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Abstract: In this review, we discuss gut microbial-derived metabolites involved with the origins
and pathophysiology of asthma, a chronic respiratory disease that is influenced by the microbiome.
Although both gut and airway microbiomes may be important in asthma development, we focus here
on the gut microbiome and metabolomic pathways involved in immune system ontogeny. Metabolite
classes with existing evidence that microbial-derived products influence asthma risk include short
chain fatty acids, polyunsaturated fatty acids and bile acids. While tryptophan metabolites and
sphingolipids have known associations with asthma, additional research is needed to clarify the extent
to which the microbiome contributes to the effects of these metabolites on asthma. These metabolite
classes can influence immune function in one of two ways: (i) promoting growth or maturity of certain
immune cell populations or (ii) influencing antigenic load by enhancing the number or species of
specific bacteria. A more comprehensive understanding of how gut microbes and metabolites interact
to modify asthma risk and morbidity will pave the way for targeted diagnostics and treatments.

Keywords: microbiome; metabolomics; asthma; short chain fatty acids; polyunsaturated fatty acids;
bile acids; tryptophan; sphingolipids

1. Introduction: Microbiome-Metabolome Associations in Asthma

Asthma and other allergic diseases have well known associations with early life environmental
exposures that modify the gut microbiota, such as living on a farm, mode of delivery, breastfeeding
status and having a dog in the home [1]. As mounting animal and human data point to a prominent
role of the gut microbiome in asthma development [2], relevant metabolomic mechanisms behind this
association are beginning to be elucidated [3]. Integration of metabolomic data with gut microbiome
data has been particularly fruitful in understanding the gut-lung axis as it pertains to asthma. Here, we
review a set of metabolites and metabolite groups that appear to link the gut microbiota with asthma
development and pathophysiology and immune system ontology. Some of these classes, such as short
chain fatty acids, are relatively well-studied and understood, while others, including the sphingolipids,
include more numerous metabolites with less straightforward relationships to asthma and allergy.
While we focus here on the metabolite classes most prominently discussed in today’s literature, future
unbiased studies of asthma metabolomics are likely to identify additional important pathways.
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2. Short Chain Fatty Acids

Short chain fatty acids (SCFA) are produced by a wide variety of intestinal microbes through
fermentation of dietary fiber. The most abundant SCFA are acetate, propionate and butyrate. SCFA exert
effects on host physiology by ligation of G-protein coupled receptors including GPR41, GPR43 and
GRP109A, and epigenetic modification by inhibition of histone deacetylase [4]. Early evidence was
stronger for histone deacetylase inhibitory activity of propionate and butyrate, but a recent study
showed that acetate can also inhibit histone deacetylase [5]. SCFA have important immune-modulating
properties including induction of T regulatory cell differentiation in mice [6–9], reduction of eosinophil
trafficking and survival [10] and promotion of mucosal antibody production [11].

Accordingly, SCFA are protective against allergic diseases in mouse models including models of
pulmonary allergic inflammation and food allergy [12–14]. Multiple observational studies in humans
have found that reductions in fecal SCFA during infancy are associated with asthma and allergy
later in life. In two cohorts of infants, one Canadian and the other Ecuadorian, fecal acetate at age
3 months of age was lower in subjects who later developed atopy and wheeze [15,16]. In another
study, European infants in the highest percentile groups of fecal butyrate and propionate abundance
had reduced risk of subsequent atopy and asthma [17]. Some murine experimental data and human
observational data even suggest that fecal acetate during pregnancy can influence risk of asthma and
atopy in offspring [18–20]. Microbial metabolism of SCFA may be relevant locally in the airway as well:
one study of the bronchial microbiome found an increased predicted capacity for SCFA metabolism in
association with asthma [21]. Together, these findings highlight the role of SCFA in the development of
asthma and atopy, and suggest that SCFA-directed treatment could be an effective preventive strategy.

3. Polyunsaturated Fatty Acids

The major polyunsaturated fatty acid (PUFA) families are omega-3 fatty acids, includingα-linolenic
acid and its metabolites: eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA); and omega-6
fatty acids, including linoleic acid and its metabolite arachidonic acid. Because omega-6 fatty acids
give rise to inflammatory eicosanoids [22] and omega-3 fatty acids displace omega-6 fatty acids in
cell membranes and give rise to anti-inflammatory pro-resolving mediators [23,24], a high omega-6
to omega-3 fatty acid ratio is thought to be pro-allergic. Though high-quality evidence is limited
with regard to postnatal omega-3 fatty acid supplementation to prevent asthma or allergies [25,26],
a promising 30.7% reduction in wheeze at age 3 years was recently reported in offspring of mothers
randomized in a clinical trial to receive omega-3 fatty acids during pregnancy [27].

While dietary intake is the dominant source of essential omega-3 and omega-6 fatty acids and
PUFA are not synthesized by members of the human microbiota, accumulating evidence points to the
importance of PUFA interactions with microbes in asthma pathogenesis. In multiple human studies,
fecal PUFA in early life have been inversely associated with asthma and allergy. At age one month,
fecal omega-3 docosapentaenoic acid was reduced in infants at risk of atopy or asthma [28] and in a
cross-sectional analysis of 3 year-old children, several highly-correlated fecal omega-3 and omega-6
fatty acids were inversely associated with asthma or recurrent wheeze [29]. In a trial of probiotic
supplementation with Lactobacillus rhamnosus GG in infants at high risk of asthma, fecal levels of
omega-3 fatty acids including docosapentaenoic acid and docosahexaenoic acid were higher in healthy
controls and those who had been supplemented with L. rhamnosus GG in comparison to those at
risk of asthma who had not received supplementation [30]. In this study, probiotic supplementation
appeared to have tolerogenic effects: fecal sterile water samples from 6 month-old infants who had
received L. rhamnosus GG induced increased T regulatory cell differentiation and IL-10 production
compared to samples from infants who had received a placebo [30].

Several human studies have found that dietary omega-3 fatty acid intake alters intestinal
microbiota composition [31–35], and taxa increased in association with omega-3 fatty acid intake
have been observed to include producers of SCFA [31–33,36]. In addition to potentially increasing
SCFA production, PUFA can be metabolized by human gut microbes to produce metabolites including
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conjugated linoleic acids (CLA) [37,38]. Interestingly, SCFA producers that increase with omega-3 fatty
acid intake, such as Bifidobacterium, Lactobacillus and Roseburia spp., are among the most active at
metabolizing PUFA to CLA, suggesting a prebiotic effect of omega-3 fatty acids that could include
selection for SCFA producers [37,39–42]. Indeed, CLA consumption or microbial production has also
been linked to increased intestinal SCFA [43,44], demonstrating a biochemical link between short and
long chain fatty acids.

A few small (n = 28–40 subjects) randomized controlled human trials of CLA supplementation
for asthma or allergy provide promising evidence that CLA itself may improve control of existing
disease. CLA supplementation in overweight mild asthmatics resulted in weight loss and improved
airway hyperresponsiveness [45]. In adults with birch pollen allergy, CLA supplementation reduced
sneezing, production of TNF-α, interferon (IFN)-γ and interleukin-5, and release of eosinophil-derived
neurotoxin [46]. In children age 6 to 18 years with mild asthma and allergic sensitization,
CLA supplementation did not improve pulmonary function or symptoms, but was associated with
lower plasma eosinophil cationic protein and peripheral blood mononuclear cell production of IFN-γ
and interleukin-4 [47]. Potential mechanisms by which CLA may reduce airway inflammation include
peroxisome proliferator-activated receptor-γ (PPARγ) activation [48], GPR40 activation [49] and/or
reduction of inflammatory eicosanoid production [50,51].

12,13-dihydroxy-9-octadecenoic acid (12,13-diHOME) is another potentially important metabolite
of omega-6 linoleic acid that has been associated with asthma. Peritoneal injection of 12,13-diHOME in
mouse models of allergic airways disease led to increased circulating and pulmonary 12,13-diHOME
with accompanying airway inflammation, increased IgE and decreased lung T regulatory cells [38].
Effects of 12,13-diHOME appear to be at least partially due to ligation of PPARγ in dendritic cells [38]. In
human studies, 12,13-diHOME was elevated in the airways of birch-allergic adult asthmatics after birch
challenge [52], and in feces of infants at high risk of subsequent asthma and atopy [28]. This metabolite
was linked to microbiota composition via shotgun metagenomics analysis of infant stool samples [38].
Bacterial, but not human, genes encoding epoxide hydrolase enzymes, which catalyze production of
12,13-diHOME, were present at higher abundances in samples from infants at high risk of asthma
and atopy. Specific bacterial species were identified that harbored the relevant enzymes and therefore
have the capacity to produce 12,13-diHOME. Feeding E. coli engineered to overexpress these epoxide
hydrolases led to reduced lung T regulatory cells in a murine allergic airway disease model [38].

To summarize, PUFA impact fecal microbiome composition and have been associated with
increased production of several metabolites and metabolite classes that impact asthma disease risk,
including SCFA, CLA and 12,13-diHOME (Figure 1). However, PUFA have many effects that do not
rely on the microbiome, and other factors including dietary intake and genetic variation in PUFA
pathway genes such as FADS1/2 have major impacts on PUFA bioavailability [53]. Future studies will
need to determine the extent to which microbial metabolic pathways mediate associations between
PUFA and asthma development and pathophysiology while also accounting for the roles of dietary
and genetic factors.
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Figure 1. Schematic of mechanisms whereby polyunsaturated fatty acids may influence asthma
pathophysiology. Pathways in which microbial metabolism is essential are highlighted by the
microbe icon.

4. Bile Acids

Primary bile acids cholic acid and chenodeoxycholic acid are synthesized in the liver, where they
may be conjugated by taurine or glycine and are then secreted into the duodenum. Most bile acids
are absorbed distally in the gut and returned to the liver via enterohepatic circulation. Gut microbial
enzymatic activity results in production of secondary bile acids such as deoxycholic acid and lithocholic
acid [54], and bile acids themselves have antimicrobial activity and can influence microbial composition
in the gut [55,56].

In vitro and mouse studies show protective effects of bile acids on allergic airway inflammation
via multiple mechanisms, including some bile acids that are produced via microbial modification.
Ursodeoxycholic acid, a microbially modified bile acid, prevents eosinophilic inflammation in
primary biliary cirrhosis [57] and reduces eosinophilic airway inflammation in OVA-sensitized
mice via ligation of dendritic cell nuclear farnesoid X receptors [58]. Chenodeoxycholic acid,
a primary bile acid, similarly reduces murine allergic airway disease via farnesoid X receptor agonist
activity in the lung [59]. Conjugated bile acids, which have not undergone microbial modification,
significantly decrease allergen-induced airway inflammatory responses, mucus metaplasia and airway
hyperresponsiveness [60]. These effects have been attributed to inhibition of the inflammatory unfolded
protein response [60]. Additionally, it was recently found that depletion of gut microbial bile acids
leads to reduced gut RORγ+ regulatory T cells via a mechanism involving bile acid activity at the
vitamin D receptor [61], though it is not clear if this has an effect on distant organs such as the lung.

Limited evidence from human studies has linked bile acids to asthma. In a birth cohort study,
urinary sulfated bile acids glycolithocholate, glycocholenate, and glycohyocholate were elevated and
tauroursodeoxycholate was decreased at age 3 months in children who had atopy and wheeze at age
1 year [15]. In a comparison of fecal metabolites in 35 children with asthma and 20 non-atopic controls,
significant differences in abundances of taurochenodeoxycholate, taurocholate and glycocholate were
found, and there were additional differences in fecal bile acid abundances between subjects with asthma
and those with food allergy [62]. Finally, plasma bile acids (taurocholate and glycodeoxycholate) were
higher in asthmatic adults than healthy controls and in particular in those with high fractional exhaled
nitric oxide, a marker of Th2-high asthma [63]. Nitric oxide itself increases hepatic production and
microbial metabolism of bile acids, suggesting that bile acids may serve as biomarkers of the Th2-high
asthma endotype [63]. Future studies will be valuable in clarifying the most relevant mechanisms by
which bile acids and their modification by microbes impact asthma and whether the bile acid pathway
is pertinent to prevention of asthma, morbidity in the setting of existing asthma, or both.
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5. Tryptophan

Tryptophan is an essential amino acid and can be metabolized via four major pathways to either
produce kynurenine derivatives (the major pathway), serotonin derivatives, to be utilized in protein
synthesis, or to be metabolized by fecal microbes [64]. Tryptophan metabolism is complex and
pathways by which tryptophan is utilized vary by body site and context [64]. Gut microbes are major
participants in tryptophan metabolism; an estimated 90% of the serotonin in the body is produced by
intestinal microbes [65].

There is evidence that tryptophan metabolites play a role in the pathophysiology of asthma
(Figure 2). Indoleamine 2,3-dioxygenase-1 (IDO) metabolizes tryptophan to produce kynurenine
derivatives in antigen-presenting cells and other cells resident in lymph nodes and inflammatory tissue.
Expression of IDO is induced by IFN-γ and inhibited by Th2 cytokines including IL-4 and IL-13 [66,67].
IDO activity and kynurenine metabolites have anti-inflammatory and tolerogenic properties including
reducing T cell inflammation by reducing tryptophan availability [68] and promoting T regulatory
cells [69,70]. Interestingly, IDO inhibits growth of intracellular pathogens. So, IDO can both be
induced by bacterial motifs via TLR ligation and IFN-γ induction, and in turn can inhibit microbial
growth [71,72].

Tryptophan metabolites also impact immune homeostasis via interactions with the aryl
hydrocarbon receptor, a ligand-activated transcription factor that senses exposures including
polyaromatic hydrocarbons and environmental toxins and impacts transcription of a broad range
of genes [73]. The aryl hydrocarbon receptor is expressed in immune cells, gut epithelial cells,
and others [73]. Tryptophan metabolites including indole-3-acetate, indole-3-aldehyde, indole,
and tryptamine are known to activate the aryl hydrocarbon receptor [74] and many of these metabolites
are produced by microbes resident in the human gut [64,75]. Aryl hydrocarbon receptor activation
promotes tolerogenic dendritic cells [76], Th17 and T regulatory cell differentiation [77] and impacts
innate lymphoid cell (ILC) homeostasis in the gut by stimulating ILC3 cells to produce IL-22 and
suppressing ILC2 function including expression of IL-33 receptor, IL-5, IL-13 and amphiregulin [78].
It also boosts gut epithelial barrier function, including response to IL-10 [79,80], though there is
some conflicting evidence on this point [81]. Like IDO activity, aryl hydrocarbon receptor activation
influences, and is influenced by, microbial composition [64].

Multiple lines of evidence support a protective effect of tryptophan metabolism via the
IDO pathway and aryl hydrocarbon receptor activation in asthma. In murine models of
asthma, IDO expression induced by activation of TLR9 by bacterial DNA motifs reduce airway
hyperreactivity [82] and activation of aryl hydrocarbon receptors reduce airway inflammation and
hyperresponsiveness [83,84]. Human studies also support a tolerogenic role for IDO and a reduction
in IDO activity in people with asthma. In a study of 205 children, tryptophan and kynurenine levels
were higher and IgE and IDO activity lower in those with asthma and allergic rhinitis [85]. In another
pediatric population, IDO activity in peripheral blood and induced sputum was lower in children with
allergic asthma than healthy controls [86]. This result was more pronounced in children with high
FeNO levels. In a study in which subjects with and without asthma were experimentally infected with
rhinovirus, though IDO activity was not induced by infection, baseline pulmonary IDO activity was
lower and circulating tryptophan and quinolinic acid, a metabolite of the kynurenine pathway, were
elevated in asthmatic subjects [87].

Linking these findings to the gut microbiome, in a screen of products produced by probiotics,
D-tryptophan was identified as a metabolite produced by Lactobacillus rhamnosus GG and Lactobacillus
casei W56 that, when fed to mice, increased lung and gut T regulatory cells and reduced allergic airway
disease [88]. In this study, allergic airway disease was associated with reduced gut microbial diversity,
and diversity was increased by administration of D-tryptophan. Unlike its enantiomer L-tryptophan,
D-tryptophan is a nonproteinogenic metabolite and is produced by numerous bacteria. In addition
to having activity at host cell receptors including GPR109B, D-tryptophan can be metabolized by
IDO to produce kynurenine metabolites, which may account for its tolerogenic effects [88]. Further
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supporting a role for gut microbial tryptophan metabolism in allergic disease, human metabolomics
studies have linked reductions in fecal tryptophan metabolites to food allergy [62,89]. Additional
research is needed to determine the impact of gut microbial tryptophan metabolism on both asthma
development and morbidity.

Metabolites 2020, 10, x FOR PEER REVIEW 6 of 13 

 

to food allergy [62,89]. Additional research is needed to determine the impact of gut microbial 

tryptophan metabolism on both asthma development and morbidity. 

Figure 2. Schematic of mechanisms whereby tryptophan metabolic pathways influence asthma 

pathophysiology. As indicated by the microbe icon, microbial exposure induces interferon-γ 

production, and gut bacteria participate in metabolism of tryptophan to indole, tryptamine and other 

metabolites with activity at the aryl hydrocarbon receptor. 

 

Abbreviations: AHR = aryl hydrocarbon receptor; IDO = Indoleamine 2,3-dioxygenase-1 

6. Sphingolipids 

Sphingolipids are bioactive eukaryotic lipids with roles in cell growth regulation, cell–cell 

interactions, and other cellular functions [90]. Some sphingolipids, especially sphingosine-1-

phosphate, have well defined roles in immune function. Specifically, sphingosine-1-phosphate 

concentration gradients control T cell egress from lymph nodes into circulation [91]. Sphingosine-1-

phosphate promotes allergic airway inflammation in mouse models and is elevated in the airways of 

asthmatic humans after allergen challenge [92–94].  

While sphingosine-1-phosphate appears to promote asthma, other sphingolipid metabolites 

may be protective. The enzyme encoded by the ORMDL3 gene in the 17q21 region, which is the most 

replicated childhood asthma genetic locus, inhibits the first step in de novo sphingolipid synthesis 

[95,96]. A mouse model that overexpresses ORMDL3 exhibits increased airway remodeling and 

responsiveness and IgE levels [97]. Either administration of myriocin, which, like ORMDL3, inhibits 

the serine palmitoyltransferase enzyme that initiates sphingolipid synthesis, or heterozygous 

knockout of the serine palmitoyltransferase gene in mice results in decreased de novo sphingolipid 

synthesis and increased airway reactivity [98]. 

A few human studies corroborate preclinical evidence of a link between sphingolipids and 

asthma. In a sample of pediatric asthmatics, sphingolipids were reduced in those with high-risk 

variants in the 17q21 locus that promotes expression of ORMDL3 and in those with non-allergic 

asthma in comparison to those with allergic asthma or healthy controls [99]. De novo sphingolipid 

synthesis was also lower in children with asthma than controls [99]. In another human study, 

circulating sphingolipids were inversely associated with childhood asthma and recurrent wheeze, 

and those with high-risk ORMDL3 expression-promoting genetic variants exhibited limited benefit 

from vitamin D supplementation in comparison to those with low-risk variants [100]. These results 

suggest that vitamin D may influence sphingolipid metabolism with protective effects on childhood 

asthma. In another study of allergen challenge in humans allergic to house dust mite, lung function 

Figure 2. Schematic of mechanisms whereby tryptophan metabolic pathways influence asthma
pathophysiology. As indicated by the microbe icon, microbial exposure induces interferon-γ production,
and gut bacteria participate in metabolism of tryptophan to indole, tryptamine and other metabolites
with activity at the aryl hydrocarbon receptor. Abbreviations: AHR = aryl hydrocarbon receptor;
IDO = Indoleamine 2,3-dioxygenase-1.

6. Sphingolipids

Sphingolipids are bioactive eukaryotic lipids with roles in cell growth regulation, cell–cell
interactions, and other cellular functions [90]. Some sphingolipids, especially sphingosine-1-phosphate,
have well defined roles in immune function. Specifically, sphingosine-1-phosphate concentration
gradients control T cell egress from lymph nodes into circulation [91]. Sphingosine-1-phosphate
promotes allergic airway inflammation in mouse models and is elevated in the airways of asthmatic
humans after allergen challenge [92–94].

While sphingosine-1-phosphate appears to promote asthma, other sphingolipid metabolites
may be protective. The enzyme encoded by the ORMDL3 gene in the 17q21 region, which is the
most replicated childhood asthma genetic locus, inhibits the first step in de novo sphingolipid
synthesis [95,96]. A mouse model that overexpresses ORMDL3 exhibits increased airway remodeling
and responsiveness and IgE levels [97]. Either administration of myriocin, which, like ORMDL3,
inhibits the serine palmitoyltransferase enzyme that initiates sphingolipid synthesis, or heterozygous
knockout of the serine palmitoyltransferase gene in mice results in decreased de novo sphingolipid
synthesis and increased airway reactivity [98].

A few human studies corroborate preclinical evidence of a link between sphingolipids and asthma.
In a sample of pediatric asthmatics, sphingolipids were reduced in those with high-risk variants in the
17q21 locus that promotes expression of ORMDL3 and in those with non-allergic asthma in comparison
to those with allergic asthma or healthy controls [99]. De novo sphingolipid synthesis was also lower
in children with asthma than controls [99]. In another human study, circulating sphingolipids were
inversely associated with childhood asthma and recurrent wheeze, and those with high-risk ORMDL3
expression-promoting genetic variants exhibited limited benefit from vitamin D supplementation in
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comparison to those with low-risk variants [100]. These results suggest that vitamin D may influence
sphingolipid metabolism with protective effects on childhood asthma. In another study of allergen
challenge in humans allergic to house dust mite, lung function and airway hyperreactivity correlated
with sphingosine-1-phosphate plasma concentrations, which increased after allergen challenge in
subjects who developed both early and late phase symptoms [101]. Meanwhile, sphinganine, which is
produced in early steps of de novo sphingolipid synthesis, was only increased after allergen challenge
in subjects who did not develop an asthmatic response. Together, these findings support the concept
that sphingosine-1-phosphate promotes asthma while sphingolipids early in the de novo synthesis
pathway may be protective.

Sphingolipids may be dietary, host-derived, or produced by a limited number of microbial taxa,
particularly those of the phylum Bacteroidetes. Of interest, bacteria that produce sphingolipids are
among the dominant residents of the human gut [102]. Sphingolipids produced by Bacteroides fragilis,
in particular, may have relevance to human health as they are ligands of the invariant natural killer cell
receptor and modulate invariant natural killer cell recruitment and proliferation in the colon [103].
Accordingly, low fecal sphingolipids in early life have been linked to food allergies in two human
studies [62,89]. However, this effect of Bacteroides-derived sphingolipids on invariant natural killer
cell homeostasis appears to be limited to the colon, with no effect on asthma susceptibility [103].
Further research is needed to ascertain whether microbial-derived sphingolipids may affect asthma
pathophysiology via other mechanisms.

7. Conclusions

Microbiome–metabolite interactions are pervasive in the human body and have relevance to many
human diseases, including asthma. Among microbial-derived metabolites, the evidence is strongest
that SCFA, PUFA and bile acids contribute to asthma pathophysiology. Sphingolipids and tryptophan
metabolites are worthy of future research as potentially important pathways. Of these classes, some
including SCFA and 12,13-diHOME appear to play a role early in life before the onset of disease, while
others including CLA and tryptophan metabolites of the kynurenine pathway are best studied in the
context of existing asthma. These findings provide a rationale for the development of microbe- and
metabolite-targeted treatments for asthma and other diseases. Strategies include probiotics, prebiotics
and other dietary modifications, supplementing or inhibiting microbial-derived metabolites, and fecal
microbiome transplant [104]. As understanding of metabolite–microbe interactions continues to grow,
we expect additional insights to guide precision medicine approaches to health and disease.
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