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Abstract

Lung cancer is one of the leading causes of cancer mortality worldwide and non–small cell lung cancer (NSCLC) accounts for
the most part. NSCLC can be further divided into adenocarcinoma (ACA) and squamous cell carcinoma (SCC). It is of great
value to distinguish these two subgroups clinically. In this study, we compared the genome-wide copy number alterations
(CNAs) patterns of 208 early stage ACA and 93 early stage SCC tumor samples. As a result, 266 CNA probes stood out for
better discrimination of ACA and SCC. It was revealed that the genes corresponding to these 266 probes were enriched in
lung cancer related pathways and enriched in the chromosome regions where CNA usually occur in lung cancer. This study
sheds lights on the CNA study of NSCLC and provides some insights on the epigenetic of NSCLC.
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Introduction

Lung cancer is one of the leading cause of cancer mortality

worldwide [1]. Basing on the 2011 International Association for

the Study of Lung Cancer/American Thoracic Society/European

Respiratory Society (IASLC/ATS/ERS) lung adenocarcinoma

classification, it is now classified into 5 different subtypes: Atypical

adenomatous hyperplasia (AAH), Adenocarcinoma in situ (AIS)

(nonmucinous, mucinous, or mixed nonmucinous/mucinous),

Minimally invasive adenocarcinoma (MIA) (#3 cm lepidic pre-

dominant tumor with #5 mm invasion), Invasive adenocarcino-

ma, and variants of invasive adenocarcinoma, and each of them

has its own histological feature [2]. Non–small cell lung cancer

(NSCLC) accounts for 85% of all lung cancers. The most frequent

histologic subtypes of NSCC is adenocarcinoma (ACA) and

squamous cell carcinoma (SCC), accounting for 50% and 30% of

NSCLC cases, respectively [3]. ACA is the most common

histologic subtype reported with lung cancer in the never smokers

(LCINS) [4], which is a cancer of an epithelium which originates

in glandular tissue. SCC is a cancer of squamous epithelial cell,

which arises most often in segmental bronchi and related to lobar

and main stem bronchus occurs by its extension [5], and its

incidence is correlated with smoking period [6] compared with

ACA. Historically, well differentiated SCC cells include the

morphologic features such as intercellular bridging, squamous

pearl formation and individual cell keratinization [5]. Nowadays,

medicine development in NSCLC has introduced histologic

subtyping, the differentiation of ACA from SCC in biopsy

specimens, as an important factor for effective treatment choice

and molecular therapy target. For example pemetrexed, antifolate

agent, is effective in the treatment of patients with non-squamous

NSCLC but should not be recommended for the treatment of

squamous cell carcinoma [7]. Bevacizumab, combined with

paclitaxel/carboplatin, has excessive toxic effects in squamous-cell

carcinoma [8], while it could significantly increase overall survival

rate of patients with cancers of non-squamous histology [9,10].

Traditional diagnosis method to distinguish adenocarcinoma from

squamous cell carcinoma, is based on the histologic section and

patients’ smoking habit. However, because of the individual

heterogeneity of lung cancer, this method cannot correctly

distinguish ACA and SCC in some cases efficiently. Recently,

immunohistochemistry is being used in biopsy and cytology

material [11] as a complement, and several genes have been

discovered as the immunohistochemical marker. Kargi et al. found

thyroid transcription factor-1 (TTF-1) is a marker in immuno-

staining for ACA, while p63 and cytokeratins (CK) 5/6 are marks

for SCC [12]. Moreover, molecular targeted therapy has been

more and more used in NSCLC as the promising treatment

strategy in recent years. It is demonstrated that superior efficacy of

tyrosine kinase inhibitors (TKIs) as compared to standard

chemotherapy for patients with EGFR-mutant tumors [13]. Kwak

et al. also explored the small-molecule inhibitor of the ALK

tyrosine kinase could be used as the efficacious therapy in

advanced ALK-positive tumors in an early-phase clinical trial [14].

Therefore, it is meaningful to identifying genes which have distinct

genetics features in ACA and SCC that could be used as

prognostic factor or potential target for medical therapy.
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Previous analysis has showed CNAs are common in almost all

human cancers [15,16]. In NSCLC, CNAs increase with disease

progression and CNAs are both positionally and functionally

clustered [17]. Furthermore, Giovanni Tonon el at. found despite

their distinct histopathological phenotypes, ACA and SCC

genomic profiles showed a nearly complete overlap, with only

one clear SCC-specific amplicon on 3q26–29 [18].

In this study, to figure out the key genes distinguishing ACA and

SCC from each other, we compare the genome-wide copy number

alterations (CNAs) patterns of 208 early stage ACA and 93 early

stage SCC tumor samples. By means of the feature selection and

analysis methods, including the Maximum Relevance Minimum

Redundancy method (mRMR) and the Incremental Feature

Selection (IFS) method, 266 optimal CNA probes were selected

for the discrimination of ACA and SCC. The classification model

was built with Nearest Neighbor Algorithm (NNA). As a result, the

classifier achieved a overall MCC of 0.6616. Further analysis on

the 266 CNA related genes showed that they were closely

associated with lung cancer.

Materials and Methods

Dataset
We used the copy number alterations data from the non-small

cell lung cancer study of Huang et al. [19]. In their study, a series

of 301 snap-frozen tumor samples from NSCLC patients was

collected during surgery or biopsy from the Massachusetts General

Hospital (MGH), Boston, MA and the National Institute of

Occupational Health, Oslo, Norway. The clinical information of

these 301 samples was given in File S1. The copy number profiling

of 208 early stage adenocarcinoma tumors (ACA) samples and 93

early stage squamous cell carcinoma tumors (SCC) were retrieved

from NCBI Gene Expression Omnibus (GEO) with the accession

number of GSE34140. The copy number profile was obtained

using the using Affymetrix 250 K Nsp GeneChip. Only 256,554

probes on somatic chromosomes were analyzed. The SNP probes

were mapped to the RefSeq genes with 2 kb extension both

upstream and downstream using the UCSC Genome Browser.

Among the 256,554 probes on somatic chromosomes, 104,256

probes were mapped to 11,700 genes [19].

mRMR method
We used Maximum Relevance Minimum Redundancy

(mRMR) method to rank the importance of the probes [20].

mRMR method could rank probes based on both their relevance

to the class of samples and the redundancy among probes. A

smaller index of a probe denotes that it has a better trade-off

between maximum relevance to class of samples and minimum

redundancy.

Both relevance and redundancy were quantified by mutual

information (MI), which estimates how much one vector is related

to another. The MI equation was defined as below:

I(x,y)~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy ð1Þ

In equation (1), x, y are vectors, p(x,y) is their joint probabilistic

density, and p(x) and p(y) are the marginal probabilistic densities.

Let V denote the whole probe set, Vs denote the already-

selected probe set containing m probes and Vt denote the to-be-

selected probe set containing n probes. The relevance D between a

probe f in Vt and the class of sample c can be calculated by:

D~I(f ,c) ð2Þ

The redundancy R between a probe f in Vt and all the probes

in Vs can be calculated by:

R~
1

m

X
fi[Vs

I(f ,fi) ð3Þ

To get the probe fj in Vt with maximum relevance and

minimum redundancy, the mRMR function combines equation

(2) and equation (3) and is defined as below:

max
fj[Vt

I(fj ,c){
1

m

X
fi[Vs

I(fj,fi)

2
4

3
5(j~1,2,:::,n) ð4Þ

The mRMR probe rating would be executed N rounds when

given a probe set with N (N = m+n) probes. After N rounds of

execution, a probe set S is produced:

S~ f
0

1 ,f
0

2 ,:::,f
0

h ,:::,f
0

N

n o
ð5Þ

In S, index h indicates at which round that the probe is selected.

The smaller the index h is, the earlier the probe satisfies equation

(4) and the better the probe is.

Nearest neighbor algorithm (NNA)
Nearest Neighbor Algorithm (NNA) [21,22], which has been

widely used in bioinformatics and computational biology

[23,24,25,26,27], was adopted to predict the class of samples.

The ‘‘nearness’’ was calculated according to the following

equation

D(P1,P2)~1{
P1,P2

P1k k: P2k k ð6Þ

where P1 and P2are two vectors representing two samples, P1
:P2

is their dot product, P1k k and P2k k are their moduluses. The

smaller the D(P1,P2), the more similar the two samples are.

For an intuitive illustration of how NNA works, see Fig.5 of

[28].

Jackknife Cross-Validation Method
Jackknife Cross-Validation Method [23,24,29,30] (also called

the Leave-one-out cross-validation, LOOCV) was used to evaluate

the performance of a classifier. In Jackknife Cross-Validation

Method, every sample is tested by the predictor that is trained with

all the other samples. Let TP denotes true positive. TN denotes

true negative. FP denotes false positive and FN denotes false

negative. To evaluate the performance of our predictor, the

prediction accuracy, specificity, sensitivity and MCC (Matthews’s

correlation coefficient) were calculated as below:

Classification of Non-Small Cell Lung Cancer
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accuracy~
TPzTN

TPzTNzFPzFN

sensitivity~
TP

TPzFN

specificity~
TN

TNzFP

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP)(TPzFN)(TNzFP)(TNzFN)
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð7Þ

Incremental Feature Selection (IFS)
Based on the ranked probes rated by mRMR evaluation, we

used Incremental Feature Selection (IFS) [31,32,33] to determine

the optimal number of probes. During IFS procedure, probes in

the ranked probe set are added one by one from higher to lower

rank. A new probe set is composed when one probe is added. Thus

N probe sets would be composed given N ranked probes. The i-th

probe set is:

Si~ff1,f2,:::,fig(1ƒiƒN) ð8Þ

For each of the N probe sets, an NNA predictor was constructed

and tested using LOOCV. With N prediction accuracies,

sensitivities, specificities and MCCs calculated, we obtain an IFS

table with one column being the index i and the other columns to

be the prediction accuracy, sensitivity, specificity and MCC. The

optimal probe set (Soptimal) is the one, using which the predictor

achieves the best prediction performance.

Functional enrichment analysis of CNAs genes
Functional annotation tool of GATHER [34] was used for

KEGG pathway, GO and chromosome region enrichment

analysis. All the genes in the human genome were selected as

background during the enrichment analysis.

Results and Discussion

The mRMR Result
Listed in the File S2 are two kinds of outcomes obtained by

running the mRMR software: one is called the ‘‘MaxRel feature

list’’ that ranked all the probes according to their relevance to the

class of samples; the other one is the ‘‘mRMR feature list’’ that

ranked the probes according to the criteria of maximum relevance

and minimum redundancy. In the mRMR probe list, the smaller

the index of a probe was, the more important the probe would be

for the discrimination of two kinds of NSCLC. Accordingly, the

mRMR feature list could be used to establish the optimal feature

set in the IFS procedure.

IFS and Final Optimal Feature Set
Based on these two tables, 1000 feature subsets were construct-

ed according to Eq.8. An NNA predictor was modeled for each

subset and was evaluated by LOOCV. Shown in Fig.1 is the IFS

curve plotted based on the data in File S3. The x-axis is the

number of probes used for the classification, and the y-axis is the

MCC values of classifiers evaluated by LOOCV. The maximum

MCC was 0.6616 when 266 probes were utilized. With such a

classifier, the prediction sensitivity, specificity and accuracy were

0.9567, 0.6452 and 0.8605, respectively. These 266 probes were

regarded as the optimal biomarkers for the discrimination of two

kinds of NSCLC. The information of these 266 probes were given

in File S4. Shown in Fig.2 is the heatmap based on these 266

probes. It can be seen that most of the 208 ACA samples and 93

SCC samples can be distinguished.

Figure 1. IFS curve for the adenocarcinoma (ACA) and squamous cell carcinoma (SCC) samples classification. The IFS curves were
drawn based on the data in File S3. The MCC reached the peak when the number of probes was 266. The 266 probes thus obtained were used to
compose the optimal probe set for discrimination of adenocarcinoma (ACA) and squamous cell carcinoma (SCC).
doi:10.1371/journal.pone.0088300.g001

Classification of Non-Small Cell Lung Cancer

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88300



KEGG and GO enrichment results of CNAs genes
The KEGG pathway enrichment analysis of CNAs genes

indicated that they were enriched in Wnt signaling pathway, Focal

adhesion, ECM-receptor interaction and so on (Table 1). It is

reported Wnt signaling pathway is activated during the carcino-

genesis of NSCLC [35], and inhibition of Wnt-2-mediated

signaling could induce non-small-cell lung cancer cells apoptosis

[36]. Focal adhesion and ECM-receptor interaction are pathways

in the biological processes interactions of cells with extracellular

matrix (ECM), which play crucial roles in cell motility, cell

proliferation, cell differentiation, regulation of gene expression and

cell survival [37,38]. The proteins of these pathways are up-

regulated in NSCLCs [39], and take part in the activation of local

invasion and distant metastasis of cancer cells [40]. As the KEGG

pathway enrichment result, the GO enrichment result of these

CNAs genes also shows enrichment in the terms of cell adhesion

and intracellular signaling cascade. The GO enrichment result of

these CNAs genes were listed in File S5.

Chromosome region enrichment result of CNAs genes
It is reported copy number gain in region 3q26 [18,41] and in

region 8p12 [42] seem to be more common in squamous histology

compared with adenocarcinoma. The analysis of our result shows

that including these two regions, copy number alterations of 2q34,

10p15, 18q11, 8p23, 3p21, 3q27, 22q12, Xq13, 2q36, 10p11,

10p12 also have the significance in discrimination between SCC

and ACA, and deserved further researches on them (Table 2).

CNAs genes identified in this study
In this study, we identified several candidate genes correspond-

ing to 266 CNAs probes that can be used to distinguish two kinds

of NSCLC. 50 of them also has a significant correlation to the

Smoking Pack-year including TP63, SOX2 and PPP2R2B (see

File S4). With literature retrieval of gene function and significance

comparison by p-value, we focused on 8 genes which are most

probably related to distinguish ACA and SCC from each other.

Among them, TP63 has been reported as a biomarker to

Figure 2. Heatmapof 208 adenocarcinoma (ACA) samples and 93 squamous cell carcinoma (SCC) samples with 266 selected probes.
Samples are arranged along the X axis and probes along the Y axis. Each square represents the copy number of a given probe in an individual sample.
Red is increased copy number and blue is decreased copy number relative to the mean- and sample-centered scaled copy number across the
samples. Adenocarcinoma (ACA) and squamous cell carcinoma (SCC) samples were presented with green and blue, respectively.
doi:10.1371/journal.pone.0088300.g002
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discriminate between SCC and ACA, and it is listed top in our

result. Some of other genes are reported to have different gene

expression level in ACA and SCC or in patients with distinct

smoking habits. In accord with the KEGG and GO enrichment

result, PPP2R2B is a gene in wnt signaling pathway, while ITGA9

takes a part in focal adhesion and ECM-receptor interaction. All

above illustrates that our result is biologically significant and the 8

genes may be candidate biomarkers for distinguishing ACA and

SCC from each other and deserved further studies on them.

Below, we will briefly discuss their relationships with NSCLC.

TP63 (Tumor protein 63) is listed top one in the optimal probe

set with a CNA fold change of 0.7827 comparing ACA with SCC.

It is a tumor suppressor p53 homologue and essential for p53

dependent apoptosis in response to DNA damage [43]. Mi Jin

Kim et al. found P63 is a useful immunohistochemical panel in

differentiating ACA from SCC of the lung with the positive rate

91% of SCC and 9% of ACA in their studies [44]. The

chromosome location of TP63 is 3q27–29. Therefore, our result

is coincide with former researches and TP63 may play a key role

in distinguish ACA and SCC from each other.

EPHA4 (Ephrin type-A receptor 4) is related to the fourth probe

in our optimal probe set with a CNA fold change of 1.0846

comparing ACA with SCC, and is a member of the Eph receptor

family, the largest receptor tyrosine kinase family of transmem-

brane proteins with their ligands, the ephrins, affecting the growth,

migration and invasion of cancer cells in culture as well as tumor

growth, invasiveness, angiogenesis and metastasis in vivo [45].

Junya Fukai et al. found EphA4 promotes cell proliferation and

migration through a novel EphA4-FGFR1 signaling pathway in

the human glioma U251 cell line [46]. One of the Eph receptors

EphA2 is reported over expression in smokers and predicts poor

survival in non-small cell lung cancer [47]. A mutation in EphA2

(G391R) was identified in two of 28 squamous cell lung cancers

(7%), but not in any adenocarcinomas or large-cell lung

carcinomas [48]. These all indicate that EphA4 may be a

candidate biomarker for distinguishing ACA and SCC from each

other and deserved further studies on it.

PPP2R2B (Serine/threonine-protein phosphatase 2A 55 kDa

regulatory subunit B beta isoform) is related to the fifth probe in

our optimal probe set with a CNA fold change of 1.0781

comparing ACA with SCC. It is the regulatory subunit B beta

isoform of PP2A, and is implicated in the negative control of cell

growth and division [49]. Recently genome-wide association study

(GWAS) of lung cancer in the Chinese population revealed that

Table 1. KEGG enrichment result of CNAs genes.

Pathway KEGG ID
Your Genes (With
Ann)

Your Genes (No
Ann)

Genome (With
Ann)

Genome (No
Ann) P-value

Wnt signaling pathway hsa04310 6 32 141 2951 0.0077

Focal adhesion hsa04510 7 31 227 2865 0.0204

ECM-receptor interaction hsa04512 4 34 82 3010 0.0193

Your Genes (With Ann): The number of genes from your list with the annotation.
Your Genes (No Ann): The number of genes from your list without the annotation.
Genome (With Ann): The number of genes in the genome (excluding those in your list) with the annotation.
Genome (No Ann): The number of genes in the genome (excluding those in your list) without the annotation.
P-value: The negative logarithm of the p value calculated using a Fisher’s exact test.
doi:10.1371/journal.pone.0088300.t001

Table 2. Chromosome region enrichment result of CNAs genes.

Chromosome region Your Genes (With Ann) Your Genes (No Ann) Genome (With Ann) Genome (No Ann) P-value

2q34 5 162 24 30139 5.09E-07

10p15 5 162 55 30108 2.04E-05

18q11 4 163 46 30117 0.0002

3q26 5 162 105 30058 0.0004

8p23 6 161 174 29989 0.0005

3p21 7 160 251 29912 0.0006

3q27 4 163 72 30091 0.0008

22q12 5 162 142 30021 0.0014

Xq13 4 163 100 30063 0.0027

2q36 3 164 51 30112 0.0033

10p11 3 164 62 30101 0.0056

10p12 3 164 63 30100 0.0058

Your Genes (With Ann): The number of genes from your list with the annotation.
Your Genes (No Ann): The number of genes from your list without the annotation.
Genome (With Ann): The number of genes in the genome (excluding those in your list) with the annotation.
Genome (No Ann): The number of genes in the genome (excluding those in your list) without the annotation.
P-value: The negative logarithm of the p value calculated using a Fisher’s exact test.
doi:10.1371/journal.pone.0088300.t002
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chromosome 5q32 (rs2895680 in PPP2R2B-STK32A-DPYSL3,

P = 6.6061029) was lung cancer susceptibility loci and interacted

with smoking dose [50]. As well as PPP2R2B is on the top of our

result, the contribution of it in the NSCLC is worthy to be further

elucidated.

ITGA9 (Integrin alpha-9) is related to the twelfth probe in our

optimal probe set with a CNA fold change of 1.1034 comparing

ACA with SCC, which belongs to the integrin family and is

expressed on a wide range of cell types. It interacts with many

ligands for example fibronectin, tenascin-C and ADAM12, and

takes part in several processes such as cell adhesion, migration,

lung development, lymphatic and venous valve development, and

in wound healing [51]. ITGA9 has been found down expression in

NSCLC [52], and exhibiting strong cell growth inhibition activity

[53]. Statistical analysis of Alexey a. Dmitriev et al. suggested that

the methylation/deletion level of ITGA9 has significant changes in

ACA and SCC [53]. Our analysis presented the gene copy

number of ITGA9 is dissimilar in NSCLC subtypes, implying

ITGA9 as a candidate molecular to discriminate between SCC

and ACA.

SOX2 (Sex-determining region Y-Box 2) is related to the

nineteenth probe in our optimal probe set with a CNA fold change

of 0.7790 comparing ACA with SCC, and has been reported to be

differentially expressed between ACA and SCC. It is located at

chromosome 3q26 and high-level amplification of SOX2 have

been reported in approximately 20% of lung squamous cell

carcinomas [54,55]. SOX2 is a transcription factor controlling the

expression of a number of genes involved in embryonic

development and keeps neural cells undifferentiated [56].

Suppression of SOX2 in amplified SOX2 cells has greater

antiproliferative effects compared with other genes on 3q26.33

including PIK3CA and TP63.

FHIT (fragile histidine triad) is related to the thirty-third probe

in our optimal probe set with a CNA fold change of 1.1110

comparing ACA with SCC, and behaves in vitro as a typical

diadenosine triphosphate hydrolase cleaving A-59-PPP-59A to

yield AMP and ADP [57], but little is known about its

physiological function. It is considered as a tumor suppressor in

many human cancers and its restoration in Fhit-negative cancer

cell lines suppresses tumorigenicity and induces apoptosis [58].

Jennifer E. Tseng el at. found that the frequency of loss of FHIT

expression is related with smoking habit in Stage I Non-Small Cell

Lung Cancer [59]. In the studies of Gemma Toledo et al. FHIT

expression was related to tumor histology: 52 of 54 (96.3%) SCC

and 20 of 44 (45.5%) ACA were negative for FHIT (P,0.0001)

[60]. As SCC is closely correlated with a history of tobacco

smoking [6], and our results show the copy number of FHIT is

significantly lower in SCC, FHIT may be a possible biomarker for

NSCLC diagnosis and would be a potential medical target for

cancer therapy.

RBBP8 (Retinoblastoma-binding protein 8) is a ubiquitously

expressed nuclear protein which is binding to the tumor

suppressor proteins RB [61] and CtBP [62]. It is also interacting

with BRCA1 [63] and is thought to regulate the functions of

BRCA1 in transcriptional regulation, DNA damage repair, and

G2/M cell cycle checkpoint control [64,65]. RBBP8 is required

for DNA double-strand break (DSB) resection, and thereby for

recruitment of the protein kinase ATR and replication protein A

to DSBs, and promotes ATR activation and homologous

recombination [66]. It is reported that DNA repair components

were significantly up-regulated including retinoblastoma-binding

protein 8 (RBBP8), in lung SCC compared with normal lung

tissue, but such up-regulation was not found in lung ACA [67]. As

an essential molecular in the cell process DNA damage repair and

cell cycle control, RBBP8 has the potential to be a biomarker and

therapy target for NSCLC and the mechanism of its distinct

expression profile in SCC and ACA deserves further study.

GPC5 (Glypican-5) is a member of the glypican gene family,

which is a family of heparan sulphate proteoglycans that are linked

to the exocytoplasmic surface of the plasma membrane via glycosyl

phosphatidylinositol [68]. The expression level of GPC5 was

significantly lower in lung adenocarcinoma tissue than in matched

normal lung tissue in never smokers [69]. Yang et al. found

deceased expression of GPC5 is correlated with reduced survival

in ACA but not in SCC [70]. These all indicate that GPC5 may be

a potential tumor suppressor gene in NSCLC, and a candidate

bio-marker to discriminate between SCC and ACA.

Conclusion

In this study, we constructed a classifier based on copy number

alterations (CNA) to distinguish two subgroups of NSCLC. As a

result, 266 CNA probes were selected as the best discriminators.

Analysis of genes corresponding to these 266 CNA probes indicate

that they were enriched in lung cancer related pathways and

enriched in the chromosome regions where CNA usually occur in

lung cancer. Some of these genes, such as TP63, SOX2, EPHA4,

PPP2R2B, ITGA9, FHIT, RBBP8 and GPC5 are closely related

to lung cancer and these candidate genes may provide clues for

further research and experiment validation.
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File S1 Clinical information of adenocarcinoma (ACA) and

squamous cell carcinoma (SCC) samples.
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File S2 mRMR result for classification. This file contains two

sheets. The first one is the MaxRel feature table, which ranked the

top 1000 probes according to the relevance between features and

class of the samples. The second one is the mRMR feature table,

which ranked these 1000 probes according to the redundancy and

relevance criteria.

(XLSX)

File S3 The sensitivity (Sn), specificity (Sp), accuracy (Ac),

Matthews correlation coefficient (MCC) of each run of IFS for

classification.

(XLSX)

File S4 The annotation of the 266 selected probes.
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File S5 The GO enrichment result of CNAs genes.
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