
NEUROT E CHN I QU E

Cross multivariate correlation coefficients as
screening tool for analysis of concurrent
EEG-fMRI recordings

Hong Ji1 | Nathan M. Petro2 | Badong Chen1 | Zejian Yuan1 | Jianji Wang1 |

Nanning Zheng1 | Andreas Keil2

1Institute of Artificial Intelligence and

Robotics, Xi’an Jiaotong Univeristy,

28 Xianning West Road, Xi’an, 710049,

P. R. China

2Center for the Study of Emotion and

Attention, University of Florida,

P.O. Box 112766, Gainesville, FL, USA

Correspondence

Badong Chen, Institute of Artificial

Intelligence and Robotics, Xi’an Jiaotong

Univeristy, 28 Xianning West Road, Xi’an

710049, P. R. China.

Email: chenbd@mail.xjtu.edu.cn

Funding information

973 Program, grant number:

2015CB351703 and the National Natural

Science Foundation, grant number:

91648208 (to Badong Chen). The National

Institute of Mental Health, grant numbers:

R01MH097320 and R01MH112558 (to

Andreas Keil). The funding sources had no

involvement in the study design. The

authors declare no competing financial

interests

Abstract
Over the past decade, the simultaneous recording of electroencephalogram (EEG) and functional

magnetic resonance imaging (fMRI) data has garnered growing interest because it may provide an

avenue towards combining the strengths of both imaging modalities. Given their pronounced dif-

ferences in temporal and spatial statistics, the combination of EEG and fMRI data is however

methodologically challenging. Here, we propose a novel screening approach that relies on a Cross

Multivariate Correlation Coefficient (xMCC) framework. This approach accomplishes three tasks:

(1) It provides a measure for testing multivariate correlation and multivariate uncorrelation of the

two modalities; (2) it provides criterion for the selection of EEG features; (3) it performs a screen-

ing of relevant EEG information by grouping the EEG channels into clusters to improve efficiency

and to reduce computational load when searching for the best predictors of the BOLD signal. The

present report applies this approach to a data set with concurrent recordings of steady-state-visual

evoked potentials (ssVEPs) and fMRI, recorded while observers viewed phase-reversing Gabor

patches. We test the hypothesis that fluctuations in visuo-cortical mass potentials systematically

covary with BOLD fluctuations not only in visual cortical, but also in anterior temporal and prefron-

tal areas. Results supported the hypothesis and showed that the xMCC-based analysis provides

straightforward identification of neurophysiological plausible brain regions with EEG-fMRI covari-

ance. Furthermore xMCC converged with other extant methods for EEG-fMRI analysis.
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1 | INTRODUCTION

It is well established that the quantitative analysis of large-scale spatio-

temporal brain dynamics in humans is constrained by limitations of the

available imaging techniques in terms of spatial and temporal resolu-

tion. A sizable literature has emphasized the obvious difference in the

physiological processes reflected in fMRI and EEG: The blood oxygen

dependent (BOLD) signal is thought to reflect magnetic field changes in

response to a chain of events that begins with local neural activity, fol-

lowed by influx of oxygenated hemoglobin molecules, which in turn

alters the ratio between oxygenated and deoxygenated hemoglobin

molecules in local blood vessels (Menon & Kim, 1999). On the other

hand, Electroencephalography (EEG) reflects to a large extent the sum-

mation and massive spatial low-pass filtering of postsynaptic events

occurring simultaneously in large populations of cortical neurons with

similar spatial orientation (Nunez & Srinivasan, 2006).
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Although the biophysics of the neural-to-hemodynamic transfer

function are not fully understood, several studies have demonstrated

the benefit of combining electrocortical information with BOLD, for

example to characterize potential cerebral sources of a given scalp

EEG/ERP phenomenon, or to conduct EEG-informed fMRI analyses

that more selectively reflect a given neural process, compared to

BOLD-alone approaches (Huster, Debener, Eichele, & Herrmann,

2012). In translational and clinical studies, the concurrent analysis of

EEG and fMRI has shown promise for improving localization accuracy

and sensitivity/specificity, for example in the pre-surgical evaluation of

epilepsy (Gotman, Kobayashi, Bagshaw, B�enar, & Dubeau, 2006). The

strengths and weaknesses of different approaches—useful for different

research questions and in the context of different paradigms—are dis-

cussed in introductory reviews (Huster et al., 2012; Laufs, 2012).

Consistent with recent empirical studies into the nature of the

BOLD signal (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001;

Logothetis, 2015), and with the biophysics of EEG (Nunez & Srinivasan,

2006), the present approach assumes that covariation between EEG

and fMRI signals accounts only for fraction of the variance of each

measure (Herrmann & Debener, 2008). Specific aspects of the correla-

tion between EEG and fMRI signals may reflect responses to experi-

mental events seen in both modalities, mixing trivial effects of joint

reactivity of EEG and fMRI to salient external events with correlations

of interest such as condition-specific covariation, or covariation with

various cognitive states (Liu, Huang, McGinnis-Deweese, Keil, & Ding,

2012a). In addition, and of relevance in the absence of experimental

stimulation, specific portions of the covariance between modalities

may reflect neural-hemodynamic dependencies in spontaneous,

ongoing brain activity. To capture and separate these different types of

covariation, we propose an exploratory framework to quantify the

spatial-temporal correlations between the time series of fMRI BOLD

and EEG-derived features, which is based on a novel linear dependency

measure (Figure 1). The present approach primarily contributes to EEG-

informed fMRI analysis (Huster et al., 2012), and identifies EEG fea-

tures and sensor (or source) locations with strong linear dependency

relative to specific hemodynamic processes of interest. Thus, it may

address questions regarding localization of specific EEG features and

assist in screening for multivariate relations between measurement

modalities. Importantly, although the present approach does require

estimation of temporal lag between neural and hemodynamic events, it

does not involve strong assumptions regarding a specific shape of the

hemodynamic response function (HRF), which has been discussed as

potential limitation in EEG-fMRI fusion (Huster et al., 2012).

Linear relation (correlation) is arguably one of the most fundamen-

tal concepts in statistics (Mari & Kotz, 2001), and variants of correlation

analyses are at the core of most analytic techniques in neuroimaging

and electrophysiology (Pourahmadi & Noorbaloochi, 2016), including

recent trends towards spatial network analysis (Henriksson, Khaligh-

FIGURE 1 Integration of EEG and fMRI with cross multivariate correlation coefficients. (1) EEG and fMRI are recorded simultaneously (2)
Artifact handling and preprocessing for EEG and fMRI separately 3. Fusion of EEG and BOLD time series: a) EEG feature extraction b) EEG-
derived feature predictors are selected and grouped into regions with differential correlation between EEG and BOLD. c) Cross multiple cor-
relation of the two modalities with xMCC. 4. Method check and statistical inference: a) Determining time lags between EEG and BOLD. b)
Quantifying the contribution of EEG features as proportional reduction of error in BOLD prediction; c) Cross multivariate correlation maps
are thresholded based on a permutation test. [Color figure can be viewed at wileyonlinelibrary.com]

Significance
Previous work with ssVEPs has observed task-driven and

spontaneous fluctuations, which co-vary with performance in

cognitive tasks and physiological arousal. Testing the re-entrant

hypothesis and identifying sources of modulatory signals has

however been difficult with EEG-alone or BOLD-alone

techniques. The study examines the potential of combined EEG-

fMRI recordings for addressing this question while introducing a

processing framework.
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Razavi, Kay, & Kriegeskorte, 2015; Park & Friston, 2013). Many alterna-

tive methods for EEG-BOLD fusion exist, and the present paper cannot

address all of these methods. For example, information theoretic

approaches (Ostwald, Porcaro, & Bagshaw, 2010; Ostwald, Porcaro, &

Bagshaw, 2011) have been proposed, which apply information criteria

such as mutual information to quantify the association of multimodal sig-

nals. Althoughmutual information is computed from the probability distri-

bution of the signal, which encompasses correlations at any order and

captures nonlinear dependencies as well, it is difficult to estimate with

small samples and quite sensitive to free parameters (the number and size

of bins, the upper and lower limit of the bins in each dimension, etc.),

especially for high-dimensional variables (Principe, Xu, & Fisher, 2000;

Chen et al., 2013). In our study, we intended to capture the relationship

between multiple EEG features and fMRI responses recorded simultane-

ously, which poses additional challenges for reliably estimating their joint

distribution. The present framework at its core combines a segmentation

and identificationmethod for EEG featureswith amultivariate correlation

approach, which is robust and capable of capturing event-related as well

as spontaneous covariation between electrophysiological and hemody-

namic time series. Given its ability to address these issues with a mathe-

matically straightforward approach, the present framework may

represent a valuable first step towards identifying symmetrical BOLD-

EEG dependencies, which can be followed up bymeans of more complex

fusionmethods (see Abbott, 2016, for a review).

To introduce and validate this approach, we use data from an

experiment in which EEG and fMRI were recorded simultaneously

while participants viewed periodically (10Hz) phase-reversing Gabor

patches (sine-wave gratings), evoking steady-state visual potentials

(ssVEPs). The ssVEP is an oscillatory response of the visual cortex eli-

cited by luminance or contrast-modulated stimuli, which equals that of

the driving stimulus (Regan, 1989; Spekreijse, Dagnelie, Maier, &

Regan, 1985). Because ssVEPs are defined as activity in a single,

known, bin of the EEG spectrum, they typically possess high signal-to-

noise ratios and can be reliably quantified at the level of individual trials

(Keil et al., 2008). The ssVEP technique thus represents a robust and

reliable method for non-invasively isolating population-level neuronal

responses at low levels of the traditional visual hierarchy, very well

suited for cross-validation of EEG-fMRI analyses, in which it has been

previously used (Sammer et al., 2005). In addition to introducing the

xMCC framework, we use concurrent recordings of ssVEPs and BOLD

signals to identify brain regions in which BOLD co-fluctuates with the

amplitude of the visuo-cortical popultion activity indexed by ssVEPs.

Previous work with ssVEPs has observed task-driven (Muller et al.,

2006; Wang, Clementz, & Keil, 2007) as well as spontaneous fluctua-

tions (Keil et al., 2008; Moratti & Keil, 2009) in this signal, which covary

with performance in cognitive tasks (Andersen, Hillyard, & Muller,

2008) and physiological arousal (Keil, Moratti, Sabatinelli, Bradley, &

Lang, 2005). One hypothesis to account for these fluctuations in visuo-

cortical response amplitude is that reentrant modulatory signals act to

amplify visuo-cortical gain in situations that require selective attention

or are associated with heightened arousal, or vigilance (Desimone &

Duncan, 1995; Bradley et al., 2003). Fronto-parietal as well as anterior

temporal and midbrain structures have been proposed as potential

sources of these modulatory signals (Hamker, 2005; Keil et al., 2009;

Pessoa & Adolphs, 2010). Testing the reentrant hypothesis and identi-

fying sources of modulatory signals has however been difficult with

EEG-alone or BOLD-alone techniques. The present study examines the

potential of combined EEG-fMRI recordings for addressing this ques-

tion while introducing the individual algorithms that make up the

framework proposed. Using different features of the time-varying

ssVEP, we present algorithms for identifying EEG predictors and for

quantifying correspondence between specific BOLD signals and the

EEG predictor. We then compare the results of this EEG-informed

fMRI analysis with fMRI-alone analysis and quantify the performance

of the xMCC approach for complementing BOLD with rich dynamics

inherent in concurrently recorded EEG. We also provide initial compari-

sons with alternative methods used for EEG-fMRI analysis.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants were 11 (5 female; age: mean521.5 SD53.2) undergradu-

ate and graduate students who, after giving informed consent, partici-

pated on a volunteer basis or received course credit in the General

Psychology course taught at the University of Florida. This sample size

was used to parallel previous studies quantifying EEG-BOLD covariation

across time, without specific consideration of different experimental con-

ditions (Ben-Simon, Podlipsky, Arieli, Zhdanov, & Hendler, 2008). It was

also chosen to facilitate reports of individual parameters obtained for

each participant (see results). All participants were screened for metallic

implants, claustrophobia, and history of seizure episodes. Female partici-

pants self-administered a pregnancy test prior to participation.

2.2 | Stimuli

Stimuli consisted of sinusoidal gratings multiplied with a Gaussian

envelope (i.e., Gabor patches) oriented at either 15 8 or 345 8 relative to

the vertical meridian, which reversed their phase every 100ms to evoke

a ssVEP. Consistent with previous studies of phase-reversal ssVEP

(Keil, Miskovic, Gray, & Martinovic, 2013, see Norcia et al. [2015] for a

review), we analyzed the second harmonic response (i.e., 10Hz). Gabor

patches had a maximum Michelson contrast of 95% (maximum5110

cd/m2; minimum52.1 cd/m2) and a spatial frequency of 0.45 cycles

per degree. Gratings were presented at a horizontal visual angle of

15.5 8 respectively, on a MR-compatible monitor placed outside the

scanner bore, which participants viewed via a mirror placed on the MR

head-coil positioned 8.5 cm from eyes. All visual stimuli were presented

on a black background (1.2 cd/m2).

The data include 40 total trials per participant, each trial was being

presented for 5100 ms. An inter-trial interval (ITI) consisted of an initial

gray cross (37.5 cd/m2; 1 8 of visual angle) presented in the middle of the

screen for a random duration between 0 – 8 s followed by a white cross

(149.0 cd/m2) for a duration of 3 s, immediately preceding trial onset with

Gabor patch presentation. Each participant was instructed to remain still

while in the scanner and tomaintain fixation on the center of the screen.
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2.3 | Apparatus and data collection

EEG data were recorded on a 32-channel MR compatible system (Brain

Products). This system consisted of 31 Ag/AgCl electrodes placed on

the head according to the 10-20 system and one electrode placed on

the upper back to record heart rate, for addressing cardioballistic arti-

facts. The reference was positioned at FCz, the ground electrode was

placed 1cm anterior to Oz. Impedances were reduced to below 20 kX

for all scalp electrodes and below 50 kX for the cardio electrode, as

suggested by the Brain Products manual. EEG data were recorded

online at 5 kHz and digitized to 16-bit while the digitized data is trans-

ferred via a fiber-optic cable to the computer. The system was

synchronized to the internal clock of the scanner and event markers

were added for further signal processing.

MRI data were collected with a 3T Philips Achieva scanner, an

Avotec Silent Scan headphone system was used to diminish gradient

noise. Data were acquired during gradient-echo echo-planar imaging

sequence (echo time [TE], 30 ms; repetition time [TR], 1.98 s; flip angle,

808; slice number, 36; field of view, 224mm; voxel size,

3.533.533.5mm3; matrix size 64364). The first four functional

scans were discarded to allow for scanner stabilization. Slices were

acquired in ascending order, oriented parallel to the plane connecting

the anterior and posterior commissure during an 1850 ms interval with

130 ms between each TR, during which no images were collected and

allowed visual inspection of the EEG data during recording when the

MR gradient artifact is absent. A T1-weighted high-resolution structural

image was obtained after completion of all functional scans.

2.4 | Artifacts handling and preprocessing

Raw EEG data were preprocessed using standard functions in Brain

Vision Analyzer 2.0 (Brain Products) to remove gradient artifacts and

pulse artifacts, band-pass filtered to 0.5 to 30Hz, and subsequently

downsampled to 250Hz. A semiautomatic ICA-based procedure as

implemented in EEGLAB (Bell & Sejnowski, 1995; Debener, Ullsperger,

Siegel, & Engel, 2006) was used to remove non-cerebral components

(i.e., eye movements and residual BCG artifacts). These components

were identified based on their topography and time course. A maxi-

mum of one component was removed for each type of artifact (residual

cardioballistic artifacts, horizontal eye movements, blinks, vertical eye

movements). Finally, the data were re-referenced to the common aver-

age to remove global noise.

Preprocessing of BOLD fMRI data was completed using SPM12.

We followed the standard preprocessing routines suggested by SPM:

timing differences were compensated by slice timing correction. Head

movements were estimated by realigning each scan to match one rep-

resentative scan with rigid transformation. Images were normalized and

registered to the Montreal Neurological Institute (MNI) space as a

standard in SPM during which functional volume images were

resampled to a spatial resolution of 33333mm3. Images were

smoothed using a Gaussian kernel with a full-width at half-maximum of

6mm. Low-frequency temporal drifts were removed from the BOLD

data using a 1/128Hz high-pass filter.

2.5 | EEG-BOLD fusion analysis

The present paper introduces a framework for EEG-fMRI analysis,

which relates EEG features (e.g., band power at given frequency, time-

varying coherency, etc.) selected by the user, in the context of the con-

ceptual and methodological goals of the study, to concurrently

recorded BOLD signals. After identifying such EEG-based features

(Panel 3a in Figure 1), the framework proposed here has two core pro-

cedures: cross multivariate correlation analysis based on the cross mul-

tivariate correlation coefficient (xMCC; Panel 3b in Figure 1) and a

graph-based electrode selection and grouping procedure for reducing

the spatial dimensions of the EEG data (Panel 3c in Figure 1).

2.5.1 | EEG features

In the present study, we selected three descriptors (features) of the

scalp-recorded ssVEP as candidate predictors of the BOLD signal. The

ssVEP is an oscillatory EEG response, quantified in the frequency or

time-frequency domain, at a specific known frequency. Deviating from

the widely used algorithms for EEG-informed fMRI analysis (see Deb-

ener et al., 2006; Liu, Huang, McGinnis-Deweese, Keil, & Ding, 2012b),

in which EEG features are typically used at the trial level, the present

framework estimates one value of the desired EEG feature per sensor

(or sensor pair), for each TR of the BOLD signal (here: 1980ms, or 495

EEG sample points after downsampling). As depicted in Figure 2, three

different indices of oscillatory brain activity were extracted: (1) the

ssVEP amplitude (Mijovi’c et al., 2008), (2) the phase locking index (PLI;

Tallon-Baudry, Bertrand, Peronnet, & Pernier, 1998), and (3) the inter-

site phase locking index (iPLI; Lachaux, Rodriguez, Martinerie, & Varela,

1999; McTeague, Gruss, & Keil, 2015; Moratti, Keil, & Miller, 2006).

2.5.2 | Cross multiple correlation analysis

The xMCC is an extension of the multivariate correlation coefficient

(MCC; Wang & Zheng, 2014), with additional steps similar in nature to

the standard cross-correlation analysis (xCA; Wei, 1989). It measures

the correlation between EEG-derived features and fMRI-BOLD as a

function of time lag in the BOLD signal, thus quantifying the spatial-

temporal relation between neuro-electric activity (EEG) and subsequent

metabolic (BOLD) events. Extending the traditional multiple correlation

coefficient (Johnson et al., 1992), the xMCC and its counterpart, the

cross multivariate uncorrelation coefficient (xMUC), are symmetrical

measures, both of which allow quantification of the linear dependency

(or independency) of all included variables. Both xMCC and xMUC are

bounded within the range (0, 1), and their squared sum is equal to one.

xMCC equals 1 (or equivalently, xMUC equals 0) if—and only if—these

variables are linearly dependent, and equals 0 (xMUC equals 1) if—and

only if—these variables are perpendicular to each other. Mathematical

details are given in Appendix B. In the present framework, we use

MUC for identifying and grouping the EEG predictors, xMUC for pre-

dictors selection, and xMCC for the quantification of BOLD-EEG cova-

riation. A short mathematical description is given here:

Suppose we select k feature vectors fa1; a2 . . . akg from all

EEG features (e.g., frequency bands, time segments, sensors) to

approximate the lth fMRI response bl with linear combination

1162 | JI ET AL.



b̂ l5b1a11b2a21 � � �1bkak1b01, where 1 is the vector whose entries

are all ones, bi are the coefficients of the linear combination. The pre-

dictability in this equation reflects the proportion of the variance in the

BOLD signal that is linearly predicted from the EEG-derived features.

Let xa1a2 ���akbl ðsÞ be the cross multivariate uncorrelation coefficients

(xMUC) among multiple EEG feature vectors a1; a2 � � � ak and the target

bl , which s controls the temporal shift between the EEG-derived fea-

tures and the BOLD response, xa1a2 ���ak be the internal MUC of EEG

feature vectors. The mean squared error (MSE) between b̂ l and bl can

then be computed by the compact equation:

MSEðb̂ l; blÞ5r2
bl
x2
b̂ l ;bl

5r2
bl

x2
a1a2 ���akbl ðsÞ
x2
a1a2 ���ak

(3)

Thus minimizing the mean squared error (MSE) between b̂ l and bl

is equivalent to minimizing xb̂ l ;bl
. The above equation (3) offers a direct

guideline for selecting predictors of interest for EEG-BOLD fusion: The

selected vectors (here: predictive EEG features a1; a2 � � � ak) ideally pos-

sess small internal correlation (among each other) but together possess

strong linear relation relative to the target variable (BOLD time series

bl). In Appendix C, we show that the above criterion is equivalent to

maximizing the multiple correlation coefficient (Johnson et al., 1992),

the normalized xMCC is defined accordingly.

2.5.3 | Identifying and grouping of EEG predictors

These considerations directly lead to a pre-screening algorithm to

reduce the searching space: Utilizing a graph-based segmentation tech-

nique (Felzenszwalb & Huttenlocher, 2004; Zahn, 1971, described in

2.7, below) while adapting MUC to measure the intra-cluster associa-

tion, EEG channels are grouped into spatial clusters. Channels belong-

ing to the same cluster are highly correlated, and channels in different

spatial clusters are weakly correlated. Only one candidate channel in

each spatial cluster is selected, which excludes sensor combinations

that have strong internal correlation. Selecting single sensors minimizes

spatial smearing and signal attenuation that are often associated with

averaging across sensors (Thigpen, Kappenman, & Keil, 2017). A brief

mathematical description follows.

Let G5 (V, E) be an undirected graph. The vertices V are the set of

EEG channels to be segmented, and the edges in E link a pair of neigh-

boring vertices. Each edge has a corresponding weight xðvi; vjÞ that

denoted the dissimilarity between EEG channels vi and vj, which is

measured by MUC between the extracted feature vectors. In the pres-

ent study, the averaged MUCs from the three different types of EEG

features (i.e., the ssVEP amplitude, PLI, and iPLI) were then used for

predictor (EEG channel) identification. Other studies may consider fre-

quency bands or time points as additional feature dimensions.

The edges in E are first sorted by non-decreasing order and each

vertex is an individual cluster. Iteratively for each edge ðvi; vjÞ 2 E, a

separate versus merge decision is taken between two clusters contain-

ing vertices vi and vj. The merge decision is taken when xðvi; vjÞ is small

compared to the minimal internal difference, which is defined as:

MIntðCi;CjÞ5min IntðCiÞ1 s
jCij ; IntðCjÞ1 s

jCjj
� �

(4)

jCj is the number of channels that fall in the cluster C, and s is a

scale parameter, in that a larger s causes a preference for larger clus-

ters. We use the MUC to measure the internal dissimilarity among the

EEG feature vectors within that component.

IntðCÞ5xfakg; ak 2 C; k51; � � � ; jCj (5)

The scale parameter s was chosen to be 0.2 in this study, to bal-

ance spatial accuracy/specificity and computational load, leading to 32

FIGURE 2 Illustration of the three different feature types extracted from ssVEPs in the present study: ssVEP amplitude, PLI and iPLI. For
each method, a feature descriptor was extracted, representing that feature during the duration of one fMRI scan. The resulting feature
vectors then possess the same temporal resolution as the BOLD time series. [Color figure can be viewed at wileyonlinelibrary.com]
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channels being grouped into 12 clusters as shown in Figure 3. See

below for a discussion of the impact of parameter selection.

Given the number of predictors and specific BOLD voxels from a

target region of interest selected by the user, the xMCC framework

then finds the best set of predictors (sensors) in an iterative process.

The algorithm starts with the first of the previously identified sensor

clusters, then loops through all channel combinations in the Cartesian

product of all selected clusters and retains the best predictors that min-

imize the MSE, which is computed with equation (3). The critical chal-

lenge of this step is to avoid over fitting (by including too many

predictors) while at the same time retaining the sensitivity of the

method. To address this problem, the present method stops adding

predictors when including additional predictors does not result in a

reduction of prediction error greater than 5 percent (see results).

2.6 | Control analyses and statistical inference

2.6.1 | Manipulation check: evaluating effects of time lag

In the present framework, the user sets the time lag parameter s, which

controls the temporal shift between the EEG-derived features and the

BOLD response. The correlation between the selected EEG predictors

and fMRI BOLD can be quantified by applying xMCC with a specific

time lag s. The selection of this parameter is therefore an important

step. In the present report, we compared two approaches for selecting

s, which may be tailored to best address different research questions.

(a) As a primary and generally applicable approach, we first examined

the sensitivity and specificity of the xMCC method when using a canon-

ical, fixed temporal lag of 4 seconds between EEG features and BOLD,

based on widely accepted BOLD latency estimates vis-�a-vis neural

events. (b) Because our example analysis was based on ssVEP signals

with known neural sources in visual cortex, we compared and cross-

validated this approach to results obtained with a ROI-based approach.

In this second approach, we use the BOLD time series obtained from

specific regions of interest (consisting of 9 voxels at the occipital pole,

center MNI: -24, -94, 5) in visual cortex (the known origin of the ssVEP

signal) as a temporal reference. This optional approach enables the

empirical selection of the time lag for which the BOLD time series in a

given ROI is maximally related to the EEG features of interest. The time

lag s for this ROI-based approach is then estimated for each individual

participant. Note that this optional step strongly biases the results

towards the ROI chosen by the user, and thus should be compared

against a standard lag, or a lag determined for a control ROI.

2.6.2 | Quantifying the unique contribution of EEG to

BOLD variability

To quantify the proportion of additional variance explained by the

EEG-derived predictors, compared to fMRI alone, we used a propor-

tional reduction of error (PRE) measure. Specifically, we compare the

error made in predicting the BOLD without EEG features with the error

made when making predictions that include information from EEG. The

PRE metric used here was then calculated as defined below:

PRE5ðE12E2Þ=E1 (6)

E1 stands for MSE of the prediction based on the HRF model

(HRF convolved with the event onsets), E2 is the MSE made when the

prediction is based on the HRF model and additional information from

the EEG features. E1 and E2 can be calculated with equation (3)

directly without computing the linear coefficients.

2.6.3 | Statistical inference: permutation testing

To assess the statistical significance of EEG-fMRI correlations, we

applied permutation tests, determining the threshold for rejecting the

null hypothesis (i.e., no linear relation between EEG and BOLD) based

on shuffled data.

In many implementations, fMRI analysis makes use of a canonical

hemodynamic response function (HRF), which models the dynamic

changes in both blood oxygenation and blood volume following the

stimuli events (Buxton et al., 1998). For example, the canonical HRF

used in SPM 12 comprises the sum of two gamma functions that

exhibit a rising slope peaking around 4–6 sec, followed by an under-

shoot. To explicitly model the variations in BOLD that are time-locked

to the stimuli in our experiment, a typical convolution and correlation

analysis was used: The HRF (taken from SPM 12) was resampled to the

EEG sampling frequency (250Hz) and convolved with the vector con-

taining the event onsets. The output was downsampled to match the

time resolution of the empirical fMRI data and appended across all 11

FIGURE 3 Spatial clustering of EEG sensors. Graph affinities between channels are measured using the average of three different EEG-
derived features across participants. The warmer the color, the bigger the similarity between channels. Non-neighbors are excluded. The
decision to merge sensor(s) into one cluster is made based on the comparison of inter-cluster associations and intra-cluster associations,
measured by the MUC. Output clusters are separated by gray dashed lines and red dots indicate the location of electrodes. [Color figure

can be viewed at wileyonlinelibrary.com]
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subjects to be correlated with the observed fMRI data at each voxel,

using the xMCC measure, which in this case converges with the Pear-

son correlation coefficient. This control allows (1) comparison of the

xMCC framework with a traditional BOLD-alone analysis, and (2) also

allows quantifying the amount of unique variance captured by the

EEG-derived feature time series, above and beyond what is explained

by knowing the timing of events and assuming a standard HRF.

For BOLD-alone analyses, the null hypothesis is that there is no

association between the onset of events and the observed BOLD

time series. Thus, we assigned random shifts ranging from -5 s and

15 s around the onset trigger, then convolved the randomly shifted

pseudo-onsets with the HRF and correlated the result with BOLD,

resulting in values under the null-hypothesis, suitable for a random

permutation test. The equivalent approach (shuffling the BOLD data

while retaining contiguous temporal segments) was applied to the

BOLD-EEG covariation analyses, in which the null hypothesis is that

temporal variation in EEG features is not related to BOLD fluctua-

tions. In all cases, 100,000 Monte-Carlo simulations with randomly

shuffled data were conducted and the 0.99 tail of the resulting dis-

tribution of correlation values was used as the 1 percent significance

threshold. This approach is suitable to avoid potential biases for data

with residual periodicity (i.e., time series with non-flat autocorrela-

tion functions; Nichols & Holmes, 2001). In addition, because multi-

ple predictors have stronger linear representation ability and lead to

higher correlation values in mean, we evaluated the critical thresh-

olds for different combinations of predictors and target areas in sep-

arate permutations. Alternatively, appropriate controls for multiple

comparisons are needed as discussed extensively elsewhere (Kesel-

man, Burt, & Cribbie, 1987; Nichols & Holmes, 2002). Thresholds for

different analyses are shown in Table 1. For all statistical inference

analyses, EEG features (for matching electrode dimensions) and

fMRI time series (for corresponding voxels) for all subjects were con-

catenated by appending them along the time dimension. This proce-

dure helps to capture the temporal variance in brain response across

subjects and the two modalities (Calhoun et al., 2009; Huster et al.,

2012; Mijovi’c et al., 2012).

3 | RESULTS

3.1 | EEG data quality and topography

As expected and as reported previously (Petro et al., 2017), robust

ssVEP signals were obtained in the fMRI scanner environment, with

the present experimental design. An example time series average from

a representative participant and the Grand Mean ssVEP, including their

spectral and topographical properties, are shown in Figure 4.

3.2 | BOLD-alone analysis

With a significance level of 0.01 given 100,000 Monte-Carlo simula-

tions, voxels with correlation coefficients above 0.0932 were consid-

ered significantly related to Gabor patch processing. As a result, and as

expected, the fMRI-HRF (BOLD-alone) analysis identified a range of

visual and extra-visual cortical regions that selectively responded to the

phase-reversing gratings: As shown in Table 3, we identified clusters in

extended visual cortical regions, including the bilateral calcarine fissure;

inferior (right), middle, and superior occipital gyrus; cuneus; lingual and

fusiform gyrus; as well as superior and middle temporal gyrus.

TABLE 1 Significance thresholds of xMCC r values as determined by random permutation tests, at an alpha level of 0.01. N specifies the
number of predictors

N51 N5 2 N5 3 N54 N5 5 N5 6 N57

4S 0.0532 0.0628 0.07 0.0755 0.08 0.0845 0.0885

Occipital 0.053 0.0623 0.0697 0.0752 0.0803 0.0849 0.089

FIGURE 4 Left panel: Grand Mean ssVEP time series, frequency spectrum, and amplitude topography, averaged across all trials and 11
participants. Right panel: ssVEP time series, frequency spectrum, and amplitude topography shown for a representative single participant.
[Color figure can be viewed at wileyonlinelibrary.com]

JI ET AL. | 1165

http://wileyonlinelibrary.com


3.3 | EEG-BOLD fusion analysis

3.3.1 | Selection of predictors

We first used a standard time lag of 4 seconds, consistent with the

HRF used in SPM software and in the extant literature (Serences,

2004; Sabatinelli, Lang, Bradley, Costa, & Keil, 2009). In this analysis,

the best 1 to 7 predictors were: (POz), (POz,Fz), (POz, Fz, Oz), (POz, Fz,

Oz, C4), (POz, Fz, Oz, C4, F8), (POz, Fz, Oz, C4, F8, CP2), (POz, Fz, Oz,

C4, F8, CP1, P7), all using the PLI feature. Applying the selection pro-

cess described above to the features and channels, with time lag

defined on the basis of an ROI in occipital cortex, the PLI feature was

again selected with the following channels identified as the best 1 to 7

predictors: (Oz), (Oz, POz), (Oz, POz, Fz), (Oz, POz, Fz,CP1), (Oz, POz,

Fz, CP1, CP6), (Oz, POz, Fz, CP1, CP6, T7), (Oz, POz, Fz, CP1, CP6, T7,

C3). Thus, for the 4-second approach and for ROI-based channel selec-

tion procedures, PLI time series collected from Oz and POz consistently

emerged as major sources of systematic variability.

Table 2 shows the electrode selection results (the PLI feature at

the listed electrodes was selected throughout), the maximum xMCC,

the SNR for the ssVEP frequency, calculated by dividing the spectral

peak at 10Hz by the mean of neighboring bins in the spectral range

between 0.5 and 30Hz, and the mean ssVEP amplitude, for each par-

ticipant, and for the group analysis. The table shows that electrode

selection was remarkably consistent, and did not covary with SNR and

amplitude differences between participants.

Figure 5 illustrates the selection process and its consequences for

EEG-BOLD covariation. Glass view brain volumes are shown with the

thresholded xMCC coefficients (normalized) for each voxel and for

increasing numbers of EEG features used in the prediction. Larger and

more contiguous brain areas appear with increasing numbers of predic-

tors in A1 and B1. The locations of selected EEG channels are marked

on the scalp maps A2 and B2. In these figures, stronger coupling with

BOLD and earlier selection of a given sensor is shown as increasing size

of this sensor’s symbol. As expected, the mean square error (MSE) of

prediction decreases with the increase of the number of EEG predictors

and the gradient of the MSE curve decreases. Similarly, little change was

observed in A1 and B1 when the number of predictors was larger than 3

and 4, respectively. Therefore, 3 predictors (POz, Fz, Oz) for the 4s anal-

ysis and 4 predictors (Oz, POz, Fz, CP1) for the time lag based on an

occipital ROI were selected for the analyses included in this report.1

3.3.2 | EEG-BOLD results based on a standard time lag

Figure 6 and Table 4 compare the EEG-BOLD covariation using a

standard 4-second delay with the BOLD-alone results. Correlations

above 0.07 and PRE above 0.49 were considered statistically significant

in these analyses. As expected, the spatial extent of areas reflecting sig-

nificant PRE-values is smaller than the spatial extent of the areas show-

ing BOLD changes because the PRE-analysis specifies the unique

contribution of EEG predictors above and beyond the timing informa-

tion inherent in the stick function used for BOLD-alone analysis. Over-

lapping areas between the two analyses included the calcarine, cuneus,

occipital, and fusiform gyrus. Additional unique areas of EEG-BOLD

covariation were seen in the postcentral cortex, the rolandic opercu-

lum, superior temporal gyrus, para-hippocampal gyrus, and lingual gyrus

as well as the gyrus rectus. By contrast, the results for the areas unique

to the fMRI-alone indicated areas in the middle temporal gyrus.

TABLE 2 Selected EEG features with increasing number of predictors for BOLD in occipital and for each subject. Signal-to-noise ratio and
power of ssVEP were calculated for each subject and for grand average across subjects. N specifies the number of predictors

N51 N5 2 N53 N54 N55
xMCC
(N55) SNR

ssVEP
AMP

S1 (Oz) (Oz POz) (Oz POz Pz) (Oz POz Pz C4 ) (Oz POz Pz C4 TP10) 0.40 10.96 2.62

S2 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Pz C4) (Oz POz C4 CP2 FC1) 0.31 3.52 0.53

S3 (Oz) (Oz POz) (Oz POz T7) (Oz POz T7 CP2) (Oz POz T7 CP2 C4) 0.25 17.10 2.27

S4 (Oz) (Oz POz) (Oz POz FC6) (Oz POz FC6 F7) (Oz POz F7 CP2 C4) 0.26 19.50 3.23

S5 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz FC6) (Oz POz Fz FC6 P7) 0.26 15.12 3.18

S6 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz FC6) (Oz POz Fz FC6 P7) 0.23 2.39 0.38

S7 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz FC6) (Oz POz Fz CP6 F7) 0.22 14.77 2.79

S8 (Oz) (Oz POz) (Oz POz CP6) (Oz POz CP6 F8) (Oz POz F7 FC6 CP6) 0.21 14.83 2.08

S9 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz FC6) (Oz POz Fz FC6 CP6) 0.15 3.40 0.63

S10 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz CP1) (Oz POz Fz FC6 CP1) 0.14 6.14 1.30

S11 (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz CP1) (Oz POz Fz CP6 CP1) 0.14 4.85 0.59

All (Oz) (Oz POz) (Oz POz Fz) (Oz POz Fz CP1) (Oz POz Fz CP6 CP1) 0.14 24.92 1.16

1Anatomical labeling of brain areas was conducted using the AAL atlas.

Abbreviation in figures: MOG, middle occipital gyrus; SOG, Superior occipi-

tal gyrus; IOG, Inferior occipital gyrus; CAL, calcarine fissure and surround-

ing cortex; LING, lingual gyrus; CUN, cuneus; FFG, fusiform gyrus; STG,

superior temporal gyrus; PreCG, precentral gyrus; SPG, Superior parietal

gyrus; SMG, supramarginal gyrus; REC, rectus gyrus; SMA, Supplementary

motor area; CC1, cerebellum crus 1; CB6: cerebelum 6; ROL, rolandic

operculum; MTG, middle temporal gyrus. PHG, parahippocampal gyrus.
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3.3.3 | EEG-BOLD results based on individually determined

time lags

In Figure 7A, the xMCC maps obtained with the selected predictors

(PLI in Fz, POz, Oz, CP1) and ROI-based lags are superimposed with

the patterns observed in the BOLD-alone analysis. Figure 7B shows the

PRE maps when using the same (optimal) predictors. Here, correlations

above 0.0752 and PRE values above 0.56 were considered statistically sig-

nificant (permutation controlled) at P<0.01. Not surprisingly, visual corti-

cal areas such as the calcarine sulcus and cuneus are visible in fMRI-alone

as well as in EEG-BOLD analyses. High correlation values were seen in

large portions of extended visual cortex, including inferior, middle, superior

occipital gyrus, as well as fusiform gyrus. Unique areas identified by the

EEG-BOLD analysis include areas in themiddle and inferior occipital gyrus,

lingual gyrus, fusiform gyrus, gyrus rectus, and cerebellum. Further unique

regions included observed in the cerebellum gyrus and rolandic operculum

withmultiple predictions, differing from the BOLD-alone analysis.

3.4 | Comparison of xMCC with alternative

preprocessing methods

3.4.1 | Comparison of xMCC with PCA

Although a complete benchmarking of xMCC against similar methods is

outside the scope of the present report, we compared the graph-based

segmentation step for feature selection in the xMCC framework with

principal component analysis (PCA).

PCA is an efficient approach for reducing the dimensionality and for

capturing endogenous components in electrophysiological time series

(Donchin, Ritter, & Mccallum, 1978; Spencer, Dien, & Donchin, 1999).

Spatial PCA was conducted on the PLI time series extracted from the

ssVEP signal, using the covariance between electrode sites across time

to obtain a set of principal components. The first principal component

was clearly related to the ssVEP stimulation, as supported by the focal

occipital scalp distribution of the factor loadings, as shown in Figure 8B.

We then related the time varying factors scores of this first component

to the BOLD time series using the standard 4 seconds time delay (Figure

8A). Again, the same type permutation test was applied and regions

above the threshold 0.0532 were identified as significant. Comparison

of the sensitivity (number of significant voxels) as well as inspection of

the locations displaying EEG-BOLD correspondence showed large areas

of overlap with the xMCC analysis. In addition, analysis of non-overlap

between them suggests that PCA is less sensitive to the neurophysiolog-

ical plausible ventral, occipito-temporal covariations highlighted by the

xMCC analysis. Instead, covariation between this PCA component and

BOLDwas uniquely seen primarily in parietal areas.

Given the broad distribution of the PCA component, and the

orthogonality constraint, interpretation of these findings, while feasible,

is less straightforward: Finally, the PCA preprocessing step, not being

TABLE 3 Results for fMRI-alone analysis. The size of clusters with voxels exceeding a threshold of P<0.01 is given. MNI Coordinates, nor-
malized xMCC of correlation peaks are reported. R: Right; L: Left

Location Cluster size (voxels) xMCC (Max) MNI Coordinates

L Calcarine 361 0.2801 215 294 24

R Calcarine 379 0.289 15 291 24

L Lingual 221 0.2547 215 291 21

R Lingual 297 0.2865 15 288 27

L Cuneus 213 0.2118 26 294 17

R Cuneus 223 0.2069 18 273 26

L Superior occipital 46 0.2068 215 294 5

R Superior occipital 103 0.2304 21 294 5

L Middle Temporal 77 0.1226 260 240 2

R Middle Temporal 81 0.1201 63 234 27

L Middle occipital 100 0.2795 215 291 27

R Middle occipital 58 0.2055 24 297 5

L Superior temporal 37 0.1147 257 225 14

R Superior temporal 86 0.1359 66 27 8

L Fusiform 70 0.2124 227 276 210

R Fusiform 74 0.1994 24 282 210

L Inferior Occipital 25 0.2834 215 294 27

R Inferior Occipital 46 0.2487 21 291 24

L Cerebelum 4/5 21 0.1444 215 249 210
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interactively optimized vis-�a-vis BOLD prediction, appears to lead to a

noisier correlation map, compared to the xMCC framework.

3.4.2 | Comparison of xMCC clustering with the ssVEP

peak set

As shown by the topographic map of the Grand Mean ssVEP in Figure

4, the peak of ssVEP power was located across a set of three channels

(O1, Oz, O2), paralleling a large body of work with ssVEPs. We there-

fore calculated the mean across three occipital EEG channels Oz, O1,

and O2 to quantify the ssVEP feature for EEG-BOLD analysis. Using

this spatially constrained (posterior) EEG information resulted in more

focal areas showing EEG-BOLD coupling, all constrained to posterior

visual areas. The results (Figure 9) show that the xMCC clustering is

more sensitive to topographical variability of the ssVEP signal and may

help to identify areas of covariation that are located outside posterior

visual cortex. Such areas are of interest, for example, in studies of

higher-order visual cognition and visuo-motor behavior.

4 | DISCUSSION

The present study set out to implement and test a new screening

framework for EEG-fMRI fusion. We applied this framework to test the

hypothesis that fluctuations in visuo-cortical response amplitudes are

correlated with BOLD in extended visual cortex, but also in anterior

structures, thus identifying potential sources of reentrant modulatory

signals that act to modulate visuo-cortical gain during sustained stimu-

lus viewing. The method shares properties with EEG-informed fMRI

analysis algorithms in that it identifies brain regions in which BOLD

covaries with specific EEG variables. The current framework intends to

maximally preserve information in each processing step, and its two

main steps also benefit from the mathematical properties of the xMCC

approach: (1) the selection of features and spatial clustering of EEG

channels and (2) the quantification of partial error reduction when add-

ing EEG predictors to the BOLD-alone analysis.

In this initial illustration of the xMCC framework, we used a robust

electrophysiological signal, the ssVEP, with known neural origins in

lower-tier visual cortex, to enable predictions regarding the location of

brain areas showing covariation of BOLD and EEG-derived features.

Notably, BOLD alone analyses (implemented by using a canonical HRF

and the stimulus timing information) in the present data showed strong

covariation with the phase-reversing stimulus in extended visual corti-

cal areas. The ssVEP-informed BOLD analysis largely pointed to the

same regions, with very few lateral temporal cortical areas unique

to BOLD-alone results. In addition to these regions, the electrophysio-

logical predictors reliably pointed to covariation of BOLD and ssVEP

features in anterior areas, most notably, the superior temporal gyrus

FIGURE 5 Correlation maps as a function of the number of EEG predictors. N indicates the number of predictors. (A) Analysis with a standard 4s lag,
(B) analysis when determining the time lag parameter based on an ROI in occipital cortex. (A1, B1): Glass views from left to right show the co-varying
areas with 1-7 predictors. (A2, B2): The locations of electrodes selected with standard (A2) and occipital ROI-based lags (B2). The size of the electrodes
reflects the order of selection. (A3, B3): Mean square error (MSE) of the EEG-BOLD prediction with increasing numbers of predictors, determined for a
standard lag (A3) and the ROI-based lag (B3). [Color figure can be viewed at wileyonlinelibrary.com]
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and orbitofrontal regions, including the gyrus rectus. These results

largely converge when using a standard 2-TR (4 second) latency for

temporal alignment of BOLD and ssVEP features and when using a tar-

get region in visual cortex for defining the temporal lag between EEG

and BOLD time series. BOLD-based studies of large-scale brain net-

works identified through inter-area correlations have suggested that

different parts of the visual cortex share reliable, but temporally varying

relations with different extra-visual structures (Mitra, Snyder, Hacker,

& Raichle, 2014). In line with these findings, BOLD in a subset of extra-

visual regions (supplementary motor cortex, orbitofrontal cortex) was

found to differentially covary with the ssVEP features, when the fea-

tures were temporally aligned with BOLD in the occipital pole. Thus,

while xMCC analysis with a standard lag appeared to be informative

and robust, the present demonstration also highlights the advantage of

a-priori seed regions for establishing specific networks characterized by

distinct temporal dynamics of BOLD (Sabatinelli et al., 2009). Future

work may examine the role of BOLD dynamics vis-�a-vis electrophysio-

logical markers in greater detail.

In alternative approaches for integrating EEG and fMRI based on

parametric task manipulation (Liu et al., 2012b; Debener et al., 2006), a

suitable EEG predictor is identified and convolved with a canonical

(standard) HRF for each trial. This convolved time series is then ortho-

gonalized relative to event onsets, to avoid inflation of EEG-fMRI

correlation by shared responses to experimental events, and used as

parametric modulator in the General Linear Model of BOLD (Eichele

et al., 2008). The present approach adds to this widely used method in

that it does not require a-priori reduction of the EEG information into a

trial-wise predictor variable, but uses the empirical time series of both

modalities to identify combinations of predictors with maximum joint

dependency. This in turn enables quantification the unique contribution

of continuous EEG predictors to explain BOLD fluctuations across the

original time series, by means of a proportional reduction of error (PRE)

measure. Similar to the alternative preprocessing methods discussed

above, the current framework identifies EEG features based on certain

criteria. As such, preprocessing steps such as ICA or PCA are needed for

identifying the pertinent characteristics of the spatio-temporal EEG

matrix that are to be used for EEG-BOLD fusion. The present xMCC

framework uses multivariate correlation both at the stages of feature

selection and channel grouping. This approach does not involve addi-

tional orthogonality or independency assumptions of the spatial compo-

nents. It also avoids electrode averaging, known to diminish the internal

consistency of EEG-derived measures in many cases (Thigpen et al.,

2017).

Finally, the PRE measure taken in the present framework quanti-

fies the unique contribution of the individual EEG-based predictors,

because it reflects the reduction of prediction error when adding EEG

FIGURE 6 (A) Maps of EEG-BOLD correlation (PLI in POz, Fz, Oz, cyan) using a standard 4-second delay, in contrast to the fMRI-alone
analysis (blue); (B) Statistical maps showing PRE (unique improvement of BOLD prediction when using PLI in POz, Fz, Oz with 4 seconds
delay in BOLD). Maps are thresholded at P<0.01. [Color figure can be viewed at wileyonlinelibrary.com]
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features. In addition, the order in which sensors were selected provides

information regarding their respective contribution: The channels or

features are selected in a non-incremental fashion, meaning that pre-

diction based on k features may not include (all of) the features used in

the prediction with k21 features.

As expected, posterior electrode locations contributed most to

the prediction of BOLD in this ssVEP paradigm. In addition, frontal

sensors Fz and FCz consistently contributed substantial variability

towards improving prediction. This consistent observation is in line

with the finding that a number of extra-visual, anterior, brain areas

displayed strong linear relation with the ssVEP signal. Conceptually,

these findings can be taken to support the hypothesis that fluctua-

tions of neural mass activity during sustained stimulus viewing

reflect bidirectional large-scale communications between visual and

anterior cortical areas. As outlined in the introduction, such signals

are thought to include reentrant signals originating in orbitofrontal

and temporoparietal cortices (Friston & Kiebel, 2009; Chaumon,

Kveraga, Barrett, & Bar, 2013). Future work may apply the xMCC

approach to data collected under experimental manipulations that

lead to clear predictions for involvement of anterior structures in

modulating activity in visual cortex.

Another potential concern related to using the ssVEP signal is the

applicability of the xMCC framework to other electrophysiological sig-

nals. A comparison of individual participants suggests, however, that

the graph-based feature (electrode) selection will not be strongly

affected by differences in SNR. Similarly, the xMCC showed no linear

correspondence with SNR across participants. Several

electrophysiological signals that are of interest to cognitive neuro-

scientists possess SNRs in the same range as the ssVEP, notably alpha

oscillations and late positive ERP complexes. Future work may examine

the sensitivity of the xMCC approach to these electrophysiological

phenomena, in suitable experimental paradigms. The advantages of the

xMCC approach may be particularly beneficial for studies with continu-

ous, “resting” data sets, in which no trial structure is available, and com-

putationally intense, data-driven approaches are widely used (Ben-

Simon et al., 2008). Such analytical strategies include approaches based

on regression-based classifiers aiming to identify EEG states that pre-

dict activity in certain brain regions (Meir-Hasson, Kinreich, Podlipsky,

Hendler, & Intrator, 2014). These computationally demanding advanced

approaches could be informed and simplified by first identifying regions

of interest through xMCC.

In the present study, prediction of BOLD was consistently more

accurate when based on the PLI feature compared to the amplitude or

inter-site phase-locking features. This finding may reflect the fact that

ssVEPs have been shown to be best captured and predicted by their

phase consistency across trials (Moratti, Rubio, Campo, Keil, & Ortiz,

2008). Such an advantage of phase-based measures is true especially

for the 10Hz band, in which the presence of large alpha oscillations

may interfere with accurate measurement of concurrent ssVEP ampli-

tude based on single segments (Keil et al., 2008). Future work may

explore the sensitivity of EEG-BOLD analyses to stimulation frequency.

In summary, the present framework combines a set of computation-

ally straightforward methods with few prior assumptions and few free

parameters. It is largely data driven and readily interpreted, providing

TABLE 4 Results for EEG-BOLD coupling with a standard 4-second time delay. Clusters exceeding a threshold of P<0.01 are reported with
their cluster sizes. MNI Coordinates, normalized xMCC and PRE of correlation peaks are given. R: Right; L: Left

Location Cluster size(voxels) xMCC (Max) PRE (%) MNI Coordinates

L Calcarine 263 0.1331 1.0952 -18 -70 5

R Calcarine 271 0.1390 1.1940 12 -67 14

L Lingual 250 0.1453 1.4415 -15 -70 2

R Lingual 248 0.1382 1.1734 24 -58 2

L Cuneus 65 0.1134 0.8378 0 -76 20

R Cuneus 112 0.1155 0.8562 3 -76 20

R Superior occipital 33 0.1035 0.6036 21 -94 8

L Middle occipital 52 0.1186 0.9054 -15 -97 2

R Middle occipital 30 0.1076 0.559 24 -94 8

L Superior temporal 22 0.0902 0.6659 -57 -7 8

R Superior temporal 66 0.0908 0.634 60 -1 2

R Fusiform 33 0.1037 0.7473 27 -58 -1

R ParaHippocampal 8 0.1005 0. 0.818 21 -43 -4

L Postcentral 43 0.0843 0.619 -57 -7 44

L Rolandic Oper 21 0.0946 0.6871 -54 -4 8

R Rolandic Oper 57 0.0835 0.579 60 -13 14

L Rectus 13 0.0755 0.595 -6 56 -19
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FIGURE 8 (A) Maps of xMCC EEG-BOLD correlation (PLI in POz, Fz, Oz,red) with 4 seconds delay, in contrast to the PCA-based prepro-
cessing described above (green); Maps are thresholded at P<0.01. (B) Scalp distribution of the factor loadings for the first component in
the PCA analysis. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 (A) Maps of EEG-BOLD correlation (xMCC) with selected predictors (Oz, POz, Fz, CP1, red), with time lag determined for the
occipital ROI, in contrast to fMRI-alone analysis (blue); (B) Maps of the EEG-BOLD PRE measure with the same predictors (Oz, POz, Fz,
CP1, red), and lag determined for the occipital ROI. All maps are thresholded at P<0.01. [Color figure can be viewed at wileyonlinelibrary.
com]
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multiple ways for evaluating the statistical contribution of EEG signals to

explaining BOLD time series. It also highlights EEG features (sensor loca-

tions, frequencies, indices) with maximum predictive value relative to a

given BOLD phenomenon, thus informing EEG interpretation and allow-

ing for convergent validation across imaging modalities.
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APPENDIX A

For each index, a 480ms window (padded with 20ms of zeros for a total

of 500ms) was shifted across each single scan period in steps of 100ms,

and the following computations executed for a total of 16 moving

windows:

� ssVEP amplitude: Estimates of oscillatory amplitude were obtained

by averaging the EEG traces in the moving windows in the time

domain. The resulting average was submitted to a Discrete Fourier

Transform to get the 10Hz ssVEP amplitude. The robustness of this

approach is described in (Keil et al., 2005), with excellent internal

consistency of the short-segment amplitude estimates (Cronbach0s

a>0.85) for trial counts in the range of 15.

� PLI: Different from intrinsic (spontaneous) brain oscillations, the

ssVEP is phase-locked to the periodically modulated stimulus (here:

the phase-reversing Gabor patch) and thus expected to possess sta-

ble phase in windows that are aligned to the external stimulus. The

standard PLI algorithm (Lachaux et al., 1999) was applied here.

Again, DFT was applied for each moving window separately, the

complex Fourier coefficients were normalized to map on a unit

circle, and then averaged across windows. The modulus of the aver-

aged complex Fourier coefficients then indicates the amount of

phase stability across the 16 sliding windows, with a PLI of 1 repre-

senting phase identity and 0 random phase.

� iPLI: The iPLI measures the consistency/stability of the phase difference

between channels and is often used as an estimate of connectivity

between recording sites. In the present ssVEP study, we did not

compute all pairwise iPLI values but focused on the occipital midline

electrode location (Oz) and its synchrony relative to all other sensors:

For each sliding window, we again obtained the normalized complex

phase dividing the Fourier coefficients at the ssVEP frequency by its

power. The difference of these complex values between each sensor

location and reference site Oz was then normalized and again averaged

across segments in a scan, resulting in a measure of inter-site phase

synchrony between the occipital pole and the remainder of the record-

ing array. The value of this descriptor is also bounded between 0 and 1.

APPENDIX B

For EEG feature vectors faigi51;...;m; ai 2 <n where ai denotes the fea-

ture vector for the ith EEG channel, with m equal to the number

of EEG channels, and the sequences of BOLD response

fblgl51;...;L; bl 2 <n, where bl denotes the response sequence from the

lth voxel, with L the number of voxels, and n equal to the number of

fMRI scans. Let rai aj be the Pearson’s correlation coefficient between ai

and aj, i; j 2 f1;2; � � � ;mg, and rai aj ðsÞ be the correlation coefficient

between ai and aj, 1 � t � n, where blðt2sÞ denotes bl with time lag s.

We define the following cross correlation matrix Rsl:
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Rsl5

1 ra1 a2 � � � ra1 am ra1 bl ðsÞ
ra2 a1 1 � � � ra2 am ra2 bl ðsÞ

� � . .
.

� �

ram a1 ram a1 � � � 1 ram bl ðsÞ
rbl a1 ðsÞ rbl a2 ðsÞ � � � rbl am ðsÞ 1

2
6666666664

3
7777777775

The cross multivariate correlation coefficient (xMCC) r, and the

cross multivariate uncorrelation coefficients (xMUC) x among multiple

EEG feature vectors a1; a2 � � � am and the lth fMRI response bl are then

defined as

ra1 a2 ���ambl ðsÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12detðRslÞ

p
xa1 a2 ���ambl ðsÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðRslÞ

p (B1)

respectively, where detðRslÞ is the determinant of Rsl.

APPENDIX C

The square of the coefficient of multiple correlation can be computed

using the vector c5
�
ra1bðsÞ; ra2bðsÞ; � � � rakbðsÞ

�T
of correlations rai bðsÞ

between the predictor variables ai, i51,2,···, k (independent variable)

and the target variable b (dependent variable), and the correlation

matrix Rxx of inter correlations between predictor variables. It is given

by:

R25cTR21
xx c (C1)

where cT is the transpose of c, and R21
xx is the inverse of the matrix.

Rxx5

1 ra1 a2 � � � ra1 ak

ra2 a1 1 � � � ra2 ak

� � . .
.

�

rak a1 rak a2 � � � 1

2
6666664

3
7777775

(C3)

We then form a block matrix

X
5

Rxx c

cT 1

" #
(C3)

According to the rule of determinant of block matrix (Golub and

Van Loan, 1986), the criteria in the right side of equation (3) can be

written as

xb̂b5
xa1 a2 ���akb
xa1 a2 ���ak

5

ffiffiffiffiffiffiffiffiffiffiffiffi
j
X

s
j

jRxxj

s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jRxxjj12cTR21

xx cj
jRxxj

s

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j12cTR21

xx cj
q

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cTR21

xx c
q (C4)

For 12cTR21
xx c is a scalar.

r2
b̂ ;b

512x2
b̂ ;b

5cTR21
xx c (C5)

Therefore, minimizing xb̂ ;b is equivalent to maximizing the multiple

correlation R. Furthermore, xMCC of fa1; a2; � � � ak; bg is between the

MCC of fa1; a2; � � � akg and 1 (Wang and Zheng, 2014), the normalized

xMCC can be defined by implementing a unity-based normalization.

r0a1 ;a2 ���akbðsÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

j
X

s
j

jRxxj

s
(C6)
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