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Physical mechanism of δ-δ′-ε phase 
stability in plutonium
Chun-Mei Li1,2, Börje Johansson3,4,5 & Levente Vitos3,4,6

Based on first-principle calculations, we have systematically explored the nature of the elastic stability 
and the δ-δ′-ε phase transitions in pure Pu at high temperature. It is found that, both the electron-
phonon coupling and the spin fluctuation effects tend to decrease the tetragonal elastic constant (C′) 
of δ-Pu, accounting for its anomalous softening at high temperature. The lattice thermal expansion 
together with the electron-phonon coupling can stiffen C′ of ε-Pu, promoting its mechanical stability at 
high temperature. The δ-ε transition is calculated to take place around 750–800 K, and is dominated by 
the phonon vibration. The δ′ intermediate phase is realized around 750 K mainly because of the thermal 
spin fluctuation.

Plutonium is one of the most exotic elemental metals because of its condensed matter properties, metallurgy, and 
six allotropic phases1–4. Stable between 592 K and 724 K, the face-centered cubic (δ) phase has the lowest density 
and good ductility, and turns out to be technologically the most important phase, attracting a lot of research. It 
was reported to possess a negative thermal expansion coefficient (α), elastic anisotropy ( −C C C2 /( )44 11 12 ) of 
about 71, and an “abnormal” softening of the elastic modulus with temperature5, 6, which is coupled to the δ-δ′-ε 
transitions around 750 K. All these extraordinary thermodynamic properties make δ-Pu highly interesting, but 
the mechanisms behind its phase transitions are still not understood.

The anomalous thermophysical properties of δ-Pu are expected to be related to the itinerant-to-localized 
crossover of 5f electronic states2, 7–12. Within the generalized gradient approximation (GGA), the electronic total 
energy calculations have successfully reproduced the equilibrium volume (V) of δ-Pu13. Its large elastic anisotropy 
was evaluated to be about 8.3 by the GGA13 and 6.3 by the local density approximation (LDA) + U14 calculations. 
Nevertheless, these 0 K calculations generally gave inaccurate values for the elastic constants themselves and 
especially for ′ = −C C C( )/211 12

13–15, for which the estimated data (7.9 GPa13) is more than 60% larger than the 
experimental one (4.9 GPa16). A better description of δ-Pu requires that the electronic structure theories go 
beyond the ground state, by including the effects of temperature and electron-phonon coupling in the 5f band 
picture17, 18.

Similar to other metals and metallic alloys, the temperature-dependent lattice thermal expansion, magnetism, 
and phonon vibration may be considered as important factors19, 20. The thermal expansion effect on the bulk 
modulus (B) of δ-Pu has been theoretically examined21, whereas its influence on C′ of the δ and ε (body-centered 
cubic) phases were seldom investigated. Supported by the recent studies from both neutron-scattering experi-
ments and phonon dispersions calculations22–24, δ-Pu is theoretically approximated with the paramagnetic (PM) 
state25–27, often described with the fully disordered local magnetic (DLM) model28. The dynamical fluctuations of 
the magnetization density (spin fluctuations) with temperature were supposed to induce strong magnetovolume 
and magnetoelastic couplings29, which subsequently influence the stability of the two phases and also the transi-
tion between them.

In this letter, we explore the elastic properties of the δ and ε phases and the δ-δ′-ε transitions of the PM state 
of Pu, taking all the temperature-dependent electronic and magnetic entropy, electron-phonon coupling, lattice 
thermal expansion, phonon vibration, and spin fluctuation effects into account, and try to uncover their physical 
mechanisms.
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Results and Discussion
Figure 1 describes the calculated electronic entropy, lattice thermal expansion, and electron-phonon coupling 
effects on the C′ of δ- ( ′δC ) and ε-Pu ( ′εC ). Here T is fixed to 750 K, i.e., close to the critical temperature where the 
δ-δ′-ε transitions occur1. We vary the Wigner-seitz radius (rws) from 3.35 Bohr to 3.55 Bohr and the 
electron-phonon coupling coefficient (λel–ph) from 0 to 1, with an interval of 0.05 Bohr and 0.2, respectively. At 
750 K, the electronic entropy has practically no influence on ′δC  and ′εC . The 0 K ′δC  changes non-monotonically 
with increasing rws (Fig. 1a), and in the studied rws range it changes only very little. This means that the lattice 
thermal expansion can change ′δC  by less than 2 GPa at 750 K. For the ε phase, the thermal expansion is positive. 
Shown in Fig. 1b, ′εC  increases linearly with increasing rws at 0 K, thus the thermal expansion increases ′εC . 
Actually, the lattice thermal expansion promotes the mechanical stability of the ε phase at high temperature.

Including the electron-phonon coupling at 750 K, ′δC  (Fig. 1a) increases above (decreases below) rws = 3.47 Bohr 
with increasing λel–ph. For λel–ph = 1.0, the electron-phonon coupling changes the trend of ′ ∼δC rws into a mono-
tonically increasing ′δC  with rws at 750 K. At the experimental volume of the δ phase (around 3.43 Bohr1), the ′δC  
value corresponding to λel–ph = 1.0 is much closer to the experimental data16, 30 than its static value. The ′εC  
(Fig. 1b) increases at each volume with λel–ph. Like the lattice thermal expansion, the electron-phonon coupling 
tends to increase ′εC , helping to realize the mechanical stability of this phase at high temperature.

Including all the above three effects evaluated with λel–ph = 1.0, we now investigate the impact of spin fluctua-
tion on ′δC  and ′εC  at 750 K, by performing calculations with the local magnetic moments of Pu (μPu) reduced by 
0% to 20% relative to their equilibrium values. The physical picture behind this reduction is given by the longitu-
dinal thermal spin fluctuations31, which is due to the particular energy versus magnetic moment curve of Pu 
stabilizing lower local magnetic moments at high temperature, as compared to the static DLM moment. As shown 
in Fig. 2, both ′δC  and ′εC  become smaller with decreasing μPu. Therefore the spin fluctuation should present a 

Figure 1.  Static (0 K) tetragonal shear elastic constants C′ of δ- and ε-Pu as a function of Wigner-Seitz radius 
(denoted as “λel-ph = 0”). Shown are also results corresponding to 750 K including only the electronic entropy 
term (denoted as “λel-ph = 0 (El)”), both the electronic entropy and lattice thermal expansion terms (denoted as 
“λel-ph = 0 (El + Th)”), and the electronic entropy, lattice thermal expansion, and electron-phonon coupling 
three effects (denoted as “λel-ph =  . . … .0 2, 0 4, , 1 0”).

Figure 2.  Tetragonal shear elastic constants C′ of δ- and ε-Pu as a function of Wigner-Seitz radius. Results 
correspond to 750 K, including the electronic entropy, lattice thermal expansion, electron-phonon coupling 
(λel-ph = 1.0), and spin fluctuation effects modelled by reducing μPu by 0%, 5%, …, 20% relative to the static 
value.
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significant contribution to the softening of the elastic moduli of δ- and ε-Pu with increasing T5, 6. With μPu 
reduced no more than 10%, ′δC  and ′εC  remain positive within the considered volume range. With more than 10% 
reduction of μPu, they become negative, demonstrating the mechanical instability of the δ and ε phases at 750 K. 
Hence, around this temperature, μPu may be no less than 90% of its static value for the two phases. The experi-
mental ′δC  is available. According to Fig. 2a, with 10% reduced μPu, the evaluated ′δC  (4.9 GPa) at 750 K corre-
sponding to the experimental volume (3.43 Bohr1) is in perfect agreement with the measured values (4.9 GPa16 
and 4.8 GPa30). We notice that the ~0.5 μB reduction of the local magnetic moments obtained in the above 
semi-empirical estimation is surprisingly close to the predicted one based on ab initio spin fluctuation study31.

In what follows, we explore the δ-δ′-ε transitions by calculating the free energy (F) change with respect to rws 
and c/a of the body-centered-tetragonal Pu. Here, c/a = 1 represents the ε phase whereas c/a = 1.414 corresponds 
to the δ phase. The other values of c/a may correspond to the δ′ phase. First, the static electronic total energy (Eel) 
term is found to prefer the δ phase with c/a = 1.414. The static electronic entropy (TSel) and magnetic entropy 
(TSmag) terms lower the free energy but, their effects are almost the same for the two structures. As a result, the δ 
phase is always stabilized whereas the δ′ and ε phases could not be obtained by considering only the above three 
terms into account.

Adding the phonon vibrational free energy (Fvib) in Fig. 3, it is still only the δ phase which is stable below 
650 K. When T goes up to 700 K, a metastable phase appears around c/a = 1, which corresponds to the ε phase and 
with the relative free energy to the δ phase (∆ = −ε δ ε δ−F F F , with Fδ and Fε being F for the δ and ε phases, respec-
tively) is about 0.35 mRy. With further increase of T, ΔFε−δ is gradually lowered to about 0.15 mRy at 750 K, and 
then to −0.12 mRy around 800 K. It indicates that with increasing T, the ε phase becomes more and more stable 
with respect to the δ phase. Around 800 K, the ε phase becomes lower in energy than the δ phase, and thus the δ-ε 
transition occurs. The δ′ intermediate phase, however, is not yet present.

Shown in Fig. 4, the equilibrium (static) μPu value depends on both rws and c/a. As it is generally expected, μPu 
increases with rws at fixed c/a. On the other hand, corresponding to each rws, μPu non-monotonically changes with 

Figure 3.  Free energy ( = − + −F E TS F TSel el vib mag, in unit of Ry) change with respect to the Wigner-Seitz 
radius (rws) and c/a of Pu using the equilibrium μPu. Results are shown for 650 K (a), 700 K (b), 750 K (c), and 
800 K (d), respectively. The two minima at c/a = 1.414 and c/a = 1 correspond to the δ and ε phases.

Figure 4.  Equilibrium local magnetic moment of Pu (μPu, in unit of μB) plotted as a function of the Wigner-
Seitz radius (rws) and c/a.



www.nature.com/scientificreports/

4Scientific Reports | 7: 5632  | DOI:10.1038/s41598-017-06009-1

c/a, and the values for the δ (c/a = 1.414) and ε (c/a = 1) phases are larger than those of other (low symmetry) 
structures. Therefore, it is expected that the decrease of μPu with temperature should have an influence on the 
structural stability of Pu.

Next, we take the spin fluctuation into account by calculating F with 10% reduction of the equilibrium μPu, 
and draw F as a function of rws and c/a. The results are shown in Fig. 5. In the left panel of the figure, with increas-
ing temperature, the calculated ΔFε−δ goes down from 0.46 mRy at 650 K to 0.28 mRy at 700 K, to 0.02 mRy at 
750 K, and then to −0.18 mRy at 800 K. Therefore, similar to Fig. 3, the δ-ε transition is again obtained around 
750–800 K. Hence, by reducing μPu by 10%, the relative stability between the two cubic phases does not change 
significantly.

Very interestingly, with reduced local magnetic moment, another phase appears around c/a = 1.28. We pro-
pose that this metastable phase corresponds to the δ′ phase. In order to highlight the stability of the δ′ phase 
relative to the δ one, the energy map corresponding to these two structures is plotted in details in the right panel 
of Fig. 5. The two minima located around c/a = 1.414 and c/a = 1.28 correspond to the δ and δ′ phases. With the 
increase of T, the free energy of the δ′ phase relative to that of the δ one (ΔFδ′−δ = Fδ′ − Fδ, with Fδ′ being F for the 
δ′ phase) decreases from 0.11 mRy at 650 K to 0 mRy at 700 K, to −0.04 mRy at 750 K, and then to −0.08 mRy at 
800 K. This means that the δ′ phase is stabilized above 650 K. With increasing T above 750 K, the δ′ phase becomes 
more stable than the δ phase, indicating the δ-δ′ transition. In comparison the left and right panel of Fig. 5, the δ′ 
phase is stabilized only in a short temperature range around 750 K, since at 800 K, the ε phase is stabilized instead 
with about −0.10 mRy lower energy than that of the δ′ phase.

The volumes of the δ, δ′, and ε phases evaluated with 10% reduced μPu are about 25.2 Å3, 24.8 Å3, and 24.4 Å3, 
respectively, all in good agreement with the experimental data (25.2 Å3, 25.1 Å3, and 24.4 Å3, respectively1). The 
obtained c/a value (1.28) of the δ′ phase in Fig. 5 is also in line with the experimental data (1.341). We should point 
out that in Fig. 3, where the F is calculated with the equilibrium μPu, the volumes of the δ and ε phases are about 
25.5 Å3 and 25.8 Å3, respectively, which are larger than the experimental ones1, 16, 30. Hence, the spin fluctuation 
tends to favor the stability of the δ′ phase relative to the δ phase, and also contributes to the reduction of V during 
the δ-δ′-ε transitions of Pu.

Using the equilibrium volume of the δ phase, we calculate the 0 K density of states (DOS) change with respect 
to c/a, and then evaluate the smeared DOS and the corresponding energies ( ⁎Eel and = −⁎ ⁎ ⁎F E TSel el el, with ⁎Eel, 

⁎Fel, 
and ⁎TSel being the smeared electronic total energy, smeared free energy, and smeared electronic entropy, respec-
tively) with λel–ph = 1.0 at 750 K. In Fig. 6, the obtained c/a-dependence of ⁎Eel, 

⁎Fel, and their differences relative to 
the static values (∆ = −⁎E E Eel el el and ∆ = −⁎F F Fel el el, with = −F E TSel el el being the static electronic free 
energy) are compared. Here, the ε phase (c/a = 1) is used as reference for both the ⁎Eel and ⁎Fel evaluations. At each 
c/a value, ⁎Eel and ⁎Fel have almost the same values whereas ΔFel is larger than ΔEel, indicating that the 
electron-phonon coupling tends to evenly increase the -TSel of each structure, and therefore still does not really 
influence the relative stability of the three phases. Increasing c/a from 0.9 to 1.5, both ⁎Eel and ⁎Fel show two min-
ima. One corresponds to the δ phase (c/a = 1.414) whereas the other one means the ε phase. Therefore, 

Figure 5.  Free energy ( = − + + −F E TS F E TSel el vib mag mag, in unit of Ry) change with respect to the 
Wigner-Seitz radius (rws) and c/a of Pu using 10% reduced μPu. Results are shown for 650 K (a,e), 700 K (b,f), 
750 K (c,g), and 800 K (d,h), respectively. The three minima correspond to the δ, δ′, and ε phases in the left 
panel, whereas in the right panel, the two minima indicate the δ and δ′ phases.
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considering the electron-phonon coupling, both the ε and δ phases are stable, but the latter is lower in energy than 
the former one (at 750 K). The δ′ phase, nevertheless, still can not be realized by this term at 750 K. As seen from 
the curve of ∆ ∼E c a/el , ΔEel has its maximum value (about −68.82 mRy) for c/a ~ 1.30–1.45, whereas its mini-
mum is around c/a = 1 (about −70.38 mRy). This confirms that at high temperature, the phonon smearing indeed 
lowers Eel of the ε phase relative to that of the δ or δ′ ( ≈ .c a/ 1 30) phase, promoting the stabilization of the ε phase 
relative to the other two phases. Adding this effect to F, the critical temperature of δ-ε or δ′-ε transition derived 
above could be a little bit further lowered, and then they would be close to the experimental data (about 753 K1). 
Therefore, the phonon vibration, spin fluctuation, and electron-phonon coupling effects all contribute to the 
δ-δ′-ε transitions of Pu at high temperature.

Conclusion
In summary, using first-principles theory in combination with physically sound approximations, we have system-
atically explored the nature of the elastic stability of δ- and ε-Pu and the phase transitions of δ-δ′-ε at high tem-
perature. It is found that, the temperature effects show great influence on both ′δC  and ′εC . The electron-phonon 
coupling and the reduction of μPu with temperature tend to reduce ′δC , accounting for its anomalous softening at 
high temperature. The lattice thermal expansion and the electron-phonon coupling stiffen ′εC , together giving rise 
to the mechanical stability of the phase at high temperature. The transitions of δ-δ′-ε are controlled mainly by the 
phonon vibration, spin fluctuation, and electron-phonon coupling. The transition of δ-ε is observed around 
750 K–800 K, and is dominated by the phonon vibration. The δ′ intermediate phase could be realized around 
750 K because of the thermal spin fluctuation. The electron-phonon coupling further improves the stability of the 
ε phase relative to the other two phases. The present insight provides a good understanding of the nature of the 
elastic stability and the δ-δ′-ε phase transitions of Pu at high temperature, and gives a solid ground for further 
advanced theoretical investigations of the subject matter.

Methods
The employed first-principle solver is the exact muffin-tin orbitals (EMTO) method in combination with the 
coherent potential approximation (CPA)32–37. The EMTO-CPA is one of the few possible approaches to deal with 
magnetic disorder at first-principle level. In the present self-consistent calculations, the exchange correlation is 
chosen to be GGA as described by Perdew, Burke, and Ernzerhof (PBE)38. The EMTO basis set includes s, p, d, 
and f components, and the scalar-relativistic and soft-core approximations are adopted. The Green’s function 
is calculated for 32 complex energy points on a semicircular contour. For the slope matrix, two-center Taylor 
expansion is used, and the number of orbitals for charge density is truncated at 8. The Brillouin zone is sampled 
by a 13 × 13 × 13 uniform k-point mesh.

The equation of state at 0 K is determined by fitting the calculated total energies versus volume to a Morse 
function39. The 0 K elastic constants C′ of the δ and ε phases, characterizing the softness of the cubic lattices 
against tetragonal deformation, are evaluated with the methods presented previously40, and their temperature 
dependence including electronic entropy, lattice thermal expansion, electron-phonon coupling, and magnetism 
are considered. The self-consistent calculations performed at each volume for different temperatures in the 
Fermi-Dirac distribution give the electronic entropy effect on C′. The variation of C′ due to the thermal expansion 
is calculated as α′

=
r TdC

dr T 0
0

ws
, where r0 is the equilibrium Wigner-Seitz radius at 0 K. For the thermal expansion 

coefficient α, we choose the experimental values of the δ, δ′, and ε phases1, −9.0 × 10−6 K−1, −66.0 × 10−6 K−1, 
and 36.5 × 10−6 K−1, respectively. The phonon-smearing effect on C′ is obtained as the difference between the 
second-order strain derivatives of the electronic free energies Fel, calculated using the smeared density of states 
and the bare density of states, respectively, using equation (2) in our previous paper19. In real metals at elevated 
temperatures, the electrons experience a smeared density of state ( ⁎N E( )) as a result of phonon-limited lifetime. 
This effect can be formulated as Lorentz-type smearing of the electronic density of state41

Figure 6.  Smeared electronic energies ( ⁎Eel and = −⁎ ⁎ ⁎F E TSel el el) and their differences relative to the static values 
(∆ = −⁎E E Eel el el and ∆ = −⁎F F Fel el el) with respect to c/a of Pu. The ε phase (c/a = 1) is used as reference for 
both the ⁎Eel and ⁎Fel curves.
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where Γ = πλel-phkBT is inverse proportional with the electron lifetime, with kB being the Boltzmann constant. For 
most of the metals electron-phonon parameter λel-ph is of order of unity41. In the present study, λel-ph is set as 0, 
0.2, …, and 1, respectively, to explore the phonon-smearing effect on C′, whereas to investigate this effect on the 
free energy, λel-ph = 1 is adopted.

The thermal spin fluctuations influence the mean local magnetic moments and thus the free energy and ulti-
mately also the elastic constants of Pu. In a recent density functional theory study31, the thermal spin fluctuation 
effect for δ-Pu was found to decrease the value of the mean magnetic moment by ~0.5 μB as the temperature 
increases from 0 K to 700 K. The reduction of the local magnetic moment was found to be critical to explain the 
observed softening of the bulk modulus with increasing temperature. Based on these reported data, the spin fluc-
tuation effect is here considered by calculating C′ with μPu reduced by 0%, 5%, …, 20% relative to the equilibrium 
(static) value. To further investigate the spin fluctuation effect on the free energy, 10% reduce of the equilibrium 
μPu value is used, which is similar to the ab initio reduction predicted in the above study31.

The Helmholtz free energy (F) is decomposed as

= − + + − .F E TS F E TS (2)el el vib mag mag

Here, the Eel and Sel are calculated directly with the EMTO method. Since the δ-δ′-ε transitions of Pu occur above 
650 K, the phonon vibrational free energy, Fvib, is approximated by its high temperature expansion, 

≈ Θ − Θ
Θ

F k T3vib B
0 41, with Θ and Θ0 being the Debye temperatures corresponding to a volume of a tetragonal 

structure (specified in terms of Wigner-Seitz radius rws and c/a) and to the equilibrium one of the δ phase, respec-
tively. According to the simplest approximation which has been applied to several metals42, the Debye tempera-
ture is proportional to r Bws . Its temperature dependence is then easily evaluated by including the lattice thermal 
expansion and magnetic effects on the bulk modulus B, which are calculated with the same methods adopted 
above for C′. The magnetic energy, Emag, is calculated as = −E E Emag el

fix
el, where Eel

fix and Eel are the static elec-
tronic total energies corresponding to the fixed and equilibrium μPu values, respectively. The magnetic entropy, 
Smag, is evaluated at each μPu using the mean-field expression µ= +S k ln( 1)mag B Pu

43.
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