NS 21 · 9 3 · 6 NS
HRSD17 Week 8 12 · 8 3 · 8 13 · 4 3 · 6 NS 8 · 7 5 · 1 0 · 000
HRSD17% change 39 · 6 16 · 8 38 · 8 19 · 5 NS 59 · 8 23 · 9 0 · 000
Age of onset 23 · 3 11 · 4 21 · 8 9 · 4 NS 20 · 6 8 · 8 NS
Disease duration 14 · 0 10 · 0 12 · 8 14 · 2 NS 11 · 0 11 · 6 NS
HRSD17 anxiety 7 · 0 2 · 1 7 · 5 1 · 9 NS 7 · 1 1 · 8 NS
HRSD17 non-anxiety 14 · 4 2 · 6 15 · 0 2 · 5 NS 14 · 8 2 · 7 NS
FIBSER frequency 1.74 1 · 32 1 · 46 1 · 39 NS 1 · 05 1 · 32 0 · 002
FIBSER intensity 1 · 65 1 · 17 1 · 54 1 · 26 NS 1 · 12 1 · 20 0 · 008
FIBSER burden 1 · 04 1 · 05 1 · 02 1 · 20 NS 0 · 73 1 · 03 NS

Abbreviations: E, escitalopram; FIBSER; Frequency, Intensity and Burden of Side Effects Rating; HRSD17, 17-itemHamilton Rating Scale for Depression; NR, Non-remitters; NS, Not signif-
icant; Rx, Medication; SD, Standard deviation; S, sertraline; V, venlafaxine-extended release.
⁎ Melancholia was defined based on a score N7 on the Clinical Outcome in Routine Evaluation scale (Korgaonkar et al., 2011).

42 M.S. Korgaonkar et al. / EBioMedicine 2 (2015) 37–45
participants were non-melancholics in S-NR vs. 74% in N-NR). Com-
pared to the rest of the group, the S-NR were significantly older, had
been previously treated for depression, exhibited greater frequency
and intensity of side-effects, were severe at week 8 (HRSD17) and
showed less improvement in severity (as measured by % reduction in
HRSD17), however none of these characteristics were selected as con-
tributors to an effective decision tree in the ROC analysis. The S-NR
group did not significantly differ from the rest of the cohort in relation
to prescribed treatment type or dose.

3.6. Overlap BetweenDTI and GMVolumetric SelectedNon-remitter Groups

To further explore the groups of patients selected using the DTI and
the structural volume measurements, we first examined the degree of
overlap between the S-NR using each decision tree. When these two
decision trees are applied in series (i.e.,first applying theDTI, then the vol-
umetric decision tree— or vice versa) to the pooled sample, no remitters
Fig. 4. Significant left middle frontal cluster (shown in red) identified in thewhole brain VBM an
remitted MDD participants. The cluster peak was at (−40, 14, 43) and comprised of 700 voxel
tions: L, left.
and 10 non-remitters were selected (i.e., the test was 100% accurate in
classifying non-remitters for the selected MDD group). When the same
decision trees are applied in parallel (i.e. including all MDD participants
who were selected by applying either the DTI or the volumetric decision
trees), 13 remitters and 63 non-remitters were selected (i.e. the test
was 83% accurate in classifying non-remitters for the selected MDD
group).

3.7. Voxel Based Morphometry Analysis of Volume Data

We performed voxel based morphometry analyses to refine the an-
atomical location of the left middle frontal and right angular gyrus GM
predictive regions, and to identify any additional areas of the brain asso-
ciated with remission. Two sets of comparisons were performed: 1. A
whole brain analysis comparing S-NR and all remitted patients; and 2.
A whole brain analysis comparing all non-remitter and all remitted pa-
tients. Only a cluster in the left middle frontal gyrus was found to be
alysis comparing selected non-remitters identified from the volumetric decision tree & all
s (p b 0.05 FWE corrected). The whole middle frontal gyrus is shown in yellow. Abbrevia-
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significant at the whole brain level (p b 0 · 05 FWE) for the S-NR vs. all
remitted patients (S-NR with reduced volume), adding anatomical
specificity to thefindings from the ROC analysis. The cluster represented
6% of the total ROI and is shown in Fig. 4. No significant whole brain
clusters were found for the comparison of all non-remitters and all
remitted patients. We next tested if the accuracy in predicting non-
remission using volume for the refined left middle frontal cluster
improved relative to using volume for the whole region. The peak NR
prediction accuracy using this measure was 89% (with 38/103 NR se-
lected). When used in place of the larger left middle frontal gyrus ROI,
the GM volume decision tree accuracy improved to 90% (applied to
44/103 NR).
4. Discussion

This study found that magnetic resonance imaging measures of
brain structure and connectivity acquired pre-treatment could provide
clinically actionable information about which patients were unlikely
to achieve remission, versus those likely to remit, following acute treat-
mentwith three commonly used ADMs.We found that volumetricmea-
sures of the left middle frontal and the right angular gyri could reliably
identify a subset of patients who did not remit to any of the three pre-
scribed ADMs. Thresholds identified using these measures predicted
non-remission status with an accuracy of 82% and selected 55% of all
non-remitters in the cohort. The findings contribute new knowledge
about objective neuroimaging measures for identifying a large propor-
tion of non-remitters before treatment begins, going beyond the current
knowledge on clinical predictors of non-remission (Rush et al., 2008;
Labermaier et al., 2013). Pre-treatment measures that predict non-
efficacy with a substantial degree of precision to certain treatments
can enable ruling out of these treatments and earlier initiation offinding
alternative treatment options.

Neuroimaging techniques have shown promise in the identification
of neurobiological substrates underlyingmajor depressive disorder and
other psychiatric illnesses. The limbic-cortical pathways have been
identified as the key brain network that may guide treatment for de-
pression (Fu et al., 2013; Mayberg, 2003; Korgaonkar et al., 2014b). A
number of baseline MRI measures of both function and structure of
these regions have been associated with treatment remission. Fu et al.,
2013 It seems likely, however that more than one tract or brain region
may be required for effective treatment prediction. Association analyses
are helpful to identify candidate biomarkers; however to employ such a
biomarker in a clinical setting would need a demonstrated reliable pre-
dictive power along with decision points applicable at an individual
level. Amajor challenge in thefield, therefore, is tofindways of combin-
ing different brain measures to generate an integrated tool to base clin-
ical treatment decisions on. Data driven classification techniques such
as pattern classification are promising in combiningwhole brain neuro-
imaging measures to get objective information on diagnosis or progno-
sis (Fu et al., 2008). This approach has successfully been applied using
volumetric data to distinguish between unipolar and bipolar depression
(Redlich et al., 2014). The framework of the ROC based signal detection
analysis utilized in this paper provides a non-biased and completely
data drivenmethod to identify regions and cut-points for categorization
of treatment outcome. In our analysis, this approachwas robust in iden-
tifying non-remitters and was replicated in an independent cohort.
However, we do note that the cut-points identified at each partitioning
stage using the test cohortwere not replicated as significant discrimina-
tors using the Fisher's exact statistic in the validation cohort. We think
this is likely due to the differential non-remission rate for the validation
cohort. Our validation data does show robust replication of the main
goal of the study which was to identify a sub-group of patients for
which a combination of measures predicts non-remission with high
classification accuracy. This was also supported by our multiple sam-
pling cross-validation analysis.
Thedecision tree based on the regions and their cut-points identified
in our approach provides a measure of classification accuracy which is
the probability of either remission or non-remission to ADMs. Defining
anoverall sensitivity/specificity in the context of our analysis is complex
and not clinically meaningful, since we are aiming to isolate groups of
subjects that can be classified with a high degree of accuracy, a process
that may leave a proportion of the group who are, from a clinical
perspective, essentially “unclassified”. For example, based on the DTI
decision tree (see Fig. 2), patients for whom left CgC b 0.63 & right
SFOF N 0.54 & right SLF N 0.5 cannot be reliably classified. In these
cases the decision tree and test will not have helped, and usual clinical
care would proceed. An analogous situation of such an approach is the
application of an altered management pathway for BRAC1/2 + patients
in screening for breast cancer. For this reason we have carefully report-
ed the raw numbers of patients (to allow for any transparent post hoc
analysis), and have preferred to refer to accuracy of classification as de-
fined above.

Major depressive disorder is highly heterogeneous, whichprovides a
significant challenge in the management of this disorder (Goldberg,
2011). This heterogeneity was reflected in our analysis, where only a
subset of non-remitters was identified using MRI measures. The select-
ed non-remitters were not demographically or clinically different from
the non-selected non-remitters except for themarginally lower propor-
tion of those with melancholic features present in the group. Our data
supports the use of neurobiologicalmarkers to characterize inmeaning-
ful ways the heterogeneity in depression not adequately captured using
clinical measures (Insel et al., 2010). It would be of interest to further
characterize this group of patients using other biological measures (in-
cluding other forms of imaging, neurophysiological measures, and ge-
netics). In particular, multimodal imaging, combining functional and
structural measures offer the most logical approach to further extend
out understanding of the features that govern treatment outcomes in
this complex disorder (Teipel et al., 2014). Functional data using resting
state fMRI (Li et al., 2013), and metabolic information (McGrath et al.,
2013), would be expected to add valuable independent information to
a treatment-prediction approach as illustrated by our current analysis.

Our voxel basedmorphometry analysis of the S-NR groupprovided a
more specific cluster of reduced volume within the left middle frontal
gyrus — which improved the specificity of this step of the decision
tree from 77% to 89%. At a whole brain level no other GM regions
were associated with this S-NR group. The significance of this specific
structural feature in the selected- non-remitter group was highlighted
by a failure to identify any significant GM regions when a comparison
was performed comparing remitters with non-remitters in the whole
cohort. The significant cluster corresponds to the dorsolateral prefrontal
cortex, a region implicated in a number depression studies, which is
widely held to be involved in the control of executive and emotion func-
tions in the brain (Hamilton et al., 2012; Fitzgerald et al., 2008). Our
previous analysis of GM volume reduction at baseline in MDD demon-
strated profound GM reductions in this region compared to normal sub-
jects (Grieve et al., 2013a). Our findings also extend validation of
reduced GM volume in this region found to be associated with reduced
likelihood of antidepressant response in a recent meta-analysis (Fu
et al., 2013). The right angular gyrus was the second component of
our optimal decision tree, the exact role of this region in depression is
poorly understood, butmay relate to its putative involvement in the de-
fault mode network, cognition (e.g. memory, sematic processing, atten-
tion) or in its role in the synthesis of complex social and environmental
information (Seghier, 2013).

While the GM volumetric decision tree was superior to the DTI tree,
the latter model was still significant and produced comparable overall
results (84% accuracy).More importantly, the DTI decision tree had con-
siderable overlap with the GM volumetric tree with 100% accuracy of
non-remission in individuals (n = 10) who were identified by both
tests as non-remitters. Although the fraction of subjects both these
tests applied to is small, this result does illustrate the potential of
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additive (in series or in parallel) usage of such data in a clinical algo-
rithm. A great deal of literature highlights functional brain changes as
predictors of treatment outcome in MDD (Fu et al., 2013; Mayberg
et al., 1997). The inclusion of fMRI measures may add further value to
the predictive algorithms we have identified.

This study had several limitations. The iSPOT-D trial is a naturalistic
study, and as such, lacks a placebo arm, this places important limitations
on howwe can use this data to understand the brain circuits that govern
remission — the most critical of these being differentiating the specific
effects of ADM therapy from spontaneous remission. On the other
hand, the design of the iSPOT-D trial to mimic routine clinical practice
means that our results reflect a real world setting. We included both
participants who were ADM naïve or had previous history of ADM
use. Although participants with previous ADM use underwent a wash-
out period prior to participating in the study, the long-term impacts of
ADM use on brain structural features that may impact on remission
are not well understood. It is also possible that participants with previ-
ous ADMusemay represent a treatment resistant group. As a result, the
sensitivity of our findings with respect to medication history should be
inferred with caution. Our findings are limited to the three commonly
prescribedADMsused in the study, the generalizability of thesefindings
to other classes of ADMs currently available needs further work. Al-
though our results provide encouraging evidence that neuroimaging
measures can play a role in ruling out ADM use, markers that may reli-
ably predict treatment success for a particular patient still remain to
be identified. An inherent limitation of the employed approach is that
the test could be applied only in MDD participants who met cutoff
criteria for the identified measures. This may lower the overall sensitiv-
ity and specificity of prediction when considering the whole cohort.
However, a test, albeit applicable to a smaller group but which has a
greater reliability in identifying whether a patient will not remit to
ADMs, would still be clinically meaningful and an improvement to cur-
rent practice. Further work is required to understand the role that neu-
roimaging may play in guiding the use of other types of depression
treatments (e.g. cognitive behavioral therapy, repetitive transcranial
magnetic stimulation, deep brain stimulation, etc.) versus ADMs or
combination treatment regimes.

These limitations notwithstanding, this report shows that measures
derived from routinely prescribed clinical MRI scans have the potential
to inform decision to not prescribe antidepressants in patients with
major depressive disorder. The goal of our studywas to identify an algo-
rithm that could be easily employed in current clinical practice. Struc-
tural volumetric T1 weighted and DTI MRI scans are routinely
clinically prescribed for neurological evaluations and a biomarker
based on these measures would be easy to employ in a clinical setting.
Our analysis also used standard anatomical atlases — ensuring repro-
ducibility and standardization of our findings. These data contribute to-
wards a neuroanatomical basis for non-remission in depressed patients.
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