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The heterogeneity of cancer is a big obstacle for cancer diagnosis and treatment. 
Prioritizing combinations of driver genes that mutate in most patients of a specific cancer 
or a subtype of this cancer is a promising way to tackle this problem. Here, we developed 
an empirical algorithm, named PathMG, to identify common and subtype-specific mutated 
sub-pathways for a cancer. By analyzing mutation data of 408 samples (Lung-data1) for 
lung cancer, three sub-pathways each covering at least 90% of samples were identified 
as the common sub-pathways of lung cancer. These sub-pathways were enriched 
with mutated cancer genes and drug targets and were validated in two independent 
datasets (Lung-data2 and Lung-data3). Especially, applying PathMG to analyze two 
major subtypes of lung cancer, lung adenocarcinoma (LUAD) and lung squamous cell 
carcinoma (LSCC), we identified 13 subtype-specific sub-pathways with at least 0.25 
mutation frequency difference between LUAD and LSCC samples in Lung-data1, and 
12 of the 13 sub-pathways were reproducible in Lung-data2 and Lung-data3. Similar 
analyses were done for colorectal cancer. Together, PathMG provides us a novel tool to 
identify potential common and subtype-specific sub-pathways for a cancer, which can 
provide candidates for cancer diagnoses and sub-pathway targeted treatments.

Keywords: mutation, common sub-pathways, subtype-specific sub-pathways, cancer genes, drug targets

INTRODUCTION
Thousands of mutations are detected for a cancer with the advances of DNA sequencing technologies. 
The mutation frequencies of most genes are very low (<5%) in all patients of a cancer (Ciriello et al., 
2013; Kandoth et al., 2013; Tamborero et al., 2013). Therefore, many algorithms have been developed 
to identify a panel of genes or pathways that mutate in a significantly high fraction of patients in a 
particular type of cancer. These identified mutation genes or pathways might be drivers contributing 
to cancer (Youn and Simon, 2011; Dees et al., 2012; Hua et al., 2013; Merid et al., 2014; Leiserson 
et al., 2015) or potential diagnosis biomarkers for a cancer (Ece Solmaz et al., 2015; Clifford et al., 
2016; Li et al., 2016; Sato et al., 2016). For example, Clifford et al. identified a panel of 400 mutations 
covering more than 80% of the lung adenocarcinoma (LUAD) patients from The Cancer Genome 
Atlas (TCGA) database (Clifford et al., 2016). However, in an independent validation dataset, this 
panel of mutations only covered 55% of 183 patients (Clifford et al., 2016). It is not surprising that 
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the coverage drops so much in the validation dataset because the 
distribution of somatic mutations is highly heterogeneous (N. 
Cancer Genome Atlas Research, 2011; N. Cancer Genome Atlas, 
2012; Hofree et al., 2013). Thus, the panel of mutated genes, 
identified only by the mutation information of individual genes, 
may vary across different independent datasets.

It has been reported that certain pathways are frequently altered 
across patients of a cancer by mutations in different genes of the 
pathways (N. Cancer Genome Atlas Research, 2008; Gu et al., 
2011; N. Cancer Genome Atlas, 2012). Therefore, a combination 
of the individual mutations within a pathway (Vaske et al., 2010; 
Bertrand et al., 2015; Cho et al., 2016; Hristov and Singh, 2017; 
Shrestha et al., 2017) or a molecular network (Hristov and Singh, 
2017) is a preferred method to deal with inter-tumor heterogeneity. 
To obtain a small subset genes that was more relevant to disease, 
many methods have been developed to identify sub-pathways or 
sub-networks. For sub-pathway analysis, most methods are based 
on the enrichment analysis of differentially expressed genes, such 
as topology enrichment analysis framework (Judeh et al., 2013), 
pathway and transcriptome information (Nam et al., 2014), and 
Subpathway-GM (Li et al., 2013). The methods to extract sub-
networks mainly combined mutations with copy number variations 
to identify modules related with diseases, such as HotNet (Leiserson 
et al., 2015) and MEMo (Ciriello et al., 2012). Panels of mutation 
genes have been reported to be a promising way to diagnose a 
specific cancer (Ece Solmaz et al., 2015; Clifford et al., 2016; Li 
et al., 2016; Sato et al., 2016). It would be of great significance if we 
could find sub-pathways mutated in almost all patients of a cancer. 
Here, we think that the panel of mutation genes within a common 
sub-pathway will be a reliable diagnostic marker for a cancer when 
the common mutated sub-pathway is reproducible in different 
independent datasets of this cancer. However, current methods 
didn’t consider this application of sub-pathways. On the other 
hand, a cancer may have different subtypes with different causes 
and clinical outcomes. Thus, it is also important to obtain subtype-
specific biomarkers to guide subtype diagnoses and treatments.

In this study, we developed an empirical algorithm, called 
PathMG, to identify common and subtype-specific mutated sub-
pathways for a cancer. By analyzing multiple mutation profiles of 
lung cancer, three reproducible common mutated sub-pathways 
were identified. PathMG was also used to identify LUAD-specific 
and lung squamous cell carcinoma (LSCC)-specific sub-pathways, 
respectively. Based on the subtype-specific sub-pathways, we 
further identified the sub-pathways related to the prognosis of 
lung cancer. Similarly, we also identified common and subtype-
specific sub-pathways for colorectal cancer (CRC). PathMG is 
available on the web at https://github.com/dxsbiocc/C-Sub.

MaTeRIalS aND MeThODS

Data and Preprocessing
As described in Table 1, the public available somatic mutation 
profiles, measured by whole-exome sequencing for lung cancer 
and CRC from six different studies (N. Cancer Genome Atlas, 
2012; N. Cancer Genome Atlas Research, 2012; N. Cancer Genome 
Atlas Research, 2014; Campbell et al., 2016; Giannakis et al., 

2016; Ellrott et al., 2018), were downloaded from the cBioPortal 
(http://www.cbioportal.org/) database. The mutation profiles of 
230 LUAD samples (N. Cancer Genome Atlas Research, 2014) 
and 178 LSCC samples from Lung-data1 (N. Cancer Genome 
Atlas Research, 2012) were integrated to identify commonly 
mutated sub-pathways for lung cancer. The identified common 
sub-pathways were validated in two independent datasets (Lung-
data2 and Lung-data3). For CRC, the mutation profiles of 619 
samples from CRC-data1 were used to identify commonly 
mutated sub-pathways, while two publicly available independent 
datasets (CRC-data2 and CRC-data3) and one dataset (CRC-
data4) measured by our laboratory were used for validation. 
We measured 13 samples of CRC from five different patients by 
whole-exome sequencing. For each patient, three specimens were 
sampled in three different locations. Two specimens with poor 
DNA quality were excluded from the analysis. The proportion of 
the tumor epithelial cell was measured by pathological section 
analysis, ranging from 40 to 100% (Supplementary Table 1). 
This study was approved by the institutional review boards of 
all participating institutions, and written consent forms were 
obtained from all participants. All cancer samples were collected 
from the operating room immediately after surgical resection 
and were fresh frozen for subsequent DNA extraction. The 
quantity and quality of extracted DNA was estimated with Qubit 
2.0 Fluorometer (Life Technologies, Foster City, CA) by using 
2 µl of undiluted DNA solution. The resulting raw whole-exome 
sequencing files (.fastq) were preprocessed using Trimmomatic 
(version 0.38) (Bolger et al., 2014), and reads were aligned to the 
reference genome (GRCh37) using Burrows-Wheeler aligner 
[BWA; version 0.7.1 (Li and Durbin, 2009)]. Finally, the variant 
calling was done with variant caller Mutect2 algorithm in GATK4 
with high stringency parameters (Cibulskis et al., 2013).

Kyoto encyclopedia of genes and 
genomes Pathways
The 239 pathways covering 6,688 unique genes were downloaded 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (Kanehisa et al., 2010) on October 21, 2018. Here, the 
human disease pathways were excluded from this study. For each 
pathway, the interactions between genes were also collected for 
the following analysis.

TaBle 1 | Description of mutation data used in this study.

Data Cancer type Samples References

Lung-data1 LUAD 230 (N. Cancer Genome Atlas 
Research, 2014)

LSCC 178 (N. Cancer Genome Atlas 
Research, 2012)

Lung-data2 LUAD 562 (Ellrott et al., 2018)
LSCC 469

Lung-data3 LUAD 438 (Campbell et al., 2016)
LSCC 308

CRC-data1 CRC 619 (Giannakis et al., 2016)
CRC-data2 536 (Ellrott et al., 2018)
CRC-data3 224 (N. Cancer Genome Atlas, 2012)
CRC-data4 13 –
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Identify Significantly Mutated Pathways
For a pathway in a given sample, we assume that the pathway is 
mutated in the sample if at least one gene within the pathway is 
mutated (Gu et al., 2011; Vandin et al., 2011). Then, for a given 
pathway i, we calculated the number of samples mutated in this 
pathway for a dataset with N samples, denoted as Mi. To test 
whether the number of mutated samples in the pathway i was 
significantly more than expected by chance, random experiments 
were performed. For a cancer sample, we calculated the number 
of mutated genes from its real mutation profile. Simultaneously, 
to produce a simulated mutation profile for the cancer sample, 
we randomly selected the same number of genes from the 
background genes as mutated genes. The total Refseq genes were 
defined as the background genes. After a random experiment, a 
random mutation dataset with N samples was produced. For a 
pathway i, we could calculate the number of randomly mutated 
samples after a random experiment, denoted as Ri. The random 
experiment was repeated n (default 1,000) times, which may be 
adjusted by users. Then, the probability pi, that the number of 
randomly mutated samples (Ri) of the pathway i is greater than 
the number of real mutated samples (Mi), is calculated as follows:

 
p

ni
r

n

== ==
Hr

1∑
 (1)

In a random experiment, if Ri > Mi, then Hr = 1; Otherwise, 
Hr = 0. The formula was used to calculate the p values of all 
pathways, and the p values were adjusted using the Benjamini-
Hochberg (BH) method to control the false discovery rate (FDR).

Identification of Common Sub-Pathways
After identifying the significantly mutated pathways for a cancer, 
we further extracted common sub-pathways in each of the 
significant pathways by the greedy search algorithm. Here, the 
sub-pathways, covering more than 90% (a default parameter) of 

samples of this cancer, were defined as common sub-pathways. 
The detailed algorithm to identify common sub-pathways in a 
given pathway is shown as follows (Figure 1).

 Step 1: Based on the interactions between genes in 
a pathway annotated by KEGG database, convert a 
significant pathway to an undirected graph, and obtain 
all the connected components on the graph.

 Step 2: For a certain connected component, the genes 
within the connected component are ranked according 
to the mutation frequency (denoted as f) of each gene. 
Select the gene with the largest f value as a seed for an 
initial sub-pathway.

 Step 3: For each of the direct interaction neighbor genes 
of the seed, calculate the increased coverage (denoted 
as Pf) when the gene is added to the sub-pathway.

 Step 4: The direct interaction neighbor genes of the seed 
will be added to the sub-pathway one by one according 
to their Pf value from high to low. The direct neighbor 
genes of the seed will be divided into two sets based on 
whether it increases the coverage of the sub-pathway 
during the adding process. Then, the genes increasing 
the coverage are defined as set GI; otherwise, defined as 
set GN. The genes in set GI are remained in the sub-
pathway as new seeds. For each of the genes from set 
GN, its direct neighbor genes will be added one by one 
according to their Pf value from high to low. If at least 
one neighbor gene could increase the coverage of the 
sub-pathway, the gene in set GN will be remained in 
the sub-pathway, and its neighbor genes increasing the 
coverage will be used as new seeds; otherwise, the gene 
in set GN will be excluded. So, we allowed a gene that 
cannot increase coverage in the process of adding genes.

 Step 5: Based on the new seed genes identified in step 
4, repeat step 3–4 until the seed genes don’t have direct 
interaction neighbors in the connected component. 

FIgURe 1 | The schematic diagram of the algorithm to identify common mutation sub-pathways. Orange nodes denote genes remained in the sub-pathway.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1228

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Common and Subtype-Specific Sub-PathwaysYan et al.

4

If the coverage of the sub-pathway is higher than a 
predefined parameter (default 90%) and the number of 
genes in the sub-pathway is at least five (default five), 
the sub-pathway will be output as a common sub-
pathway. The two parameters, the frequency to define 
common sub-pathway and the minimum number of 
genes for a sub-pathway, could be adjusted by users.

 Step 6: For all the connected components obtained 
from a significant pathway, repeat steps 2–5 to identify 
all the common sub-pathways.

Identification of Subtype-Specific Mutated 
Pathways and Sub-Pathways
First, the Fisher’s exact test is used to identify the pathways that 
have significantly different mutation frequencies between two 
subtypes (subtype A and subtype B) of a cancer. The significant 
pathways are defined as subtype-specific mutated pathways. The 
p values are adjusted using the BH method to control the FDR.

After identifying the significantly subtype-specific mutated 
pathways for a cancer, the sub-pathways, that make the 
differences of the mutation frequencies between two subtypes as 
larger as possible, are further extracted in each of the significant 
pathways using the greedy search algorithm. Similar with the 
method to identify common sub-pathways, we also integrated 
the differences of mutation frequencies between subtype A and 
subtype B of one cancer and pathway information to identify 
subtype-specific sub-pathways (Supplementary Figure 1). The 
detailed algorithm to identify subtype-specific sub-pathways in a 
given pathway is described as follows.

 Step 1: Convert a subtype-specific pathway to an 
undirected graph based on the interactions between 
genes annotated by KEGG database, and obtain all the 
connected components on the graph.

 Step 2: For a certain connected component, calculate 
the mutation frequencies of each gene in subtype A and 
subtype B of one cancer, respectively, denoted as fa and 
fb. For a given gene, the mutation frequency difference 
between subtype A and subtype B is defined as v= fa−fb. 
According to the v value, the genes with v>0 are defined as 
subtype A specific genes (denoted as set Ga) and the genes 
with v>0 are defined as subtype A specific genes (denoted 
as set Ga) and the genes with v<0 are defined as subtype B 
specific genes (denoted as set Gb). Then, the two classes of 
genes (Ga and Gb) are used to identify subtype A specific 
and subtype B specific sub-pathways, respectively. Here, 
we example the process to identify subtype A specific sub-
pathways to explain the algorithm.

 Step 3: Firstly, select the gene with the largest |v| value 
among Ga as a seed for an initial sub-pathway.

 Step 4: For each of the direct interaction neighbor genes 
of the seed in Ga, calculate the increasing of coverage 
difference (denoted as Pv) between subtype A and 
subtype B when the gene is added to the sub-pathway.

 Step 5: The direct neighbor genes of the seed in Ga will 
be added to the sub-pathway one by one according to 

their Pv value from high to low. When direct neighbor 
genes added to the sub-pathway increase the coverage 
differences, the genes will be remained in the sub-
pathway as new seeds. Similarly, PathMG allows for 
at most one gene that doesn’t increase the coverage 
difference. Therefore, for a gene that cannot increase 
coverage difference, its direct neighbor genes will be 
added one by one according to their Pv value from 
high to low. If at least one neighbor gene could increase 
the coverage difference of the sub-pathway, the gene 
will be remained in the sub-pathway and its neighbor 
genes increased coverage will be used as new seeds; 
otherwise, the gene will be excluded.

 Step 6: Based on the new seeds identified in step 
5, repeat step 4–5 until the seeds don’t have direct 
neighbors among Ga in the connected component. 
Calculate the p values of Fisher’s exact test (p < 0.05) 
for the sub-pathway, and output the subtype A specific 
sub-pathway if its mutation frequency in subtype A 
is higher than subtype B with a predefined parameter 
(default 0.25). Equally, we can identify subtype B 
specific sub-pathways for the connected component.

 Step 7: For all the connected components, obtained 
from a subtype-specific pathway, repeat steps 2–6 to 
identify all the subtype A specific and subtype B specific 
sub-pathways, respectively.

Sub-Pathways enriched With Cancer 
genes and Drug Target genes
The cancer genes were downloaded from the Catalogue of Somatic 
Mutations in Cancer (COSMIC) database, which collected a total 
of 719 cancer genes (Bamford et al., 2004). We also collected 
7,463 target genes for the commonly used drugs for lung cancer 
therapy, such as carboplatin, cisplatin, and docetaxel, from the 
Comparative Toxicogenomics Database (http://ctdbase.org/) 
(Davis et al., 2009). Among the 7,463 target genes, 2,661 genes 
were included in the KEGG pathways. Simultaneously, 935 target 
genes for the commonly used drugs for CRC therapy were also 
downloaded from the Comparative Toxicogenomics Database, 
among which 527 genes were included in the KEGG pathways.

ReSUlTS

Identify Common Sub-Pathways for lung 
Cancer and Colorectal Cancer
Firstly, random experiments were done to identify the 
significantly mutated pathways. Then, the sub-pathways 
commonly mutated in at least 90% of patients were identified 
in each of the significantly mutated pathways. Here, considering 
the existence of large measurement variation and low quality of 
tissue samples, we defined the sub-pathways covering more than 
a predefined parameter (here, default 90%) of patients rather 
than 100% of patients in a cancer as commonly mutated sub-
pathways. The details of the methods were described in Materials 
and Methods.
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FIgURe 2 | The mutation frequencies of the common sub-pathways across different datasets for lung cancer (a) and CRC (B), respectively. The figures on the bars 
represent the number of genes within the identified sub-pathways. (C) The sub-pathway identified from PI3K-Akt signaling pathway. The genes with red font were 
genes in the sub-pathway and the genes in squares filled with red color were cancer genes.
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Using the 408 mutation profiles of Lung-data1, we firstly 
identified 116 significantly mutated pathways for lung cancer 
(FDR < 0.05). Then, three sub-pathways, PI3K-Akt signaling 
sub-pathway, olfactory transduction sub-pathway, and 
regulation of actin cytoskeleton sub-pathway, were identified 
as the common sub-pathways of lung cancer (Figure 2A). In 
the two independent validation datasets (Lung-data2 for 1,031 
samples and Lung-data3 for 746 samples), two of the three 
common sub-pathways covered at least 93% samples, whereas 
the regulation of actin cytoskeleton sub-pathway covered 87 
and 89% samples in Lung-data2 and Lung-data3, respectively. 
The result indicated that the common mutated sub-pathways 
were highly reproducible in different sets of lung cancer samples, 
which suggests that the mutation genes within the common 
sub-pathways could be candidate panels of mutation genes for 
lung cancer diagnosis. Moreover, except for the sub-pathway 
of olfactory transduction, two of the three common mutated 
sub-pathways were significantly enriched with cancer genes 
documented in the database COSMIC and target genes for the 
commonly used drugs for lung cancer therapy (Supplementary 
Tables 2 and 3, hypergeometric test, p < 0.05). For example, the 
PI3K-Akt signaling sub-pathway included 141 genes and 43 of 
them were cancer genes, which was unlikely to happen by chance 
(Figure 2C, hypergeometric test, p = 4.28E−29).

Similarly, 125 significantly mutated pathways were identified 
from the 619 CRC samples from CRC-data1. Among the sub-
pathways identified from these significant pathways, three sub-
pathways, each of which covered at least 90% of 619 CRC samples, 
were identified as the common sub-pathways of CRC (Figure 
2B). Notably, the mutation frequencies of all the three common 
sub-pathways were higher than 91% in the two independent 
datasets (CRC-data2 for 536 samples and CRC-data3 for 224 
samples, Figure 2B). Moreover, all the three reproducible 
common sub-pathways were significantly enriched with cancer 
genes documented in the database COSMIC and drug targets for 
commonly used drugs for colon cancer therapy (Supplementary 
Tables 2 and 3, hypergeometric test, p < 0.05).

With whole-exome sequencing, we further measured 13 CRC 
samples with different proportions of the tumor epithelial cell to 
validate the three common sub-pathways. For the 13 samples, nine 
samples were sampled from three patients each with three different 
tumor locations and the other four samples were sampled from 
two patients each with two different tumor locations. The results 
showed that two of the three common sub-pathways covered all 
the 13 CRC samples. For the remained common sub-pathway of 
regulation of actin cytoskeleton, it covered 11 of the 13 CRC samples 
(Figure 2B). Overall, these results suggest that these common sub-
pathways may be reliable diagnosis marker for CRC even when the 
proportion of the tumor epithelial cell is as low as 40%.

Identify Subtype-Specific Sub-Pathways 
for lung Cancer and Colorectal Cancer
Based on the mutation profiles of 230 LUAD and 178 LSCC samples 
from Lung-data1, 43 pathways with significantly different mutation 
frequencies between LUAD and LSCC were identified using 
Fisher’s exact test (FDR < 0.05). Here, we developed an algorithm to 

identify subtype-specific sub-pathways with at least 0.25 mutation 
frequency difference between LUAD and LSCC (p < 0.05).

Based on the 43 subtype-specific pathways, a total of 13 
subtype-specific sub-pathways with at least 0.25 mutation 
frequency difference between the 230 LUAD and 178 LSCC 
samples were identified in Lung-data1 (p < 0.05), including 6 
LUAD-specific sub-pathways and 7 LSCC-specific sub-pathways. 
In the two independent Lung-data2 and Lung-data3 datasets, all 
the six LUAD-specific sub-pathways were validated as LUAD-
specific sub-pathways. For the seven LSCC-specific sub-pathways, 
six were validated as LSCC-specific sub-pathways. Only one sub-
pathway, inositol phosphate metabolism, had p value less than 
0.05 in both two validation datasets, but its mutation frequency 
difference was 0.18 and 0.12 in Lung-data2 and Lung-data3, 
respectively (Supplementary Table 4). Notably, all the top five 
sub-pathways with the largest differences of mutation frequencies 
between LUAD and LSCC in Lung-data1 were reproducible in 
both the two independent datasets (Figure 3).

Based on the knowledge that LSCC patients suffered poorer 
prognoses than LUAD patients (Gyorffy et al., 2013), we performed 

FIgURe 3 | The top five most significant subtype-specific sub-pathways with 
the largest differences of mutation frequencies. The heatmap shows the p 
values of the sub-pathways calculated by Fisher’s exact test, and the figures 
on the heatmap represent the mutation frequency differences between lung 
adenocarcinoma (LUAD) and lung squamous cell carcinoma (LSCC). The 
mutation frequency difference was calculated as the mutation frequency of 
the sub-pathway in LUAD minus the mutation frequency of the sub-pathway 
in LSCC. When the figure on the heatmap was positive (negative), the sub-
pathway was LUAD-specific (LSCC-specific) sub-pathway.
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survival analysis using the overall survival data of the 87 LUAD 
and 79 LSCC samples from Lung-data1. These patients were at 
the stage I and treated with complete surgical resection to exclude 
the effects of stage and chemotherapy on prognosis. We evaluated 
whether the patients with and without mutation of a sub-pathway 
were significantly different in overall survival (OS) time. Finally, 
five of the 12 reproducible subtype-specific sub-pathways were 
found to be associated with OS (the univariate Cox proportional-
hazards regression model, p < 0.05) (Supplementary Table  5). 
Among the five top sub-pathways, three sub-pathways, p53 
signaling pathway, T cell receptor signaling pathway, and cell 
cycle, were related to the OS of lung cancer. For example, a LSCC-
specific sub-pathway of cell cycle, including seven genes, was 
mutated in 102 of 166 patients, which had significantly poorer 
overall survival than the other 64 patients without the mutation 
of this sub-pathway (log-rank p = 0.02, Figure 4).

Similarly, 221 subtype-specific pathways were identified for 
CRC using the mutation profiles of 166 LCC and 315 RCC samples 
from CRC-data1 (Fisher’s exact test, FDR < 0.05). Based on the 
subtype-specific pathways, 42 subtype-specific sub-pathways were 
further identified with mutation frequency difference higher than 
0.25 (p < 0.05). All the 42 sub-pathways were RCC-specific, which 
further validated the report that RCC was hyper-mutational (N. 
Cancer Genome Atlas, 2012). Because only CRC-data3 had the 
information of tumor location in the validation datasets, we then 
validated the 42 RCC-specific sub-pathways in CRC-data3. Among 
the 42 RCC-specific sub-pathways, 34 sub-pathways were validated 
in CRC-data3 (Supplementary Table 4). For the remained eight 
sub-pathways, only two sub-pathways had p ≥ 0.05 and the other 
six sub-pathways had p < 0.05 with mutation frequency differences 
ranging from 0.17 to 0.24 in CRC-data3. Moreover, 39 of the 42 
RCC-specific sub-pathways were enriched with cancer genes, and 
32 of the 42 RCC-specific sub-pathways were enriched with target 
genes for the commonly used CRC therapy drugs (Supplementary 
Table 6, hypergeometric test, p < 0.05).

DISCUSSION
In this study, we developed an empirical algorithm, named 
PathMG, to identify commonly mutated sub-pathways for a 
specific cancer. For lung cancer, two of three common sub-
pathways were identified from the PI3K-Akt signaling pathway 
and the regulation of actin cytoskeleton pathway, which were 
known cancer hallmarks (Hanahan and Weinberg, 2000; 
Hanahan and Weinberg, 2011). Both the two sub-pathways were 
enriched with cancer genes and cancer drug targets. Another 
common sub-pathway extracted from olfactory transduction 
pathway covered more than 90% samples of each dataset for 
lung cancer. It has been reported that olfactory transduction 
pathway can affect apoptosis of lung cancer cells (Lu et al., 2013), 
which may be new hallmark of lung cancer. Similarly, we also 
identified three common sub-pathways for CRC. Among them, 
two common sub-pathways were also identified from PI3K-Akt 
signaling pathway and Regulation of actin cytoskeleton pathway. 
It suggests that the two pathways may be hallmark for pan-cancer. 
Due to the high reproducibility of common sub-pathways, 
they may be reliable cancer diagnosis markers. Especially, the 
common sub-pathways identified in CRC were reproducible 
even when the proportion of the tumor epithelial cell was as low 
as 40%. Because the mutation profiles of circulating tumor DNA 
(ctDNA) were lacking, we only applied the algorithm to identify 
common sub-pathways using mutation profiles of tissues. 
However, the application of the algorithm is not restricted to 
tissues, it can also be used to analyze mutation profiles of ctDNA.

Simultaneously, PathMG can provide definite subtype-
specific sub-pathways for a cancer with two known subtypes, 
which may give a novel way to identify subtype diagnosis 
signatures. Here, we identified six reproducible LUAD-specific 
sub-pathways and six reproducible LSCC-specific sub-pathways 
for lung cancer. Most of these sub-pathways were enriched with 
cancer genes and target genes for the commonly used lung cancer 
drugs (Supplementary Table 6). Similarly, we also identified 42 
subtype-specific sub-pathways for CRC. All the sub-pathways 
were RCC-specific, which further validated that RCC had higher 
mutation rate than LCC (N. Cancer Genome Atlas, 2012).

Here, the default coverage to identify common sub-pathways 
was defined as 90% which can be adjusted by users. This parameter 
will affect the discovery of the number of common sub-pathways 
for a particular cancer. When the parameter was defined as 85%, six 
common sub-pathways were identified in Lung-data1. In the two 
independent validation datasets (Lung-data2 and Lung-data3), 
five of the six common sub-pathways covered at least 86% samples, 
whereas the remained sub-pathway of phospholipase D signaling 
pathway covered 84% samples in both the two validation datasets 
(Supplementary Table 7). Similarly, seven reproducible common 
sub-pathways were obtained for CRC (Supplementary Table 7). 
The results indicated that the common sub-pathways identified 
in different coverages (90 or 85%) were highly reproducible. For 
subtype-specific sub-pathway analysis, we considered the mutation 
frequency difference of a sub-pathway between two subtypes of a 
cancer as a parameter, and the default value was defined as 0.25. As 
expected, the larger the parameter, the more likely the discovered 
sub-pathways to be reproducible in independent validated datasets. 

FIgURe 4 | Kaplan–Meier estimates of overall survival according to whether 
lung squamous cell carcinoma-specific sub-pathway of cell cycle mutated in 
the patients.
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For example, the top 10 sub-pathways in Lung-data1 were ranked 
within the top 12 sub-pathways in the two independent validation 
datasets (Supplementary Table 8).

Besides, because all the mutation profiles analyzed in this 
study were detected by whole-exome sequencing, the total exon 
length of a gene will affect the mutation frequency of a gene 
theoretically. To analyze the effect, we studied the distribution of 
mutation counts among genes with different total exon lengths. 
The result showed that the mutated genes with total exon lengths 
shorter than 18,000 bp accounted for about 94% mutated genes 
(Supplementary Figure 2). The average mutation counts of these 
genes ranged from 4.6 to 10.3, indicating that the mutation counts 
didn’t vary widely for most genes. Then, we didn’t consider this 
factor. One possible way of addressing this limitation is to use the 
algorithm, called PathScan, to identify significant pathways which 
considered the effect of gene length (Wendl et  al., 2011). Then, 
we can identify common sub-pathways based on the significant 
pathways identified by PathScan. The number of random 
experiments was also a limitation of PathMG. To assure the power 
of the algorithm, the experiment was repeated 1,000 times which 
could be adjusted by users. In this study, we only analyzed KEGG 
pathways to interpret the algorithm of PathMG, which will limit 
the number of identified common and subtype-specific sub-
pathways. When using PathMG to identify diagnostic markers for 
a cancer, we had better integrate more pathways from different 
databases to obtain the optimal sub-pathway marker.

In summary, PathMG can be used to identify common and 
subtype-specific sub-pathways for a particular cancer, which may 
help users to prioritize panels of mutations at the sub-pathway 
level to aid cancer diagnosis and sub-pathway targeted treatment.
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