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ABSTRACT

aims: To investigate the potential of a signal processed by smartphone-case based on single lead electrocardiogram (ECG) for left ven-
tricular diastolic dysfunction (LVDD) determination as a screening method.

methods and results: We included 446 subjects for sample learning and 259 patients for sample test aged 39 to 74 years for testing 
with 2D-echocardiography, tissue Doppler imaging and ECG using a smartphone-case based single lead ECG monitor for the assessment 
of LVDD. Spectral analysis of ECG signals (spECG) has been used in combination with advanced signal processing and artificial intelligence 
methods. Wavelengths slope, time intervals between waves, amplitudes at different points of the ECG complexes, energy of the ECG signal 
and asymmetry indices were analyzed. The QTc interval indicated significant diastolic dysfunction with a sensitivity of 78% and a specificity 
of 65%, a Tpeak parameter >590 ms with 63% and 58%, a T value off >695 ms with 63% and 74%, and QRSfi > 674 ms with 74% and 57%, 
respectively. A combination of the threshold values from all 4 parameters increased sensitivity to 86% and specificity to 70%, respectively 
(OR 11.7 [2.7-50.9], P < .001). Algorithm approbation have shown: Sensitivity—95.6%, Specificity—97.7%, Diagnostic accuracy—96.5% and 
Repeatability—98.8%.

conclusion: Our results indicate a great potential of a smartphone-case based on single lead ECG as novel screening tool for LVDD if 
spECG is used in combination with advanced signal processing and machine learning technologies.
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Continuous Wavelet-Based Time-Frequency Analysis of an ECG Signal for the
prediction of Left Ventricular Diastolic Dysfunction

Intergroup analysis among patients with and
without signs of left ventricular diastolic

dysfunction (no signs vs ≥ 3 criteria according to
current recommendations

Wavelet transform
spectECG

Calculation of predictive value of 15 different ECG
parameters

(p-values for intergroup difference ranging from 0.0018
– 0.041)

Sensi�vity=86% Specificity=70%
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with advanced signal processing and machine
learning techniques to magnify small changes on
the spect ECG frequency spectrum
(N=446)

Algorithm Approbation based on QTc, QRSfi, Tpeak, Toffs (n=250)
Sensitivity – 95,6% Specificity – 97,7% Diagnostic accuracy – 96,5% Repeatability – 98,8%
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Introduction
Diastolic dysfunction of the left ventricle (LVDD) is both a 
cause and a consequence of the variety of heart diseases. Heart 
failure with preserved ejection fraction (HFpEF) is a global 
health problem with a prevalence of 4.9% in patients over 
60 years of age.1 The ESC Long-Term Registry, in the outpa-
tient setting, reports that 16% have HFpEF.2 It is expected 
that the number of our cases will further increase with increas-
ing life expectancy.1,3 HFpEF is characterized by diastolic 
dysfunction of the left ventricle which is often asymptomatic. 
Impaired relaxation of the myocardium is the earliest manifes-
tation of LVDD. Timely diagnosis and proper management 
have a positive effect on prognosis.4 Echocardiography allows 
noninvasive diagnosis of early diastolic dysfunction.5-8 
However, echocardiography and in particular tissue doppler 
imaging remain expensive and are not considered to be a wide 
screening method for asymptomatic patients. As electrical and 
mechanical functions of cardiac performance are closely cou-
pled, advanced signal processing and machine learning meth-
ods have been used to identify subtle alterations in a 12-lead 
electrocardiogram (ECG) in patients who were referred for 
coronary computed tomography.9 The ECG signals were 
deconstructed in a manner similar to Fourier analysis and sub-
sequently represented as a plot of the signal frequency versus 
time, which allows an improved signal-to-noise ratio. A 
machine learning algorithm was then implemented to diag-
nose early diastolic dysfunction from 370 features of the pro-
cessed ECG signal.9 Meanwhile, several studies have been 
published demonstrating the potential of advanced signal pro-
cessing and machine learning technologies and in particular 
spectral ECG analysis for classifying asymptomatic LV dias-
tolic dysfunction or detecting abnormal myocardial relaxation 
by ECG analysis.10-12 However, although these new technolo-
gies that are promising, routine use of the ECG as a diagnostic 
tool for assessing LVDD is not generally accepted due to a 
lack of validation studies in larger patient populations and in 
different subgroups of patients including comorbidities such 
as hypertension, diabetes, obesity and ischemic heart disease. 
Furthermore, the potential of a single lead ECG for LVDD 
diagnosis is not known. As HFpEF is often asymptomatic in 
particular in early stages, the search for widely available and 
easy applicable screening tools for early diastolic dysfunction 
is ongoing.12,13 Given the widespread use of devices with the 
ability to record a single-channel ECG, it is appropriate to 
determine its accuracy for the prediction of LVDD in a larger 
number of patients and with this to evaluate to potential of 
this approach to be used as a widespread screening method.

The aim of this study was therefore to evaluate the poten-
tial of a smartphone-case based on single lead ECG monitor 
combined with advanced signal processing and machine 
learning technologies as diagnostic tool for the determination 
of LVDD.

Methods
We performed a prospective, cross-sectional study. The research 
protocol was elaborated in accordance with the Declaration of 
Helsinki and was approved by the local ethics commission. The 
study registered on the website ClinicalTrials.gov. Written 
informed consent was obtained from each participant.

We initially recruited 705 unselected consecutive subjects 
(age of ⩾18 years) presenting as an outpatients or have been hos-
pitalized at the cardiology department of our hospital.

Inclusion criteria

1.	 Over 18 years of age;
2.	 Signed informed consent to participate in the study.

Non inclusion criteria.  Patients in which we couldn’t have an 
adequate analysis of their cardiac cycle on ECG or reliably 
assess the presence and degree of diastolic dysfunction:

1.	 QRS morphology severe changes (WPW syndrome, 
complete block of left bundle branch, pacemaker 
rhythm);

2.	 Patients with severe mitral stenosis.

Exclusion criteria
1.	 Poor quality of ECG recording;
2.	 Poor visualization during echocardiography;
3.	 Refusing to participate in the study.

Patients with block of right bundle branch and pacemaker 
when not functioning were included.

We have fulfilled 2 phases in our work. First phase—deter-
mination of ECG parameters associated with LVDD. Of the 
446 subjects enrolled on the first phase, we excluded 28 patients 
(6.3%): 15—due to inadequate echocardiographic image qual-
ity, 9—due to suboptimal electrocardiograms, 4—due to severe 
mitral stenosis (Figure 1). On the second phase we investigated 
259 patients and excluded 9 patients (3.5%): 6—due to inade-
quate echocardiographic image quality and 3—due to subopti-
mal electrocardiograms. Finally 418 patients were included in 
the first phase and 250 in the second one.

For all patients 2 independent specialists, not informed 
about the ECG results, and performed echocardiography. Just 
after that, a 3-minute record of a single-channel ECG (equal 
to I standard lead) was performed in a sitting position after a 
10 minutes rest. For patients, included in phase 2, single-chan-
nel ECG was performed in the same way but twice a day with 
a difference of 3 to 4 hours to determine the repeatability of the 
results.

Echocardiography.  All subjects underwent a comprehensive 
2-dimensional echocardiogram and tissue Doppler examination 
using a GEVIVID7 scanner and a dedicated imaging of mitral 
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inflow using pulsed-wave Doppler echocardiography and 
pulsed-wave tissue Doppler echocardiography of the septal and 
lateral mitral annulus. Data acquisition and interpretation 
including grading of left ventricular diastolic dysfunction was 
performed according to actual guidelines.14-17 Based on the 
actual guidelines,14-16 we determined LVDD in patients with 
preserved ejection fraction without known myocardial damage, 
having 3 or 4 of the following parameters: (1) decrease in the 
velocity of movement of the fibrous ring of the mitral valve 
with tissue Doppler imaging <7 cm/s on the medial part and 
<10 cm/s on the lateral part; (2) left atrial volume index 
>34 ml/m2; (3) ratio of the blood flow velocity through the 
mitral valve in the first phase of LV filling (peak E) to the aver-
age velocity of movement of the fibrous ring of the mitral valve 
(e′)—E/e′ > 14; (4) velocity of the regurgitation flow on the 
tricuspid valve >2.8 m/s. All measurements were made in ⩾5 

consecutive cardiac cycles during at least 2 breath cycles and 
average values were used for final analysis.

Signal-processed surface ECG.  A 3-minute ECG was recorded 
from the patients’ right and left index or middle fingers (stand-
ard lead I) using a single-channel electrocardiograph “Cardio-
QVARK®.”18 The device was integrated in the cover of a 
mobile phone (Figure 2).

The device is integrated in the cover for a mobile phone. 
ECG is recorded from the patients’ right and left middle or 
index finger (standard lead I).

It was registered at the Russian Federal Service for 
Surveillance in Healthcare No. RZN 2019/8124 on February 
15, 2019. The AZP sampling frequency is 1000 Hz, the fre-
quency response of the analog path is 0.67 to 320 Hz, the 
input impedance is more than 6.5 M. The positive electrode 

Figure 1.  Flow chart of study participants.
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of the I standard ECG lead was on the left hand, and the 
negative electrode on the right. The recorded ECG was pro-
cessed by the CardioQVARK® algorithm, which filters, marks 
the signal, and then calculates the necessary parameters. The 
ECG parameters were performed in automatic mode, with-
out exceptions. All signs were conditionally divided into the 
following groups: wavelengths slope and amplitudes of ECG-
complex waves, durations between reference points, and spec-
tral energies of various segments. All parameters were 
calculated for each normal complex, then the vector of the 
median values had been taken. To display the signal in the 
frequency domain, a continuous wavelet transformation was 
used.18-20 In our cases, 2 types of parent wavelets were used, 
corresponding to the first and second derivatives. Accordingly, 
it was possible to define various features of the signal such as 
the fronts and peaks of the waves. The averaged complex and 
its wavelet transforms are shown in Figure 3. Wavelet trans-
form is a decomposition of an ECG into a color spectrum 
depending on time (x-axis) and frequency (Y-axis). The power 
value is encoded with a color gradient (red—highest energy, 
blue—lowest energy values). Two types of wavelet transform 
are illustrated: the first derivative on the upper part and the 
second derivative on the lower part of the Figure 3. Areas cor-
responding to energies QRS11energy, QRS12energy, 
QRS3energy are labeled with numbers 1, 2, and 3. The value 
of the frequency parameter RonsF is also shown. The imaging 
allows to clearly recognize the distribution of energy of the 
left and right ventricles at certain points in time throughout 
the entire cardiac cycle.

Wavelet transformation is a decomposition of an ECG into 
a color spectrum depending on time (x-axis) and frequency 

(Y-axis). The power value is encoded with a color gradient 
(red—highest energy, blue—lowest energy values). Two types 
of wavelet transform are illustrated: the first derivative on the 
upper part and the second derivative on the lower part of the 
Figure 3. Areas corresponding to energies QRS11energy, 
QRS12energy, QRS2energy are labeled with numbers 1, 2, and 
3. The value of frequency parameter RonsF energy of the lead-
ing and trailing fronts defined as frequency of the maximum is 
also shown. The imaging allows to clearly illustrate the distri-
bution of energy of the left and right ventricles at certain points 
in time throughout the entire cardiac cycle.

For our study, we used the following ECG parameters:

•• QTc duration (Bazett’s formula);
•• amplitude parameters ( JA is the amplitude at point J in 

microV, TA is the amplitude of the T-wave in microV, 
PAn is the amplitude of the negative P-wave in microV);

•• indices of asymmetry SBeta, Beta (ratio of the maximum 
modulus of the derivative value at the leading front of the 
T-wave to the maximum modulus of the value at the 
trailing front of the T-wave);

•• spectral integrals of energy of R and T waves: QRS11energy 
(leading front of R—1st derivative), QRS12energy (trail-
ing front of R—1st derivative), QRS2energy (R-wave as a 
whole—2nd derivative), TE1 (T-wave as a whole) - (the 
integral is calculated as the sum of energies at all points of 
the corresponding region );

•• spectral integral set by the frequency grid 2 to 4 Hz, 4 to 
8 Hz (QRSE1, QRSE2);

•• frequency of the maximum energy of the leading and 
trailing fronts of the R wave (RonsF, RoffsF);

Figure 2.  Single-channel electrocardiograph “CardioQVARK®.”
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•• rhythm variability (SDNN);
•• ECG time markers: PpeakN, Rpeak, Speak, Tpeak, Tons, 

Toffs.

ECG time intervals were calculated not from the beginning 
of the cardiac cycle, but from a point on the isoline, two-thirds 
of the duration of the R-R interval from the previous R-wave 
(so called—Calculated point). All parameters, except for the 
indicators of rhythm variability, were averaged taking into 
account the pulse rate. Rhythm variability indicators were eval-
uated by the program without averaging the values. Thus, the 
time parameters of the ECG took into account not only the 
morphology of the cardiac cycle, but also changes the heart 
rate. Considering that averaged values were taken into account, 
a longer recording provides the most accurate parameters. This 
includes markers of the beginning or the end of the wave (Pfi, 
QRSst, QRSfi), the shift of the negative or positive maximum 
value relative to the beginning of the averaged complex 
(PpeakN, Rpeak, Speak, Tpeak), as well as the maximum slope 
of the waves (Tons, Toffs). QRSfi is the time interval from the 
calculated point to the end of the QRS complex, expressed in 

ms. Tpeak is the time interval from the calculated point to the 
peak of the T wave. Toffs is the time interval from the calcu-
lated point to the point of maximum steepness of the descend-
ing knee of the T wave (Figure 4).

Taking into account that the position of the calculated point 
depends on the R-R interval, it is possible to minimize the 
effect of heart rate on the time parameters of the cardiac cycle. 
These time parameters take into account not only the mor-
phology of the QRS complex or T-wave, but also the temporal 
features of the entire cardiac cycle.

After logistic regression analysis including more than 200 
ECG parameter listed above, the artificial intelligence method 
was used to find combinations with the highest accuracy for 
LVDD determination.

Statistical analysis

The patients ECHO and ECG characteristics were summa-
rized with descriptive statistics. Mean values (standard devia-
tion and median) were used for description of normally and 
non-normally distributed quantitative variables, respectively. 
Distribution normality was determined using histograms. 
Normally distributed values were compared using independ-
ent samples Student’s t test, whereas the Manne–Whitney 
U-test was used for non-normally distributed covariates. 
Chi-square or Fisher’s exact tests were used for categorical 
variables. Method parameters accuracy was measured using 
receiver operating characteristics (ROC) derived area under 
the curve (AUC). AUCs were compared as described in 
parameters of ECG with the higher p-value presented. Data 
analysis was conducted with SPSS version 25.0 (IBMCorp, 
Armonk, NY, USA).

Results
The algorithm was calculated on the development cohort on 
Phase 1 and then verified on other patients, additionally 
recruited into the validation cohort on Phase 2. A total of 668 
patients were included in the final analysis. Due to criteria 
listed above, 5.2% of patients were excluded from the analysis. 
General characteristics of the study participants in Phases 1 
and 2 are presented in Tables 1 and 2. We found no significant 
differences in regard to history and instrumental parameters 
between the patient in Phases 1 and 2 in subgroups with and 
without LVDD (P < .05).

ECG analysis and interpretation on Development 
cohort: Phase 1

In the first phase, an intergroup analysis was carried out 
among patients with significant diastolic dysfunction  
(⩾3 out of 4 criteria, according to the recommendations14). 
Table 3 shows the ECG parameters that were significantly 
different in the 2 groups. No significant correlations were 

Figure 3.  Averaged complex and its wavelet transformation.
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Figure 4.  Time parameters of ECG.
Abbreviations: JA, amplitude at the J point; J80A, amplitude at 80 msec after the J point; P, p-wave; PAp, P wave amplitude; Pfi, End of the P wave; Ppeak, peak of the 
positive P wave; PpeakN, peak of the negative P wave; Pst, start of the P wave; QRSst, start of the QRS complex; R peak, peak of the R wave; RA, R wave amplitude; 
SA, S wave amplitude; S peak, peak amplitude of S wave, QRSfi = end of the QRS complex; Tons, maximum slope of the onset of the T wave; TA, T wave amplitude; Tfi, 
End of the T wave; T peak, peak of the T wave; Toffs, maximum slope of the offset of the T wave.

Table 1.  Study patients on Phase 1 characteristics (n = 418).

Characteristics Result

Average age, years 56.8 ± 17.6

Men, n (%) 245 (58.6%)

Body mass index 27.9 ± 5.0

Hypertension

  Stage 1 n (%) 72 (10%)

  Stage 2 n (%) 188 (45.0%)

  Stage 3 n (%) 42 (10.1%)

Blood pressure >140/90 mm Hg, n (%) 19 (4.5%)

Ischemic heart disease, n (%) 112 (26.8%)

Smoking for ⩾5 year prior to inclusion, n (%) 73 (17.5%)

History of diabetes mellitus, n (%) 52 (12.4%)

Atrial fibrillation at the time of ECG registration, 
n (%)

15 (3.6%)

Heart Failure

  NYHA functional class I 6 (1.4%)

  NYHA functional class II 29 (6.9%)

  NYHA functional class III 26 (6.2%)

LV ejection fraction <55% 56 (13.4%)

LV ejection fraction <40% 25 (6.0%)

LV DD 2-3 grade 47 (11.2%)

Table 2.  Study patients on Phase 2 characteristics (n = 250).

Characteristics Result

Average age, years 54.9 ± 18.2

Men, n (%) 133 (53.2%)

Body mass index 28.1 ± 5.8

Hypertension

  Stage 1 n (%) 28 (11.2%)

  Stage 2 n (%) 88 (35.2%)

  Stage 3 n (%) 19 (7.6%)

Blood pressure >140/90 mm Hg, n (%) 11 (4.4%)

Ischemic heart disease, n (%) 41 (16.4%)

Smoking for ⩾5 year prior to inclusion, n (%) 23 (9.2%)

History of diabetes mellitus, n (%) 41 (16.4%)

Atrial fibrillation at the time of ECG registration, 
n (%)

11 (4.4%)

Heart Failure

  NYHA functional class I 7 (2.8%)

  NYHA functional class II 11 (4.4%)

  NYHA functional class III 3 (1.2%)

LV ejection fraction <55% 11 (4.4%)

LV ejection fraction <40% 5 (2.0%)

LV DD 2-3 grade 31 (12.4%)
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found between ECG parameters and ECHO Doppler and 
tissue Doppler mitral flow parameters when they were ana-
lyzed separately.

At the same time, some ECG indicators (QTc, QRSfi, 
Tpeak, and Toffs) had a statistical association with the pres-
ence of significant LVDD. ROC analysis was performed with 
the search for threshold values for the diagnosis of LVDD 
(Figure 5, Table 4).

Based on the obtained data, a comprehensive indicator was 
developed, which included the excess of the calculated thresh-
olds for QTc, QRSfi, Tpeak, Toffs. Separate ECG parameters 
have shown an average level of diagnostic accuracy. After that we 
searched for the best combination in terms of diagnostic accu-
racy using machine learning methods. The simultaneous exceed-
ing of the threshold values of all 4 parameters: QTc, QRSfi, 
Tpeak, Toffs, led to an increase of sensitivity up to 87% and of 

Table 3.  Intergroup comparison of ECG parameters in patients on Phase 1 with and without significant LVDD.

Parameters Patients with LV DD Patients without LV DD Р-values for intergroup difference

QTc 420.5 ± 57.0 422.3 ± 60,2 0.01

JA -17.7 ± 45.1 -18.5 ± 45.5 0.002

TA 210.5 ± 129.0 206.7 ± 129.5 0.002

Sbeta 0.8 ± 0.5 0.6 ± 0,7 0.033

Beta 0.81 ± 0.3 0.84 ± 0.3 0.038

QRS11energy 488.7 ± 591.0 493.3 ± 589.5 0.038

QRS12energy 704.1 ± 872.4 715.1 ± 874.1 0.017

QRS2energy 200.8 ± 247.3 203.8 ± 247.3 0.020

QRSE1 23.5 ± 45.8 24.2 ± 46.1 0.004

QRSE2 105.8 ± 127.3 107.2 ± 127.3 0.019

TE1 42.1 ± 46.0 41.8 ± 45.4 0.041

Pfi 296.8 ± 97.0 297.5 ± 97.3 0.020

QRSst 381.1 ± 102.5 382.0 ± 103.1 0.018

QRSfi 670.0 ± 143.9 669.5 ± 147.8 0.001

PpeakN 332.8 ± 99.4 333.9 ± 99.8 0.021

Rpeak 348.0 ± 101.2 348.6 ± 101.9 0.006

Speak 384.4 ± 117.1 380.4 ± 117.4 0.044

Tpeak 588.9 ± 135.0 568.2 ± 138.4 0.001

Tons 541.9 ± 131.1 542.0 ± 134.4 0.001

RonsF 34.5 ± 5.2 34.4 ± 5.3 0.002

RoffsF 33.8 ± 6.2 33.6 ± 6,4 0.007

SDNN 27.5 ± 19.4 27.4 ± 19.6 0.01

Abbreviations: LVDD, left ventricular diastolic dysfunction.

Figure 5.  ROC curves for QTc, QRSfi, Tpeak, and Toffs ECG parameters.
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specificity up to 70% (AUC 0.766; OR 11.7 [2.7-50.9], 
P < .001). This combined parameter was integrated in the 
CardioQVARK® monitor as a LVDD determination algorithm.

Algorithm approbation on the Validation cohort: 
Phase 2

During the second phase we used the developed algorithm on 
250 patients. At the Phase 2—12.4% of patients had signifi-
cant diastolic dysfunction. We determined that our algorithm 
shows a Sensitivity of—95.6%, Specificity of—97.7% and 
Diagnostic accuracy of—96.5%. With paired measurements, 
ECG data were contrasted just in 3 patients. Accordingly, in 
98.8% of patients, the indicators of the developed algorithm 
were stable. Algorithm was not applicable in 3.5% of patients 
due to poor ECG or ECHO quality.

Discussion
Artificial intelligence-based algorithms have found widespread 
applications in medicine and particularly in cardiology with 
great outcome in ECG signal analysis.21 The exact role electro-
cardiographic was shown in some works. Saeed Alipour Parsa 
et al reported that significant proximal left anterior descending 
coronary artery stenosis can be predicted by absence of septal q 
wave in ECG (sensitivity = 59%,and specificity = 47%).22

Our results indicate a great potential of a smartphone-case 
based single lead ECG in combination with signal processing 
and machine learning technologies as novel screening tool for 
LVDD. The novelty of our approach is the use of an advanced 
signal processing technique which allows a more precise analy-
sis of very small changes on the surface ECG frequency spec-
trum and to correlate this changes with myocardial relaxation 
abnormalities.

Whereas actual research is still focused on the use and for a 
further development of advanced imaging technologies, a major 
barrier for the widespread use of these technologies is the need 
for expensive equipment, which makes it not suitable for rou-
tine screening of larger populations, especially at the outpatient 
stage. Previous studies have shown the potential of using 

12-channel ECG data to detect LVDD.18,23-25 Analysis of vari-
ance of the temporal parameters of the P wave on the ECG 
revealed a significant correlation with the presence of LVDD, as 
well as with its stages.23,26 Prolongation of the QT interval, 
inversion of the T wave on the ECG were also considered as 
predictors of the presence of LVDD.24,27,28 We are aware of one 
previous study which used machine learning methods for the 
identification of abnormal LV relaxation by processing a con-
tinuous wavelet transform from a 12-channel ECG signal. LV 
relaxation was detected using the machine learning method 
“Random forest” by using the following parameters: icon, irem2, 
ilo1 value, avrp51 value, v1p21 value, viemlv / vilmlv, v4p21 
value, v6p21 value, avrp21 value, v3dtm, v1rlm, v1rem, iiirlm2, 
ip51 value, iip53 value, ip21 value, avf53, avfrlm value, v1drate, 
v1rem2, idrate, iram, iip51 value, irlm, irem. The study also 
assessed the average heart rate, P, Q, R and S waves (QRS); T; 
duration of P and QRS; PR and QT intervals; and timely diag-
nosis corrected QT interval (QTc). The area under the curve 
(AUC) for the prediction of low e′ using random forest-based 
classifier was 91%, with a sensitivity of 80% and specificity of 
84%.9,11 In a multicenter prospective study, 18 parameters of a 
12-lead ECG were selected to determine abnormal LV relaxa-
tion. A decrease in e′ was predictive with a sensitivity 78% and 
a specificity of 77%, AUC 0.83. Global LVDD could be pre-
dicted by the estimated e′ parameters with sensitivity 93% and 
specificity 51%, AUC: 0.76 in the internal test set and with sen-
sitivity 67% and specificity 80%, AUC: 0.80 in the external test 
set. Also, the LVDD decrease prediction was based on a simpli-
fied algorithm proposed by the Mayo Clinic and another algo-
rithm developed using the Framingham Heart Study. Good 
results were obtained with each algorithm.10 Promising data has 
also been obtained in a study with a neural network to deter-
mine systolic function. A convolutional ventricular neural net-
work to identify patients with LV dysfunction with an ejection 
fraction ⩽35% using the ECG data alone demonstrated a sen-
sitivity 86.3% and a specificity 85.7%, respectively.9 The neural 
network may also be promising for the prediction of diastolic 
function. However, we did not find results from studies using a 
machine learning algorithm from a single-channel ECG for 

Table 4.  Diagnostic accuracy of ECG parameters for LVDD.

ECG parameter Sensitivity (%) Specificity (%) AUC

QTc > 425 ms 78 65 0.648

QRSfi > 674 ms 67 70 0.698

Tpeak > 590 ms 63 58 0.676

Toffs > 695 ms 63 74 0.704

Simultaneous exceeding of the threshold values of all 4 parameters: QTc, QRSfi, 
Tpeak, Toffs

86 70 0.766

Abbreviations: LVDD, left ventricular diastolic dysfunction.
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prediction of LVDD. Therefore, the use of a smartphone-case 
based single lead ECG for prediction of LVDD is a novel 
approach which allows to detect significant differences in cer-
tain ECG parameters in patients with and without diastolic 
dysfunction. This is made possible by the use of an advanced 
signal processing technique which allows a more precise analy-
sis of very small changes on the surface ECG frequency spec-
trum and to correlate this changes with myocardial relaxation 
abnormalities. In our work we focused on LVDD markers in an 
ample list of time, amplitude and frequency parameters. By 
using machine learning, we found QTc, QSfi, Tpeak, Toffs to be 
independent markers of significant LVDD developing for vari-
ous reasons, whereas no accuracy was found for the prediction 
of mild LVDD.

The approbation of our algorithm showed a high diagnostic 
accuracy and a high level of repeatability of the results. We 
emphasize that this method should be used in population 
screening especially in people who ignore their disease. 
Therefore, if a patient with any cardiac pathology is already 
consulted by a doctor, he do not require our screening.

Study Limitations
Considering that our work did not include patients with com-
plete block of left bundle branch, WPW syndrome and severe 
mitral valve stenosis, additional research is required. Considering 
that we were developing a method for cardiac pathology screen-
ing, we did not take into account the known heart diseases that 
could limit the use of our method, since these patients are 
already under control. A separate large study of the effectiveness 
of our algorithm in patients with atrial fibrillation is required.

Conclusion
Our results indicate the possibility to use a smartphone-case 
based single lead ECG with advanced signal processing and 
machine learning technologies for LVDD screening with a 
high diagnostic accuracy.
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