Graefes Arch Clin Exp Ophthalmol (2011) 249:957-968
DOI 10.1007/s00417-011-1697-6

REVIEW ARTICLE

Recent studies provide an updated clinical perspective

on blue light-filtering IOLs

James A. Davison - Anil S. Patel - Joao P. Cunha -
Jim Schwiegerling - Orkun Muftuoglu

Received: 9 September 2010 /Revised: 7 April 2011 /Accepted: 8 April 2011 /Published online: 17 May 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract

Background Recent reviews of blue light-filtering intraocular
lenses (IOLs) have stated their potential risks for scotopic
vision and circadian photoentrainment. Some authors have
challenged the rationale for retinal photoprotection that these
IOLs might provide. Our objective is to address these issues
by providing an updated clinical perspective based on the
results of the most recent studies.

Methods This article evaluates the currently available
published papers assessing the potential risks and benefits of
blue light-filtering IOLs. It summarizes the results of seven
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clinical and two computational studies on photoreception, and
several studies related to retinal photoprotection, all of which
were not available in the previous reviews. These results
provide a clinical risk/benefit analysis for an updated review
for these IOLs.

Results Most clinical studies comparing IOLs with and
without the blue light-filtering feature have found no
difference in clinical performance for; visual acuity,
contrast sensitivity, color vision, or glare. For blue light-
filtering IOLs, three comparative clinical studies have
shown improved contrast sensitivity and glare reduction;
but one study, while it showed satisfactory overall color
perception, demonstrated some compromise in mesopic
comparative blue color discrimination. Comparative results
of two recent clinical studies have also shown improved
performance for simulated driving under glare conditions
and reduced glare disability, better heterochromatic contrast
threshold, and faster recovery from photostress for blue
light-filtering IOLs. Two computational and five clinical
studies found no difference in performance between IOLs
with or without blue light-filtration for scotopic vision
performance and photo entrainment of the circadian
rhythm. The rationale for protection of the pseudophakic
retina against phototoxicity is discussed with supporting
results of the most recent computational, in-vitro, animal,
clinical, and epidemiological investigations.

Conclusions This analysis provides an updated clinical
perspective which suggests the selection of blue light-
filtering IOLs for patients of any age, but especially for
pediatric and presbyopic lens exchange patients with a longer
pseudophakic life. Without clinically substantiated potential
risks, these patients should experience the benefit of overall
better quality of vision, reduced glare disability at least in
some conditions, and better protection against retinal photo-
toxicity and its associated potential risk for AMD.
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Introduction

The most common cause of vision loss in elderly patients is
the development of cataract, and intraocular lens (IOL)
implantation at the time of cataract surgery is the most
effective treatment for vision restoration. In addition to the
large number of elderly cataract patients, there is an
increasing global population of pediatric cataract and
presbyopic lens exchange patients who will have an even
longer life expectancy after IOL implantation. Because of
this longevity, the eyes of these patients will be more likely
to be vulnerable to retinal phototoxic effects which may
cumulatively influence the development of age-related
macular degeneration (AMD). The natural human lens
filters and thereby protects the potential retinal damage
from high-energy photons of ultraviolet radiation (UVR)
and short wavelength light. Since the early 1980s, UVR-
filtering IOLs have been widely used. They are colorless
and filter UVR to various degrees. They may not
completely block UVR, and hence we will refer to them
in this article as UVR-filtering IOLs. PMMA (poly
methyl methacrylate) yellow tinted IOLs which filter
both ultraviolet radiation (UVR) and blue light have been
under investigation since the mid 1980s, and have been
available into the global market with an advanced
technology foldable version which approximates normal
light transmission by the natural crystalline lens (light
normalizing) introduced in 2003 [1]. These lenses, with
each brand (and each power within the brand) having
slightly different transmission characteristics, are also
referred to in the literature as blue-blocking IOLs,
yellow-tinted IOLs, ultraviolet-cut noncyanopsia IOLs,
or light-normalizing IOLs. But for this article they are
generically referred to as blue light-filtering IOLs, with
the proviso that they completely block UVR as well. The
rationale for their use has been to better approximate the
transmission of electromagnetic radiation via the natural
crystalline lens, by reducing the relatively excessive
transmission of short wavelength energy which colorless
UVR-filtering I0Ls allow. It has been assumed that this
normalization would improve overall vision performance and
reduce phototoxicity, which might provide retinal protection
against the risks of development or progression of AMD.
These IOLs have been judged safe and effective by the
rigorous testing process of the US FDA, and obtained
approval by that body in 2003. An exhaustively complete
2005 review paper by two of the current authors (Davison and
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Patel) in International Ophthalmology Clinics provided a
detailed history, rationale for potential retinal photoprotection,
correction of cyanopsia, and a possible improvement in
contrast sensitivity by these IOLs [1]. It also reviewed
epidemiological literature available in 2005, and concluded
that long-term clinical study would be required to provide
the ultimate support to the hypothesis that blue light-filtering
IOLs might provide retinal photoprotection against the
development or progression of AMD.

For several reasons, a contrary school of thought began
to develop in opposition to the use of blue light-filtering
IOLs [2-8]. Those authors have expressed concerns about
the potential of reduced photoreception due to blue light-
filtering, and have challenged the rationale for the potential
of retinal phototoxicity reduction and its possible benefit in
modifying the development or progression of AMD.
Initially, there was an understandable concern over color
vision effects for blue light-filtering IOLs, which still
continues for mesopic color vision. But, as clinical
investigations allayed most of these color vision related
concerns, new discussions emerged regarding potential
effects on scotopic vision performance and concerning
possible sleep disturbances related to photoentrainment of
the circadian rthythm [2—8]. The concern for these potential
risks has been generated on the basis of theoretical
considerations and computations. This review critically
examines these potential risks with all currently available
clinical and alternate computational studies.

Over the last 5 years, new comparative computational and
clinical investigations including some by the current authors
on blue light-filtering IOLs addressed these potential risks. A
2009 review paper by Cuthbertson et al. [9] cited some of the
available results of investigations addressing the potential
benefits and side effects of these lenses. However, this paper
[9] did not contain relevant computational and clinical
studies for scotopic vision and circadian rhythm-sleep
disturbance risks [10—13]. In 2010, the debate continued in
two new “viewpoint” papers by Mainster & Turner [14] and
Henderson & Grimes [15]. In the viewpoint paper against the
use of blue light-filtering IOLs by Mainster and Turner [14],
there were absences of reference to two relevant clinical
investigations on scotopic vision [11, 16, 17] and three
studies related to circadian photoentrainment and sleep
disturbance [10, 18]. The authors put forth their computa-
tions as evidence for concern for potential risks for scotopic
vision and circadian photoentrainment. These computations
also form their basis for doubt of the rationale of retinal
protection which might be provided by blue light-filtering
IOLs. Interestingly, and in an apparent contradiction to
himself, the first author of the anti-blue light-filtering
viewpoint [14] has previously published an actual preference
for violet-blocking IOLs [2, 3], and is the principal inventor
in a patent filed in 2005 and issued in 2007 for violet-
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blocking IOL technology [19]. This patent states that “high
transmission levels of blue and violet light (wavelengths
from about 390 nm to about 500 nm) has been linked to
retinal damage, macular degeneration, retinitis pigmentosa
and night blindness. In addition, blue and violet light tends to
be scattered in the atmosphere, especially in haze, fog, rain
and snow, which in part can cause glare and diminished
visual acuity”. A similar list of newer citations was also not
included by Henderson and Grimes in their pro-blue light-
filtering IOL viewpoint paper, but based on the ones that
were cited; these authors concluded that the potential
negative effects of scotopic vision and sleep disturbance for
blue light-filtering IOLs appear to be minimal, and may not
be clinically relevant [15]. In this review, we will provide
those additional, references for scotopic vision [16, 17] and
for circadian rhythm-sleep disturbance [10, 13, 18] which
were not discussed or cited in this pro-blue light-filtering
view point paper [15].

Since the publication of the pro and anti blue light-
filtering reviews, some new relevant computational and
clinical studies have been performed by the current authors
and others, and are included in this updated review.

Ultimately, as part of the informed consent process,
patients must make decisions regarding various advanced
technology features of the prosthetic lens which will be
used to rehabilitate their vision after cataract surgery. The
choice between UVR with blue light-filtering and UVR-
only filtering IOLs represents one of those decisions. The
objective of this article is to provide an updated review and
clinical perspective to practicing surgeons so that they can
inform and guide their patients regarding their choice of an
IOL. This updated review addresses potential risks and
benefits for blue light-filtering IOLs by providing relevant
results and discussion of all studies up to February 2011.

Material and methods

In order for this to be an updated review, we carried out an
exhaustive literature search using resources of Pubmed and
American Society of Cataract and Refractive Surgery for
each of the issues of photoreception and the various types
of studies for photoprotection for the blue light-filtering
IOLs. We then created, and present here, a summary of all
currently available (to February 2011) results of all relevant
investigations on photopic vision, mesopic vision, scotopic
vision, and sleep disturbance related to photoentrainment of
circadian rhythm. New investigations which test for glare
and photopic vision performance and sleep disturbance are
also presented, since they were not addressed in the recent
review papers. Available results of in-vitro, animal, clinical
and epidemiological studies are also summarized. We also
refer to and discuss a new systematic review for cataract

surgery and progression of AMD, and the EUREYE
epidemiological study for AMD and blue light exposure.
These summaries and discussions provide an overall risk/
benefit analysis to create an updated clinical perspective for
selection of IOLs with or without blue light-filtering
technology.

Results

Concerns about the performance of blue light-filtering IOLs
[2—8, 14] can be divided into three categories: 1. quality of
vision: photopic and mesopic photoreception, which
includes measurements of visual acuity, contrast sensitivity,
glare, and color vision under those conditions, and scotopic
photoreception; 2. photoentrainment of the circadian
rhythm and its consequences on sleep; and 3. the potential
for retinal protection from high-energy short-wavelength
light and its implication in the process of AMD. Various
existing and new investigations for comparative evaluations
of IOLs and their results relevant to such concerns and
questioning are given below, with special emphasis on
those which were not discussed in the recent review and
viewpoint papers [9, 14, 15].

Photoreception in pseudophakic eyes with the blue
light-filtering IOLs

Photopic and mesopic vision: visual acuity, contrast
sensitivity, and glare

At least 15 prior comparative clinical investigations in
pseudophakic eyes exist [17, 20—33]. Included in this list is
one for United States Food and Drug Administration
approval, in which one of us (Davison) participated, for
comparing blue light-filtering IOLs versus UVR-filtering
IOLs [27]. None of these investigations showed any
negative effect on visual acuity or contrast sensitivity for
blue light-filtering IOLs in normal eyes for photopic and
mesopic vision. Three comparative clinical investigations
for blue-light filtering IOLs have reported improved
contrast sensitivity [34—36]. Rodriguez-Galietero et al.
reported that blue light-filtering IOLs provide better
contrast sensitivity in diabetic eyes, without inducing any
defect in color vision [35]. Niwa et al. reported improved
contrast sensitivity in photopic and mesopic conditions for
middle spatial frequencies of 6 and 12 c/deg for blue light-
filtering IOLs in healthy normal eyes [34]. In addition, they
reported that blue light-filtering IOLs reduced the effect of
central glare during contrast sensitivity testing. It should be
noted that this clinical investigation used a 3 mm artificial
pupil, thereby controlling retinal illumination and ocular
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aberrations. Yuan et al. also reported statistically significant
higher contrast sensitivity in healthy normal eyes implanted
with blue light-filtering IOLs [36].

External yellow filter investigations

In addition to clinical investigations for yellow-tinted IOLs,
there are several investigations in phakic human subjects
which have also reported improvement in contrast sensitivity
with external yellow filters [37—43]. The degree of the
improvements depended on the transmission characteristics
of the filters and wavelengths of the targets and backgrounds.
Several explanations have been proposed for these improve-
ments. They include a reduction of short-wavelength light
scattering, reduction in chromatic aberration, and an increase
in contrast between long-wavelength targets against short-
wavelength backgrounds. A detailed investigation [38] with
yellow goggles also reported an increase in perceived
brightness, and faster reaction time for detection of midrange
spatial frequency gratings of low contrast. These results were
discussed by the investigators in view of known retinal
circuitry based achromatic/chromatic theory of color vision.
According to this theory, the achromatic system detects
brightness by addition from middle- and long-wavelength
cones, and the chromatic system detects color by subtraction
of the output of one type of cone from the activity of another
type of cone, resulting in the red—green and the yellow—blue
opponency [38]. Care in interpreting these results needs to be
taken though, since external filters modify the natural
transmission of light in phakic eyes. The filters act like
sunglasses, and add to the normal reduced transmission of
shorter wavelengths by the crystalline lenses. This creates an
additive cumulative filtering effect which would be greater
than if such filters were tested in pseudophakic eyes
implanted with UVR-only filtering IOLs.

Glare studies

The following two new comparative clinical investigations
found improved driving against glare for the blue light-
filtering IOLs and reduced glare, faster photostress recovery,
and improved heterochromatic contrast threshold for the blue
light-filtering IOLs [44, 45].

New clinical investigation #1 of 2011 for glare

Gray et al. reported a comparative cross-sectional clinical
investigation using a driving simulator to assess the effect
of glare in normal healthy elderly pseudophakic eyes on
driving performance against low-sun conditions [44]. All
patients had good visual acuity and a valid driver’s license.
The simulator required the patient to make left-turn
maneuvers at an intersection which required judgment of

@ Springer

safety against possible collision with oncoming vehicles in
the opposite lane. The safety margin was defined as the time to
collision minus the time taken to turn at the intersection with
oncoming traffic. The same measures were also made in the
presence of a glare source simulating low-sun conditions as in
day-time driving. In subjects implanted with blue light-
filtering IOLs, the reduction in left-turn safety margin
produced by glare (mean + SD=0.445+0.237 seconds) was
significantly less (p<0.001) than the reduction in left-turn
safety margin produced by glare for subjects implanted with
only the UVR-filtering IOL (mean + SD=0.775+0.242
seconds). Furthermore, when compared between no-glare
and glare conditions, subjects implanted with blue light-
filtering IOLs showed significantly lower glare susceptibility,
experienced a significantly lower number of collisions with
the oncoming car, had a significantly lower impact on
intersection approach speed, and made a significantly lower
percentage of turns in front of approaching vehicles than
subjects implanted with UVR-filtering IOLs. The authors
concluded that the real-world benefit of blue light-filtering
IOLs is presumably mediated by a stronger signal to detect
approaching objects (motion-in-depth signal) in the presence
of glare, as a result of an increase in the contrast of the retinal
image of the oncoming vehicle [44].

New clinical investigation #2 of 2010 for glare

Hammond et al. reported a comparative clinical investigation
in normal healthy elderly (average age 76+9 years) pseudo-
phakic eyes with a blue light-filtering IOL in one eye and a
UVR-filtering IOL in the contralateral eye [45]. They
employed a two-channel Maxwellian view optical bench
set-up which eliminated the effects of variably sized natural
pupil diameters as they conducted three clinical experiments.
In the first, they found a significant reduction in glare
disability using a bright white light annulus while detecting a
central 645 nm dominant (light orange) target grating of 8 ¢/
deg. A 1.97+0.44 log uW/cm? intensity was required of the
glare-producing annulus to produce a disappearance of the
target in the group of eyes with blue light-filtering IOL,
versus 1.88+0.43 log uW/cm? for the group of eyes with
UVR-filtering IOL (P=0.04). The authors emphasized that
similar situations are likely to occur in the real world when a
driver is looking into oncoming headlights. By filtering some
of the abnormally high amount of transmitted short-
wavelength light that is transmitted in the UVR eyes, the
visibility of a target within an individual’s line of sight would
be improved, as was demonstrated by the simulation in this
study. The glare source used in the study was generated by a
Xenon bulb which has relatively greater energy contributed
from longer wavelength than shorter, but was basically white
light containing energy across the 400—700 nm region. The
extent to which an intraocular filter absorbs the short-
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wavelength scattering source should determine the degree to
which that filter will reduce glare disability with respect to
identification of longer wavelength targets. Consistent with
this presumed mechanism, a past study that presented stimuli
with relatively little short-wavelength background energy to
subjects with blue light-filtering IOLs reported minimal
effects on glare disability [17]. Under natural conditions, i.e.,
outdoors in sunlight, the effect of a blue light-filter on glare
disability could be even more substantial, since the natural
background could contain even more short-wave energy. In
the second experiment, they found an average 5-second
faster recovery to visualize the same central target after
photostress created by a 24° field exposure for 5 seconds of
5.0 log Trolands intensity from the same Xenon bulb source
[45]. Such a faster recovery while driving at 60 miles per
hour equates to 440 feet distance travelled, and thus may
provide safer driving against bright oncoming headlight or
bright sun at low angle. The contralateral design of the study
eliminated many other factors which might have influenced
the kinetics of regeneration of bleached photopigment and
the results thus depended only on the filtering differences
between the two IOL types. In the third experiment, they
found significantly better heterochromatic contrast threshold
for detection of the same mid—long wavelength halogen light
illuminated target grating against a progressively brighter
430 nm blue background for eyes with blue light-filtering
IOLs. Better detection of the target against the background,
which was selected to simulate blue sky atmospheric haze,
suggests better detection of targets in real-world outdoor
conditions [45].

Color vision in photopic and mesopic conditions

Human color vision results from complex neurophysiologic
renormalization processes which address change in trans-
mittance of ocular media, variations of luminance and
spectral composition [46—49]. This results in color constan-
cy with varying illumination conditions, and in a relatively
stable suprathreshold color perception with minimal effect
of aging. A recent study by Hoffmann et al. compared
multifocal electroretinograms with or without blue light-
filtering in the same pseudophakic eyes which had colorless
IOL. They found a minor short term effect of blue light-
filtering; thus suggesting an insignificant difference in
activity at the input stage of the visual system [50].
Supporting this physiology of color vision, there are at
least 17 clinical studies which found no significant
difference in color vision between eyes with blue light-
filtering IOLs and eyes with UVR-filtering IOLs in
photopic and mesopic conditions [16, 17, 20-28, 30, 31,
33, 35, 51, 52]. Additionally a questionnaire-based study
assessing quality of life also did not find any difference
between the two types of IOLs [53]. This was also true for

eyes with preexisting color vision defects [54]. A clinical
investigation with a separate evaluation of box 3 of the FM
100-hue test showed a difference between the two IOL
types for the first 6 months postoperatively under photopic
condition and even for up to about 1 year in mesopic
condition, but all measured total error scores were within
the normal range of overall color perception [55]. Some
of the recent clinical investigations for comparative color
vision reported color vision testing results as equivalent
under photopic conditions, but with more mistakes for
blue light-filtering IOLs under mesopic conditions for blue
to blue—green bands of color discrimination at 1 and
8 weeks to 3 months postoperatively [29, 32, 56]. But
none of them reported any significant difference in overall
color discrimination or discomfort in mesopic conditions
when subjective perception evaluation was carried out by
a questionnaire to the patients [27, 32, 33, 56]. Also, any
concern for mistakes primarily only during mesopic
condition for hue discrimination testing for blue to blue—
green bands of color needs to be balanced against any lack
of effect on overall subjective color discrimination and the
potential benefit that blue light-filtering might provide
against potential damage of shortwave-sensitive aging
retina at neural level by cumulative exposure to high-
energy photons [57-59], which UVR-filtering IOLs will
allow for many years.

Patients such as artists, clothing and apparel designers,
etc., who have a finer sense of color perception, have
reported post-operative cyanopsia and difficulty in color
matching for UVR-filtering IOLs and their reduction by
blue light-filtering [1, 60—62]. However, according to one
study, post-surgical cyanopsia with UVR-filtering IOLs
tended to disappear 3 months after surgery suggesting some
level of adaptation over time [24]. Another recent study
reported that three patients out of 24 found differences in
perception between the eye implanted with a blue light-
filtering IOL compared to the fellow eye implanted with a
UVR-filtering IOL [63]. All three patients had jobs
(paperhanger, architect, and florist) dealing with fine
discrimination of colors. Thus, mixed implantation in such
patients should probably be avoided. But for the majority of
patients without such a highly developed sense of color
perception, the overall conclusion from all available studies
is that there is no significant difference in color perception
between eyes implanted with blue light-filtering and eyes
implanted with UVR-filtering IOLs in either photopic or
mesopic conditions.

Short wavelength automated perimetry (SWAP)
Results of a 24 degree field full-threshold short-wavelength

automated perimetry (SWAP), also known as blue on
yellow test, was reported to be without any statistically
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significant difference between a blue light-filtering IOL in
one eye and UVR-only filtering IOL in fellow eye in 27
elderly patients [64]. Another recent study compared the
results between standard perimetry and SWAP in similar
patients, and found some difference in results for SWAP
between the clear and blue light-filtering IOLs [65]. A
detailed correspondence on this paper discussed the
limitations of the study, and suggested a need for caution
in conducting SWAP in elderly patients and identifying
clinical significance through interpretation of its results
[65—67]. Another paper using a blue-on-yellow test restricted
to 10-degree macula field test in a similar type of patients
reported only foveal threshold differences [63]. The foveal
threshold results were mostly overlapping, but with a
statistically significant difference between the two IOLs,
attributable to abnormally high transmission of 440 nm blue-
light through the UVR-filtering IOL. Results for both IOLs
were similar to those found in a normal age-matched phakic
population [63].

Scotopic vision

Scotopic vision is realized in environments of extremely
low luminance after dark adaptation, and is totally mediated
by rods. Blue light-filtering IOLs filter more of the
overlapping wavelengths of scotopic spectral sensitivity
curve compared to UVR-filtering IOLs. Thus, there is a
theoretical potential for a decrease in scotopic vision in
eyes implanted with blue light-filtering IOLs. The possible
advantages of UVR-filtering IOLs for better scotopic vision
performance have been discussed and intensely investigated
both by computational investigations and in clinical studies
as follows.

Computational investigations for scotopic vision

The first computational paper addressing blue light-filtering
IOLs and scotopic vision was written by authors in the
school not favoring those IOLs [5]. This paper had two
sources of significant error. The first error was related to the
transmission curve used to characterize the blue light-
filtering IOL, and the second was related to the application
of a phakic rather than aphakic scotopic spectral sensitivity
curve. These errors were discussed and placed in a more
clinically appropriate context after different computations
were carried out by Schwiegerling, one of the authors of
this article [68]. The more appropriate computational result
demonstrated a net increase of 52% in scotopic spectral
sensitivity relative to a young phakic individual, instead of
the earlier reported 25.5% decrease in scotopic spectral
sensitivity compared to a patient with a UVR-filtering IOL
[5, 68]. Comparative computations showed a larger increase
in scotopic spectral sensitivity for UVR-filtering IOLs, the
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differences between the two types of lenses being propor-
tional to the areas under their respective transmission
curves. However, according to the later computations, both
types of lenses cause dramatic increases in the amount of
light available to the pseudophake when compared to
phakic young subjects [68]. Thus any concern for the
adequacy of scotopic vision with blue light-filtering IOL
should be allayed with this more appropriate computation,
which was further discussed in two letters and their replies
[4, 69-71]. Wemer presented an additional significant
perspective on the expected consequences of the difference
between the two IOLs after discussing the principal of
univariance for the wavelength-independent effect of
photons for scotopic vision [72]. He concluded that under
broadband illumination the expected reduction in scotopic
sensitivity of ~0.07 log unit for blue light-filtering IOL is
visually insignificant relative to the ~4.0 log unit range of
scotopic sensitivity, and it translates to a contrast sensitivity
reduction of only ~0.01 log unit [72]. He expressed the
view that this difference is too small to reliably detect for
broadband stimuli [72].

The three investigations summarized below were under-
taken to discover any clinically significant difference
between the two types of IOLs for scotopic vision
performance [11, 16, 17]. These papers have not been
collectively discussed in the recent review or viewpoint
papers [9, 14, 15] and none of them were reported in the
anti-blue light-filtering viewpoint paper [14].

Clinical investigation #1 of 2007 for scotopic vision

Muftuoglu, one of the authors of this article, reported an
investigation which studied the right eyes of 38 patients
implanted with blue light-filtering IOLs and right eyes of
38 age-matched control patients implanted with UVR-
filtering IOLs [17]. Scotopic contrast sensitivity was
measured in all eyes in similar fashion using a Mesotest 11
apparatus. No clinically statistically significant difference in
scotopic contrast sensitivity was found between the blue
light-filtering and UVR-filtering IOLs with and without
glare. The difference in the spectra of stimuli and glare
source between the Mesotest II apparatus and the Maxwel-
lian two-channel apparatus used in the new clinical
investigation #2 of 2010 for glare as given above, may
explain the difference in effect of glare between the two
studies [17, 45].

Clinical investigation #2 of 2007 for scotopic vision

Greenstein et al. reported a clinical investigation in nine
patients, each having a blue light-filtering IOL in one eye
and a UVR-filtering IOL in the fellow eye [16]. They
measured dark-adapted scotopic spectral sensitivities at
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440 nm, 500 nm and 650 nm for each eye using a
Humphrey Field Analyzer, and did not find any significant
difference in sensitivities between the two groups of eyes.
They also reported no difference in hue discrimination
performance between the groups as measured by the
Farnsworth—Munsell (FM) 100-hue test [16].

Clinical investigation#3 of 2008 for scotopic vision

Kiser et al. reported a comparative clinical investigation in
22 bilateral pseudophakes having UVR-filtering IOLs [11].
All patients, average age 81 years, had early AMD with
visual acuity >6/24. A full-field flash test was done to
measure scotopic threshold in dilated dark-adapted eyes of
these patients with and without a filter, with transmission
characteristics of a widely used blue light-filtering IOL. No
significant difference in scotopic threshold was found in
these tests. Scotopic sensitivity of these patients was
measured by determining their timed performance during
block manipulation and walk-through of two different
mobility courses in the scotopic illumination, with and
without a NoIR Medical’s wrap-around 751 H filter. This
filter closely mimics the spectral characteristics of the same
blue light-filtering IOL, but exaggerates its attenuation
(1.76 db vs 0.47 db). The results of neither of these tests,
which had been designed to simulate situations that patients
might encounter in real life, produced a clinically signifi-
cant difference in performance. It should be noted that the
second test was done with a filter that exaggerated the
filtering characteristics as compared to blue light-filtering
IOLs, and hence the color discrimination test done by these
patients did not represent that for the blue light-filtering
IOL [11].

Photoentrainment of the circadian rhythm and sleep
disturbances

The following computational and supporting clinical
investigation for objective assessment of sleep disturbance
related to circadian rhythm were unavailable in the 2009
review paper by Cuthbertson et al., and incompletely
available and discussed in the two 2010 viewpoint papers
[9, 14, 15].

Computational investigation of 2009

Patel, one of the authors of this article, reported new
computations after study and review of eight available
action spectra for photoentrainment of the circadian rhythm
[13]. Earlier investigations for UVR-filtering IOLs by
Charman, and those published subsequently for both types
of IOLs by the authors opposing the blue light-filtering
IOL, used an action spectra for photoentrainment with a

peak of 460 nm [3, 7, 14, 73]. This peak was based on two
action spectra published in 2001 with serious errors of
construction, as discussed in detail in this latest computa-
tional investigation [13]. Subsequent to the discovery of
intrinsically photosensitive retinal ganglion cells (ipRGC)
in 2002, many investigations, including a new melatonin
suppression study in humans, found action spectra for
photoentrainment with much higher peaks—from 480 to
500 nm [13, 18]. Using these more updated action spectra,
the new computational study concluded that both blue
light-filtering IOLs and UVR-filtering IOLs can be
expected to provide adequately effective photoentrainment
of the circadian rhythm, including melatonin suppression,
under average household illumination [13]. The following
two clinical investigations have validated the expectations
of this computational study.

To clinical investigations for sleep disturbance related
to circadian rhythm

Landers et al. reported a comparative retrospective sleep
study in patients with bilateral implantation of either UVR-
filtering or blue light-filtering IOLs [12]. The results of the
Pittsburg Sleep Quality Index (PSQI) questionnaire, with
almost 20 years of demonstrated validity and reliability,
showed no significant difference on any effect of sleep
quality between the two groups of patients, who had a mean
age of 80+8 years [12].

In another prospective sleep study, Cunha, one of the
authors of this article, employed the same PSQI question-
naire method plus an additional objective 7-day actigraphic
monitoring method and the Epworth Sleepiness scale in two
groups of elderly patients, with bilateral implantation of
either UVR-filtering or blue light-filtering IOLS [10]. The
evaluations demonstrated no detectable clinical differences
in sleep quality between the two groups of patients. It
should be pointed out that this study is a very small study
with only 16 bilateral pseudophakic patients divided into
two groups of eight each with UVR-filtering and blue light-
filtering IOLs [10]. Such quantitative studies, even though
difficult, need be accomplished with a greater number of
patients.

The rationale for photoprotection of the pseudophakic
retina by blue light-filtering IOLs

The natural human crystalline lens filters and thereby
protects the retina against potential damage from high-
energy photons of UVR and short-wavelength visible light.
Reviews of phototoxicity by UVR and visible light and the
relationship between cumulative photon energy and wave-
length are available elsewhere [1, 9, 74]. Following
removal of the cataractous lens, the protection of the retina
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in a pseudophakic eye depends upon the filtering provided
by the cornea and the implanted IOL. Initially, IOLs did not
filter significant UVR or any visible light. UVR-filtering
IOLs were created in the early 1980s, after erythropsia and
CME developed postoperatively in some pseudophakic
patients. The potentially harmful effects of UV radiation
were also demonstrated in animal studies. No clinical
studies were done to validate the rationale of UVR filtering,
primarily because the UVR filtering could not negatively
affect vision, since visible wavelengths remained unaffected
by such filtering. The photon energy of the lower wave-
lengths of visible light is also relatively high, and has also
been found to generate retinal damage in animal studies
with acute, intermittent, and chronic exposures, including
the so-called “blue-light hazard” [1, 9, 74—76]. Additionally
there is a considerable age-related accumulation of lipofuscin
in the retinal pigment epithelium (RPE) of elderly eyes. This
accumulation and associated photochemical processes results
in free radical generation and oxidative stress which can
create cell damage [9]. This age-related lipofuscin
accumulation-mediated retinal phototoxicity for shorter-
wavelength light exposures, along with potential depletion
of anti-oxidants, plays a potential role for AMD, as critically
reviewed by Young in the late 1980s [77, 78]. Subsequently,
considerable new research has been published on the
processes resulting in age-related macular degeneration and
pathobiology of RPE lipofuscin [74, 79—83]. Several inves-
tigators [78, 84, 85] in the 1980s had logically suggested
additional filtering by IOLs for lower-wavelength light.
Thus, the rationale of blue light-filtering IOLs is to provide
protection against retinal phototoxicity and to minimize the
risk factor of excessive transmission of short-wavelength
high-energy light for developing or accelerating AMD after
cataract surgery. By selecting transmission and thus filtering
characteristics that would mimic that of the young adult
human lens, photoreception function was not expected to be
negatively affected, and indeed the results given earlier in
this article confirm that this expectation has been met.

The following investigations support the scientific ratio-
nale of retinal protection in pseudophakic eyes provided by
blue light-filtering IOLs.

Computational investigations for age-dependent lipofuscin
mediated retinal phototoxicity

Margrain et al. computed age-dependent relative phototox-
icity action spectra and the increase in relative phototoxicity
related to RPE lipofuscin accumulation for phakic eyes of
various ages [86]. They arrived at these action spectra by
combining the effect of the available data for human
lipofuscin accumulation with age, the laboratory data of
photoreactivity of lipofuscin in isolated human RPE cells
from human donors, and the age-related reduction in
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transmission characteristics of the human crystalline lens.
Their computations reveal an almost 9-fold increase in
relative retinal phototoxicity from the first to ninth decades
of life in phakic eyes. Subsequently, age-dependent aphakic
action spectra were created for an additional computational
study for pseudophakic eyes participated in by Patel, one of
the current authors [87]. This study computed lipofuscin
accumulation-mediated relative retinal phototoxicity and
protection offered by various IOLs. It demonstrated that
lipofuscin accumulation-mediated retinal phototoxicity
increases significantly with age, and is significantly higher
with UVR-filtering IOLs than for blue light-filtering IOLs
in elderly pseudophakic eyes [87].

In-vitro and animal investigations showing retinal
protection by blue light-filtering IOLs

While there are many in-vitro investigations on the
damaging effect of blue light on RPE cells as mediated
by the lipofuscin fluorophore A2E, there are five
independent in-vitro investigations which have reported
protection offered by blue light-filtering IOLs to human
RPE cells [88-92]. They found reduction in light
exposure induced death for RPE cells with accumulated
aging lipofuscin fluorophore A2E. They also found more
inhibition of light-induced VEGF production in cells
protected by blue light-filtering IOLs. These in-vitro
investigations thus support the scientific rationale for blue
light-filtering IOLs.

One comparative electrophysiological investigation in
pigmented rabbits reported less damage to their retinas
protected by blue light-filtering yellow IOL material, and
subsequently discussed its advantage for retinal protection
[93, 94].

Clinical and epidemiological investigations suggesting
the protective effect of filtering blue light

In a pioneering clinical investigation ranging up to 14 years
for various types of filtering by IOLs, Miyake reported
reduced blood—retinal barrier disruption and autofluores-
cence of the posterior polar retina in eyes with blue light-
filtering IOLs compared to those with UVR filtering after
5 years [95].

As reviewed earlier [1, 78], progression of AMD after
cataract surgery was reported as early as 1918 by van der
Hoeve in Graefe’s Archives of Ophthalmology [96]. A
recent systematic review and analysis of literature conclud-
ed that “The scientific level of evidence of these articles
was not high and results were inconsistent; nevertheless, a
promoting influence of cataract surgery on the progression
of early age-related macular degeneration can be assumed”
[97]. The Age-Related Eye Disease Study (AREDS)
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concluded that people older than 55 years with risk of
AMD should consider taking a supplement of antioxidants
plus zinc such as used in the study [98]. This investigation
confirmed the role of oxidative processes in AMD. An
ongoing epidemiological multi-country European Eye
(EUREYE) study recently reported an association between
cumulative environmental blue light exposure and neo-
vascular AMD in patients with low antioxidants in the
blood [99].

There is a new intriguing finding of an increase in the
density of yellow macular pigment in eyes with blue light-
filtering IOLs [100]. Long-term investigations are needed to
better understand this unanticipated finding and its impli-
cations for reduction of risk of AMD development and/or
its progression by blue light-filtering IOLs.

Need for definitive proof that blue light-filtration provides
protection against AMD

The above summarized totality of studies as well as the
variety of study methods provides adequate scientific
rationale to support the clinical use of blue light-filtering
IOLs, even without definitive proof of protection against
AMD, in the same reasonable way as UVR filtering was
accepted on scientific rationale without definitive clinical
trial. Extensive clinical trials, including the monitoring of
antioxidant blood levels as suggested by the EUREYE
study, are needed to prove beyond any reasonable doubt
that blue light-filtering IOLs protect against AMD by
delaying or minimizing its progress [99]. It is quite
understandable that these studies have not yet been carried
out, since they would be unrealistically long-term, complex,
and expensive [82, 99].

Discussion and conclusion

In practice, patients must make choices between the
advanced technological attributes of the IOLs they will
select to have implanted in their eyes. These important
choices will be based in part on their surgeon’s understanding
and recommendations of these available attributes. One
significant choice patients may make will be to select IOLs
which attempt to mimic the spectral transmission and
filtration of UVR and visible light of natural lenses, and
which are thus functionally “light-normalizing”. Or they
may elect to have IOLs implanted which filter only
UVR, but transmit, and thus fail to filter, greater than
normal amounts of high-energy short-wavelength elec-
tromagnetic radiation to their retinas [1].

The filtering effects of the natural human crystalline lens
and macular luteal pigments are intrinsic in the definition of
normal adult human photopic, mesopic, and scotopic

vision. Those pigments also provide protection of retina
against potentially harmful amounts of short-wavelength
violet and blue light. Recently discovered photosensitive
ganglion cells, along with rods and cones, help create
normal photoentrainment of the circadian rthythm, which is
accomplished with blue light-filtering IOLs just as it is by
the natural human crystalline lens. Thus, blue light-filtering
IOLs which mimic the various functions of natural lenses
are intended to restore cataract patients to as close as can be
approximated normal adult human vision and circadian
rhythm, while providing protection of retina against short-
wavelength light. This clear reasoning in favor of the use of
blue light-filtering IOLs has been questioned by some
authors, based on their comparative theoretical computa-
tions between the two types of IOLs [3, 5, 7, 14]. They
have stated potential risks of reduced scotopic vision and
photoentrainment of circadian rhythm, resulting into poten-
tial sleep disturbance. However, these concerns should be
allayed by subsequent computations which better contribute
to understanding and appreciation of their clinical signifi-
cance as summarized above [13, 68]. More important, none
of the new independent clinical studies found these risks to be
clinically significant. We have reasonably demonstrated that
there is no risk for scotopic vision performance based on the
presented results of one computational and three clinical
investigations. We have also reasonably shown that there are
no risks for circadian photoentrainment and sleep disturbance
based on the presented results of one computational and two
clinical investigations. Additionally, these new investigations
have not identified any clinically significant incremental
benefit for IOLs which filter only UVR. Finally, patients
function almost entirely under photopic (daylight, office, and
normal home illumination) or mesopic conditions (night
driving which does not involve subtle hue discrimination in
the blue—green band of colors) and hardly ever function in a
scotopic (moonless night) environment. Thus, pseudophakic
patients with UVR-filtering IOLs could suffer the potential
damaging effects of excessive short-wavelength light trans-
mission almost all of the time, without a meaningful chance to
receive some potential benefits that have been clinically
undetectable.

Additionally, two new investigations comparing glare
effects between the two IOLs indicate benefits of blue light-
filtering IOLs for reducing glare, improving heterochromatic
contrast sensitivity, reducing photostress and reducing glare
while driving [44, 45].

Clinical trials for blue light-filtering IOLs which might
demonstrate delays in onset or reductions in progression
and severity of AMD after cataract surgery have yet to be
carried out. However, available results of in vitro, animal,
computational, clinical, and epidemiological investigations
generally support the scientific rationale that retinal photo-
protection might be an important potential benefit derived
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from the use of blue light-filtering IOLs. The EUREYE
study [99] has shown that patients with a low blood level of
antioxidants are especially vulnerable to blue-light expo-
sure. This finding also corroborates findings of the AREDS
study [98] which recommended supplements of antioxi-
dants and zinc for patients with high-risk AMD. Both of
these studies validate the scientific hypothesis that high-
energy blue light and its associated oxidative processes are
potential risk factors for AMD, especially in elderly
pseudophakic eyes [9, 74, 77-83].

In summary, blue light-filtering IOLs have no clini-
cally substantiated risks and have potential to create the
benefits of better vision and reduced glare, and may have
a protective effect against retinal phototoxicity and the
development and progression of AMD. This risk/benefit
analysis provides a clinical perspective which suggests
the selection of blue light-filtering IOLs for use in
pseudophakic patients. This choice is especially prudent
in modern times, when an increasing number of IOL
implantation surgeries are being done for pediatric
cataract patients and for clear lens exchange in younger
presbyopic patients, both of them with expected signif-
icantly longer duration of life after such surgeries. The
size of the elderly cataract population and their longevity
are both expected to increase globally because of
continued economic development [I, 101]. Current
treatment modalities for advanced AMD are very expen-
sive and limited in their effectiveness. Thus, implantation
of blue light-filtering IOLs which mimic the natural
human lens should be considered as a safe and relatively
inexpensive preventive measure to reduce the potential
risk for retinal phototoxicity and its associated potential
risk for AMD in pseudophakic eyes.
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