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ABSTRACT  Recent technological developments in metabolomics research 

have enabled in-depth characterization of complex metabolite mixtures in a 

wide range of biological, biomedical, environmental, agricultural, and nutri-

tional research fields. Nuclear magnetic resonance spectroscopy and mass 

spectrometry are the two main platforms for performing metabolomics stud-

ies. Given their broad applicability and the systemic insight into metabolism 

that can be obtained it is not surprising that metabolomics becomes increas-

ingly popular in basic biological research. In this review, we provide an over-

view on key metabolites, recent studies, and future opportunities for metabo-

lomics in studying autophagy regulation. Metabolites play a pivotal role in 

autophagy regulation and are therefore key targets for autophagy research. 

Given the recent success of metabolomics, it can be expected that metabo-

lomics approaches will contribute significantly to deciphering the complex 

regulatory mechanisms involved in autophagy in the near future and promote 

understanding of autophagy and autophagy-related diseases in living cells and 

organisms. 
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INTRODUCTION 

Metabolomics is the key discipline for systemic characteri-
zation of the repertoire of small molecules (metabolites) 
and complements the other ‘omics’ such as genomics, 
transcriptomics, and proteomics [1, 2]. The metabolome 
provides a snapshot of the functional endpoint of complex 
biological networks and accurately describes the functional 
and physiological states of an organism [3-6]. Aiming at in-
depth characterization of complex metabolite mixtures, 
the recent technological developments in the field of 
metabolomics have opened up a wide range of research 

fields in biological, biomedical, environmental, agricultural, 
and nutritional research [7, 8]. In biomedical research, 
metabolomics has established itself as a key technique for 
systems biology, disease diagnostics, and biomarker dis-
covery [2, 9-12].  

Hallmarks of technological developments that enabled 
metabolic research and are driving increasingly wider ap-
plications of metabolomics were the establishment of 
powerful analytical instrumentation and, in particular, 
tools for automated statistical data analysis. Currently, 
nuclear magnetic resonance spectroscopy (NMR), and 
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mass spectrometry (MS) are the key techniques for the 
detection and identification of metabolites [2, 12, 13]. Both 
techniques are complementary: on the one hand NMR 
provides access to unique structural information, is quanti-
tative and highly reproducible, providing that guidelines for 
sample preparation and experimental setup are followed 
[14-18], but less sensitive [19-21]. On the other hand, MS is 
more sensitive than NMR, but suffers from the ambiguity 
of spectral signatures. The complementary nature of NMR 
spectroscopy and MS for metabolomic analysis has been 
impressively demonstrated in several studies [15, 22, 23], 
suggesting that the combination of both techniques is ben-
eficial for a more comprehensive metabolite identification 
than applying each platform alone. 

This review focuses on recent developments in the field 
of metabolomics with a particular emphasis on the integra-
tion of NMR spectroscopy, MS, and data analysis methods 
for revealing the complex regulatory mechanisms involved 
in autophagy. This is, to our knowledge, the first review 
with a particular focus on integrating MS- and NMR-based 
metabolomics research for autophagy-related studies. By 
extending the currently available toolbox in autophagy 
research with recently developed and powerful metabo-
lomics and data analysis approaches, we anticipate that 
new mechanistic insights into the regulation of metabolism 
in autophagy can be obtained. The main aim of this review 
is to introduce MS-, and NMR-based metabolomics to an 
audience of scientists with a biological focus on autophagy. 
With this foundation, recent static and dynamic studies of 
metabolite networks involved in autophagy will be dis-
cussed. By establishing metabolomics as a general ap-
proach in autophagy studies, unprecedented opportunities 
will be opened up for scientists with a biological focus on 
autophagy in terms of exploration of the metabolome for 
markers of disease states, and in understanding the diver-
sity of metabolic pathways of autophagy in a variety of 
organisms. The knowledge gained from this approach pro-
vides a ready link to genomic, transcriptomic, and proteo-
mic information to achieve systems biochemical under-
standing of autophagy in living cells and organisms. 

 

AUTOPHAGY AND METABOLISM  

Autophagy is a self-degradative process balancing synthe-
sis and degradation. It is a process disassembling unneces-
sary or dysfunctional cellular components. First studies 
revealing intracellular protein degradation and lysosomes 
provided important fundament for discovery of autophagy 
[24] which has initially been described in eukaryotes [25, 
26]. However, similar processes are observable in all mi-
crobes, including bacteria [27], archaea [28] and most pro-
tozoa [29]. These processes include bacterial cannibalism, 
autolysis, programmed cell death and other self-
destructing patterns [25, 30]. This balance is mediated via 
degradation of cytosolic proteins and organelles in order to 
maintain cellular function [31]. In case of lack of resources 
of vital importance, cells boot up their adaptive response 
to the environment, namely autophagy, to ensure proper 
supply of molecular building blocks in order to synthesize 

limiting essential components. Three distinct pathways of 
autophagy are described in the literature comprising the 
main pathways: macroautophagy [32], microautophagy 
[33], and chaperone-mediated autophagy [34]. All of these 
autophagic pathways pursue the same goal: providing es-
sential compounds to ensure proper cellular function. 
However, the underlying regulatory mechanisms are dif-
ferent. 

Microautophagy degrades cytoplasmic components via 
lysosomal shuttling [33]. Chaperone mediated autophagy 
leads to regulated transport of cytoplasmic proteins into 
the lysosome and their subsequent lysosomal degradation. 
This type of autophagy is depending on molecular chaper-
ones [34]. A detailed discussion of micro-, and chaperone-
mediated autophagy can be found elsewhere [34, 35]. In 
this review we focus on the metabolic processes involved 
in macroautophagy. Macroautophagy, hereafter referred 
to as autophagy, is an inevitable physiological process, 
ensuring quality control of proteins and organelles in order 
to maintain cellular homeostasis. It acts, on the one hand, 
as a cellular housekeeper under normal physiological con-
ditions and, on the other hand, as an inspector participat-
ing in the clearance of protein aggregates and improperly 
functioning organelles, which is a hallmark of aging [36-38]. 
Besides of these essential control functions, autophagy is 
indispensable for developmental processes. In line with 
this, autophagy-deficient mutants lack the ability to modify 
intracellular architecture and rapid response to external 
cues and show developmental impairment [39].  

Autophagy is mediated by formation of transient dou-
ble-membrane structures, the so-called phagophore. The 
phagophore becomes an autophagosome after expansion 
and closure, fuses with lysosomes, and degrades targeted 
organelles via acidic hydrolases [40]. Since autophagy is a 
complex process, a plethora of proteins is involved in the 
regulation of the autophagic processes. The main key play-
ers are the so-called autophagy related (Atg) proteins [41]. 
The core machinery of Atg proteins comprises around 30 
members, which mediate processes from early autophago-
some formation, including unc-51-like kinase/autophagy-
related 1 (ULK/Atg1) and phosphoinositide 3-kinase (PI3K) 
complex formation to subsequent stages of vesicle elonga-
tion and completion [35, 42, 43]. 

Autophagy is a protective response; however, it is 
closely linked to the cell death program. If autophagy, as a 
primary response to cellular damage, fails, it gets blocked 
and apoptosis is induced. Inhibition of autophagy may be a 
consequence of caspase-mediated cleavage of Atg proteins 
and binding of the pro-apoptotic molecule Bim to Beclin 1, 
a member of Atg proteins [44]. Autophagy and cell death 
can also coexist. For instance, in ferroptosis, an iron-
dependent form of regulated necrosis, autophagic degra-
dation of cellular iron storage proteins plays a crucial role 
[44, 45]. 

Given the involvement of autophagy in various physio-
logical aspects, it is not surprising that autophagic process-
es have to be tightly regulated as an adaptive response to 
unfavorable conditions. Autophagy-inducing cellular stress 
conditions include starvation and mechanical stress [46], 
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but also endoplasmic reticulum stress, growth factor dep-
rivation and pathogen infection [47]. Levels of glucose, 
amino acids, and lipids reflect nutrient supply and cellular 
energy status and constitute the pivotal metabolic regula-
tory factors.  

This review focuses on metabolites involved in autoph-
agy regulation, their investigation using metabolomics 
methods, applications and future opportunities of metabo-
lomics in revealing key regulatory mechanisms in autopha-
gy.  

Due to the general importance of metabolites, includ-
ing amino acids, carbohydrates, and lipids, in autophagy, 
metabolomics is well suited to study autophagic processes. 
Up- or downregulation of specific compounds reveal regu-
latory processes and, combined with other ‘omics’ data, 
give a versatile molecular insight into autophagy. Regula-
tion of autophagy can be studied by modern metabolomics 
techniques in a variety of different matrices, including cell 
lysates, tissue lysates and all types of biofluids. By studying 
different model systems, including genetic variants of pro-
teins, knockdowns of proteins or application of pharmaco-
logical inhibitors, effects of autophagy can be studied and 
evaluated [48, 49]. Through this, metabolomic studies pro-
vide insight into key regulatory mechanisms of autophagy 
and autophagy-related processes. 
 

SETUP OF METABOLOMICS STUDIES 

Metabolomic studies, including autophagy-related metabo-
lomics, follow a certain general scheme [15, 50, 51] (Fig. 1). 

The first step is the verbalization of a specific biological 
research question. This question provides fundamental 
information needed for the setup of the metabolomics 
approach, and includes decisions on whether the study is 
targeted or untargeted, sampling of material, sample prep-
aration, the analytical technique, and data analysis. In an 
untargeted approach, a general profile of metabolites pre-
sent in the biological sample is obtained. This is mainly 
used to detect global differences in the metabolic finger-
print [11, 53]. For targeted analysis, the experimental set-
up is optimized for the detection of distinct metabolites 
[54]. Sampling of appropriate biological material is critical 
to answer the research question. A broad range of biologi-
cal material, ranging from cell-based material, in vivo mod-
el systems, and human samples, can be used for metabo-
lomics studies. Examples include, but are not limited to, 
cells, multi-cellular model systems (e.g. organoids [55]), 
cultivation media, tissues, and biofluids (blood, cerebro-
spinal fluid, urine, feces), respectively. These studies can be 
carried out in combination with any kind of modulations, 
such as pharmacological compounds or genetic modifica-
tions (knock-ins/outs, CRISPR/Cas9 technology) [49, 54, 56]. 
Care has to be taken that proper controls are selected, that 
samples are taken using standardized operating proce-
dures (SOPs), and that samples are stored under suited 
conditions. Inappropriate sample storage or preparation 
builds the main source for errors in metabolomics studies. 
For instance, a different storage of samples may change 
the entire metabolic profile due to aberrant enzymatic 

quenching at different temperatures or different stabilities 
of metabolites [57, 58]. Furthermore, an appropriate sam-
ple size needs to be selected to ensure statistical signifi-
cance of the results. In clinical studies in particular, the 
biological variation in patient samples can be high due to 
environmental factors, but also nutrition and genetic load-
ing [59, 60]. Particularly in untargeted approaches neither 
the number of analytes nor the effect size are known a 
priori, which makes an estimation of a required sample size 
difficult. However, it can be estimated, which ranges can 
be covered and which information can be obtained with a 
larger sample size [61]. 

Sample preparation is often necessary for metabolom-
ics studies, and typically includes lysis and/or extraction 
steps. The aim of these procedures is to release metabo-
lites, to remove interfering substances (e.g. insoluble com-
ponents, proteins, lipids), and to optimize sample stability, 
such as by quenching enzymatic turnover of metabolites 
after lysis. Lysis and extraction protocols are tailored to the 
metabolite of interest, the matrix and the analytical tech-
nique used for metabolic profiling [40]. Most commonly 
used protocols to break cells and tissue employ lysis by 
sonication or use of a bead homogenizer [32, 49], com-
bined with an extraction procedure with a solvent mixture 
(e.g. H2O/MeOH or H2O/MeOH/CHCl3) [52]. For certain 
tissues it might be necessary to grind them frozen with 
liquid nitrogen. Protein removal might be carried out alter-
natively using ultrafiltration [16]. Internal standards can be 
included in the extraction. However, it must be ensured 
that these standards remain in the solvent, i.e. do not in-
teract with sample components, which are removed during 
the extraction (e.g. protein precipitate). Examples where 
lysis or extraction steps are omitted are solid state NMR 
spectroscopic studies of intact tissue and solution NMR 
spectroscopic studies of urine or cerebrospinal fluid [7, 54]. 
In case of MS, samples are measured either directly from 
the matrix or using extraction protocols to enrich the me-
tabolites of interest [15]. Furthermore, derivatization tech-
niques are used to improve analytical behavior of metabo-
lites. Examples are the increase of stability or volatility of 
non-volatile or instable compounds in gas chromatography 
[62], or removal of metabolites due to interaction with 
cationic or anionic silica nanoparticles [63], and introduc-
tion of 15N using a cholamine tag in NMR spectroscopy. 
This latter tag binds to the carboxyl group of metabolites 
and introduces on the one hand 15N as a second stable 
isotope, which is NMR active, and on the other hand a 
permanent charge, which is detected by MS [64]. Difficult-
to-be-ionized metabolites are not easily measured by MS, 
but ionization can be improved by chemical derivatization 
such as isotope coded derivatization (ICD) [65]. For normal-
ization of metabolite concentrations in cell lysates and 
tissues, protein concentrations and tissue (dry) weight are 
most commonly used. Other approaches include DNA con-
centration in adherent cell lines [66], or total ion current in 
MS, or total integrated proton signal in NMR [67]. In cer-
tain matrices metabolites can be normalized to an endoge-
nous substance, such as creatinine in urine. However, care 
has to  be taken that  concentrations  of these  metabolites  
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FIGURE 1: Characteristic setup of a metabolomics study. The setup of a metabolomics study is shown using the work of Shen et al. as an ex-
ample [52]. Main steps are shown on the right. The main aim of the authors was to determine the function of Atg7, a protein essential in the 
formation of autophagosomes. In absence of Atg7, cells indicate a reduction or lack of autophagy, however, the metabolic responses under 
acute starvation remained elusive. The main aim of the study was to determine the metabolic phenotype of Atg7-dependent autophagy under 
starvation. Based on this research question, the authors used wild-type and Atg7-/- mouse embryonic fibroblasts (MEFs) as a model system 
and starvation as experimental conditions. Examples for other material and conditions can be found on the right. After treatment, cells were 
lysed for metabolomics analysis on an UPLC-MS system. Apart from MS analysis, NMR spectroscopy can be applied. Metabolomics data were 
analyzed statistically using principle component analysis (PCA), and heat maps were used to visualize changes in metabolite concentrations. 
For more details, see text. 
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are not affected by diseases, such as renal injury in case of 
creatinine in urine.  

After preparation, samples are investigated on a dedi-
cated analytical platform. In NMR spectroscopy-based 
metabolomics, the platform is a NMR spectrometer, 
whereas in MS-based metabolomics, the analytical plat-
form can comprise, besides the mass spectrometer, an 
additional chromatographic separation step. Depending on 
the research question, the profiling approach, and the type 
of metabolites of interest, liquid or gas-chromatography 
(LC or GC) respectively is used. LC is applied to the majority 
of chemical species, typically without any chemical modifi-
cation of metabolites, whereas GC requires derivatization 
to improve volatility and thermal stability of polar com-
pounds (such as amino acids, organic acids, sugars, amines, 
alcohols and amides). However, GC achieves a better me-
tabolite separation due to its higher resolution and gener-
ally reduces matrix effects and ion suppression [22, 68, 69]. 
On the other hand, HPLC, and the higher efficiency variants,  
such as U(H)PLC, offer the most versatile tools for the anal-
ysis of a multitude of molecules which belong to different 
groups, have different molecular properties and coexist in 
the same sample in varying concentrations. Typically 
U(H)PLC is used, but nano LC and “chip”-based LC may also 
make a contribution in this area [70]. Depending on the 
metabolite of interest, LC-MS typically uses reverse-phase 
chromatography for apolar compounds, whereas hydro-
philic interaction liquid chromatography (HILIC) is chosen 
for polar metabolites [71, 72]. For polar and charged me-
tabolites, ion chromatography [73] and capillary electro-
phoresis [74] have also been used. Supercritical fluid 
chromatography (SFC), using CO2-based mobile phases, is 
an alternative separation tool and may have great utility 
for certain applications such as lipidomics [75]. In principle, 
NMR spectroscopy can be coupled to liquid chromatog-
raphy, but this approach is not applied routinely [23]. 

For targeted MS analysis, internal standards are often 
spiked into the sample, enabling an absolute quantification 
of metabolites of interest [68, 76]. In NMR based metabo-
lomics, targeted or untargeted approaches use similar ex-
perimental setups, and spike-in of reference material is 
typically used to verify certain metabolites at the late stage 
of analysis. 

From a physical point of view, NMR spectroscopy and 
MS provide fundamentally different experimental and 
therefore complementary metabolite data. NMR spectros-
copy determines resonance frequencies of NMR active 
nuclei (chemical shift), most commonly 1H, 13C, 15N, and 31P, 
with the intensity of each signal being determined by the 
concentration of the corresponding metabolite. MS pro-
vides mass-over-charge ratios of each metabolite and its 
adducts as well as its fragments in the case of tandem mass 
spectrometry, with the signal intensity being determined 
by the concentration and ionization property of the corre-
sponding metabolite (and for the fragments additionally 
their fragmentation efficiency) [51]. 

MS further benefits from using the aforementioned 
chromatographic techniques as frontends. Coupling the MS 
analyzer to chromatography comes with several ad-

vantages: on the one hand, matrix effects and ionization 
suppression are reduced and isomers and isobars are sepa-
rated, which reduces spectral complexity, improving me-
tabolite identification and quantification. On the other 
hand, more information is obtained due to orthogonal data 
obtained in chromatography (i.e. retention times), also 
improving identification. However, these approaches are 
more time-consuming than direct infusion MS and might 
complicate trouble-shooting, which may build an obstacle 
in high-throughput analysis [77]. Utilization of MS in the 
direct infusion mode has been very helpful in high-
throughput quantification of metabolites in complex mix-
tures, in which case very high mass accuracy is a prerequi-
site. However, if a chromatographic separation is not ap-
plied, an unknown number of molecules of unknown prop-
erties and concentrations are subjected simultaneously to 
the ionization process and thus poor ionization efficiency 
will be observed for numerous analytes. MS can also be 
coupled to ion mobility spectrometry, which provides in-
formation about drift times of ionic molecules in the gas 
phase dependent on their shape, supporting metabolite 
identification and improving peak capacity for MS-based 
quantitation by adding another dimension [78]. 

Electrospray ionization (ESI) is the preferred ionization 
mode because it is easily coupled with LC and typically 
profiles are obtained in both positive and negative ion 
mode. So far, the majority of MS-based global metabolite 
profiling studies have been realized using a combination of 
U(H)PLC with time-of-flight mass spectrometry (TOF-MS) 
[70]. Such systems combine the highest chromatographic 
resolution with excellent sensitivity, fast data acquisition 
and high mass accuracy. Higher resolution MS machines 
(e.g. FT-ICR) typically require longer times to achieve high-
er resolution, hence, such instruments do not fully exploit 
the potential of fast UHPLC. The Orbitrap-MS is also widely 
used in metabolomics research, either as standalone MS 
e.g. for direct infusion, or with matrix assisted laser de-
sorption ionization (MALDI) for MS-imaging, or combined 
with various modes of LC. Orbitraps offer very high resolu-
tion and mass accuracy and MSn capabilities. High mass 
accuracy is very useful for the identification of metabolites: 
more precise atomic composition data is attained, thereby 
reducing the number of candidate identities [79]. The 
combination of high mass accuracy MS and MS/MS data 
with library searching, the use of authentic standards and 
information from other experiments (e.g. NMR) gives a 
much higher level of structure identification/confirmation 
ability. 

NMR spectroscopy-based metabolomics is a non-
destructive method, which enables performing comple-
mentary NMR experiments on the same sample. Hereby, 
different NMR pulse sequences can be used to optimize 
the information content of the NMR data. The obtainable 
information ranges from chemical shifts, scalar couplings, 
connectivity, spatial proximity, diffusion properties, to the 
isotope content. These experiments are either recorded as 
one-dimensional experiments or higher dimensional exper-
iments where several information contents are combined, 
such as 1H chemical shifts and connectivity in 2D 1H-1H To-
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tal Correlation Spectroscopy (TOCSY), or 1H and 13C chemi-
cal shifts and connectivity in 2D 1H,13C Heteronuclear Single 
Quantum Correlation (HSQC) type NMR experiments. The 
purpose of higher dimensional experiments is to reduce 
signal overlap, to provide complementary information for 
identification of (yet unknown) metabolites, and to enable 
analysis of isotope incorporation in metabolic flux analyses 
[2, 15, 80]. 

NMR spectroscopy and MS are two complementary 
techniques, which, in combination, provide the outmost 
information content for metabolic studies [13]. NMR-based 
metabolomics is typically used as an untargeted approach, 
providing a plethora of metabolite information. The main 
limitations in NMR-based metabolomics encompass the 
lower information content for apolar samples, as well as 
the lower sensitivity, which requires sample concentrations 
in the low micromolar range. MS provides complementary 
information to NMR spectroscopy by application to lip-
idomics, and is the method of choice for low concentrated 
compounds due to its high sensitivity (picomolar to 
femtomolar). MS is a well suited technique for targeted 
metabolomics, however, it is not straightforward for appli-
cation to all matrices [13-15, 21, 76, 77, 80, 81]. Thus, by 
combining the two techniques high quality metabolomics 
data can be obtained in a robust and reproducible way [82]. 

For targeted metabolomics, metabolites are identified 
and quantified based on their characteristic chemical shifts 
and splitting patterns in the case of NMR spectroscopy, 
and based on their characteristic mass-over-charge ratios, 
isotopic distribution and retention times in case of LC/GC-
MS, and characteristic fragments if tandem MS is em-
ployed. The use of multiple reaction monitoring (MRM) 
mode, available in triple quadrupole MS instruments al-
lows monitoring of selected precursor ion masses, which 
can be further fragmented into several new fragments, and 
one or a few of these fragments. The chances for an inter-
fering compound having the same retention time in the 
column, and having exactly the same m/z, and producing 
the same fragment are low, which reduces the background 
noise to close to zero, making MRM mode very specific and 
sensitive [83]. High resolution mass spectrometers (TOF, 
FT-ICR, Orbitrap) allow pseudo MRM acquisition by moni-
toring selected precursor ions and obtaining MS/MS spec-
tra of their fragments which can then be used for quantita-
tion (MS2-based quantitation) [84]. Data-dependent acqui-
sition (DDA) is widely used for untargeted metabolomics 
studies employing tandem mass spectrometry (MS/MS). 
DDA selects precursors for fragmentation by their intensity. 
Thus, only the most intense ions are fragmented. This af-
fects reproducibility, accuracy and sensitivity of detection 
and quantification of the analyzed target metabolome 
across multiple samples. Data-independent MS/MS acqui-
sition methods [85], in contrast, can theoretically obtain all 
fragment ions for all precursors simultaneously, thereby 
increasing the coverage of observable molecules and im-
proving analytical reproducibility and quantitative perfor-
mance. However, the main problem is the complexity of 
MS/MS spectra because of the wide isolation window (20–
50 m/z or more) for precursor ion selection, requiring a 

high performance MS platform, proper precursor isolation 
scheme settings, and reliable post-acquisition data-
processing [86]. The MSE workflow even isolates all pre-
cursors in a whole MS/MS scan instead of employing con-
secutive isolation windows, which can also be called all-ion 
fragmentation (AIF) strategy [87]. For DIA data processing, 
the acquired original MS/MS spectra consist of fragments 
of several precursors, and thus need to be deconvoluted to 
reveal the MS/MS spectra for each precursor [85].  

Untargeted analyses can detect hundreds for GC to 
thousands of molecules for LC–MS-based methods [88]. 
The main limitation of current untargeted LC–MS platforms 
is the unambiguous identification of the molecules. Gener-
ally, identification requires the use of the accurate mass 
measurement to limit the possible molecular formulas of 
candidate molecules, matching for retention time and m/z 
ratio and/or a specific compound fragmentation with a 
standard compound. Even though the number of metabo-
lites in databases is growing and automated softwares for 
identification are getting better, there are still many mole-
cules which cannot be identified by database searches. 
Tandem mass spectral search (MS/MS) from large well 
established libraries, such as the National Institute of 
Standards and Technology database [89], the Human 
Metabolome Database [90] and METLIN [91], is the fastest 
way to correctly annotate MS/MS spectra from screening 
small molecules [92]. The confidence in MS/MS-based an-
notation of chemical structures is impacted by instrumen-
tal settings and requirements, data acquisition modes, 
library scoring algorithms, as well as post-curation steps. 
Methods combining both targeted and untargeted ap-
proaches in the same run have also been developed [93, 
94] to get the best of both approaches. 

Metabolite concentrations can be determined simply 
by integration of the corresponding NMR signal(s), and 
using an internal or external reference with known concen-
trations. Most state-of-the-art metabolomics NMR experi-
ments, such as the 1H 1D one-pulse sequence, nuclear 
Overhauser effect spectroscopy (NOESY) and CPMG 
(Carr−Purcell−Meiboom−Gill) pulse sequences with water 
suppression using presaturation are quantitative and ena-
ble a direct determination of metabolite concentrations in 
the samples [14, 15, 18-21]. For absolute quantification in 
MS, stable-isotope-labeled standards are typically spiked 
into the sample, to overcome potential bias due to metab-
olite specific ionization properties [13, 21, 42, 54, 56, 95]. 
Receiver Operator Characteristic (ROC) curves are often 
used to further evaluate metabolite concentrations in or-
der to provide information about the discriminatory power 
of metabolites and metabolite patterns [96]. 

In untargeted metabolomics, the vast amount of gen-
erated data is analyzed using cheminformatics tools. The 
aim of these tools is to retrieve characteristic patterns in 
metabolite profiles and a statistical evaluation, thereof, in 
order to identify for example differences in metabolite 
profiles, reflecting physiological or pathophysiological met-
abolic fingerprints [97, 98]. Since data sets obtained by MS 
and NMR spectroscopy are complex and involve a high 
number of data points, it is beneficial to use multivariate 
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statistical approaches in order to avoid loss of critical in-
formation [99, 100]. 

A variety of statistical approaches have been reported 
to be applicable to complex data sets, including unsuper-
vised approaches (i.e. PCA, k-means clustering, hierarchical 
clustering, Hidden Markov models) to draw interferences 
from datasets without information of group affiliation and 
supervised approaches (i.e. PLS, PLS-DA, OPLS-DA), provid-
ing information about group affiliation. Two of the most 
popular approaches for metabolomics studies are PCA and 
OPLS-DA (orthogonal partial least square- discriminant 
analysis). PCA is an unsupervised approach, i.e. that it can 
identify patterns and regularities without direct supervi-
sion of a human. The algorithm identifies data points (i.e. 
chemical shifts, mass-over-charge values, retention times) 
which show the largest differences between samples, or in 
other words the metabolites which are varying most be-
tween samples. Those are combined in so-called principle 
components which are projections of the multidimensional 
variable space and reveal similarities between samples. For 
evaluation of sample sets and to detect outliers, Hotelling’s 
T2 ellipse provides a measure of the variation in each sam-
ple within the model after projection trough the model and 
indicates how far each sample is from the center of the 
model. In order to account for most of the data variability, 
cross-validation can help to find the appropriate number of 
principal components [101, 102]. Summarizing, PCA reveals 
differences and similarities of metabolic signatures be-
tween samples and the metabolic signatures causing these 
differences [52]. This allows identification of outliers and 
clusters of samples with similar metabolite profiles.  

In the supervised Partial Least Square (PLS)-based ap-
proaches regression models are used for multivariate data 
analysis to answer what metabolite signature discriminate 
two groups of samples. To this end, the information of two 
blocks of variables is compared to each other and the fun-
damental relations are identified. To further improve the 
model, orthogonal components, corresponding to variables 
varying within groups, can be included in the building pro-
cess of the model (OPLS-DA) [103]. To optimize infor-
mation of this multivariate statistics approaches and to 
assess the quality of the model, cross validation is used. 
Cross validation can help to avoid overfitting by partition-
ing data into subsets and validating their match to the 
sample set [8, 104]. 

If both, NMR and MS data sets are available, these data 
can be integrated in the multivariate data analysis using 
O2PLS. Therein, the principle of OPLS-DA is extended and 
enables the identification of patterns provided by both 
data blocks (i.e. NMR and MS) and patterns unique to one 
block, thus providing an improved interpretation of com-
plex data sets [105]. Finally, the integration of data ob-
tained by other complementary techniques, such as prote-
omics, transcriptomics or genomics in OnPLS statistical 
analysis, can provide the outmost information content for 
biological systems [9]. 

These statistical approaches include complex calcula-
tions which implies that automation of data analysis is in-
evitable. Pipelines for metabolomics data processing and 

statistics have been setup in several free and commercial 
software packages and web servers (for recent reviews see 
[10, 31, 106]). Due to the increasing amount of generated 
data, other computation approaches such as machine 
learning and artificial intelligence gain in importance. Ma-
chine learning is a powerful tool making predictions based 
on huge amounts of data using complex algorithms [107]. 
First metabolomics studies using artificial intelligence were 
published recently. Yuan-yuan Xie et al., for example, used 
artificial neural networks and neurofuzzy logic to predict 
potential biomarkers in a stress-induced rat model to char-
acterize the therapeutic effects of a Traditional Chinese 
Medicine using UPLC-QTOF/MS [108]. Brougham et al. 
successfully used artificial neural networks in order to clas-
sify drug resistance patterns in lung carcinoma cell lines 
using NMR spectroscopy data [109].  

Besides these approaches, which provide a static snap-
shot of the metabolism at a certain time point, metabolic 
flux analysis provides detailed dynamic information on 
metabolic processes. Assume, for example, a case where 
decreased levels of metabolites are observed. Two alterna-
tive mechanisms might lead to this observation which can-
not be discriminated: either increased metabolite con-
sumption or decreased production. Moreover, metabolism 
provides alternative pathways, which may converge on the 
same metabolite. By administering isotope labeled com-
pounds, for example 13C-labeled glucose or glutamine, to 
the model system of interest, it is possible to track the way 
of metabolites through metabolic pathways and obtain 
information through which pathway the metabolite of in-
terest has been generated. By analyzing different time 
points, the decrease of labeled compound, as well as the 
increased incorporation of isotopes in other metabolites, 
can be followed by NMR spectroscopy or MS [110]. Thus, 
metabolic flux analysis is a versatile tool to study metabolic 
regulation, for example in autophagic processes [48, 111-
113]. Application of NMR spectroscopy and MS in metabo-
lomics studies thus provides a plethora of information 
which enables understanding of physiological and patho-
physiological processes. In autophagy research, metabo-
lomics is a relatively young technique and has an enormous 
potential for applications. In general, metabolomics con-
cerns the sum of all metabolites present in a biological 
system. In the following paragraphs, we will highlight how 
NMR and MS have already been employed for metabolom-
ics studies of autophagy and conclude with a future out-
look. 

 

METABOLOMICS STUDIES OF AUTOPHAGY 

REGULATION 

Autophagy helps cells to cope with several stresses. Due to 
the variety of different factors leading to stress situations, 
it is not surprising that regulation of autophagy is mediated 
by different pathways and a variety of different proteins 
and metabolites [34, 35, 43, 47, 114, 115]. To highlight the 
general applicability of metabolomics to study autophagy, 
we provide an overview on recent key metabolites and 
metabolomics studies of autophagy regulation. In addition 
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to physiological regulation of autophagy, metabolomics 
can provide insight into autophagy-related diseases in cell-
based assays, animal models, or humans.  

Induction of autophagy can be mediated by starvation 
conditions, such as low levels of essential metabolites in-
cluding glucose and amino acids. Low glucose levels reflect 
in low cAMP levels and decreased AMP:ATP ratio [115]. In 
addition, insulin-like growth factors, recognized by insulin 
growth factor receptor, glucose, amino acids and fatty ac-
ids lead to an active state of the mammalian target of ra-
pamycin complex (mTORC) and therefore inhibition of au-
tophagy [116]. Glucose can further be metabolized to ace-
tyl-CoA, serving as a substrate for protein/histone acetyla-
tion, which, at a high level, inhibits autophagy [46, 117, 
118]. This modification is inhibited or reduced by metabo-
lites such as the polyamine spermidine and NAD+ via NAD+-
dependent sirtuins [46, 118] (Fig. 2).  
Since most state-of-the-art metabolomics approaches have 
only recently been developed and are still developing, the 
number of studies focusing on autophagy and metabolom-
ics is limited. To avoid any further restriction of the appli-
cation spectrum of metabolomics to studies in microbes, 
we present a broad overview of key studies focusing on the 
use of metabolomics approaches in autophagy research. 
We apologize for any study that has not been included or 
which was not discussed in detail due to space limitations. 
 
Glucose, cAMP, AMP:ATP ratio 

Glucose is a key metabolite in autophagy regulation. It 
reflects the energy state of the cell; if glucose levels are 
high, cells are usually not in starvation conditions and, un-
der physiological conditions, exhibit reduced autophagy. 
Carbohydrates, especially glucose, are well-detectable 
available in metabolomics studies [119, 120]. 

In presence of high glucose levels, ATP is converted to 
cAMP, which is a cellular measure for nutrient availability, 
indicating high nutrient levels. Under these conditions, 
autophagy is inhibited due to elevated levels of cAMP 
through activation of protein kinase A (PKA), which in turn 
phosphorylates autophagy-related proteins (i.e. Atg1, 
Atg13) and mTORC. This leads to the inhibition of the pre-
autophagosomal structure (PAS) and reduced autophagy. 
Low glucose levels result in loss of this inhibitory phos-
phorylation and activation of autophagy. Taken together, 
detection of high cellular cAMP levels indicate reduced 
autophagic flux [115]. High glucose levels result in a high 
energy level which is reflected by an increased ATP:AMP 
ratio. Absence of glucose translates to low cellular energy 
levels, namely a low ATP:AMP ratio, which is sensed by 
AMP kinase, and results in inhibition of the mTORC1 com-
plex, either directly by phosphorylation or indirectly by 
phosphorylation and activation of tuberous sclerosis pro-
tein 1/2 (TSC1/2), which is an inhibitor of mTORC1 [116]. 
Furthermore, AMP kinase phosphorylates the protein unc-
51-like kinase 1 (ULK1) [50]. Thus, glucose, ATP, AMP, and 
cAMP levels are well-suited readouts for cellular autophag-
ic capacity, with high levels of these metabolites reflecting 
reduced autophagic flux. Glucose, and nucleotides, if pre-
sent in high concentrations, are detectable using NMR 

spectroscopy and MS. cAMP is a signaling metabolite, 
which may be present in very low concentrations, there-
fore, highly sensitive MS approaches are well applicable 
[121-123]. 

Autophagy is a tumor suppressive process, but in case 
of tumors harboring mutations in Ras, they highly depend 
on autophagy. In addition, cancer typically depends on 
high glucose levels 115]. Lashinger et al. investigated a 
mouse model system with respect to the effects of caloric 
restriction and autophagy on Ras-driven tumors. Given the 
autophagy-dependency of Ras-driven tumors, the main 
research question in this study was if, by combining caloric 
restriction (CR) and autophagy inhibition, the tumor 
growth might be inhibited more efficiently than using ei-
ther treatment alone. To investigate this research question, 
model systems were generated using mice transplanted 
with Atg5+/+ (control) and Atg5-/- (autophagy inhibited) tu-
mor cells. Both, CR and autophagy deficiency, were suffi-
cient to reduce proliferative cells within the tumor; com-
bined CR and autophagy inhibition reduced the tumor vol-
ume the strongest. In order to understand the metabolic 
effects of caloric restriction on tumors four weeks after 
transplantation, global metabolic profiles of mouse serum 
were compared by NMR metabolomics. For this purpose, 
protein was removed by ultrafiltration, protein-free filtrate 
was mixed with NMR buffer and measured directly. Using 
PCA as statistical analysis approach and quantification of 
metabolites of interest, a switch away from glucose me-
tabolism upon CR was observed, indicated by an upregula-
tion of ketone bodies and a downregulation of glucose, 
amino acids and tricarboxylic acid cycle (TCA cycle) inter-
mediates. Quantification and statistical analysis was per-
formed using commercial cheminformatics software pack-
ages [49]. 

Lock et al. performed a complementary study to inves-
tigate the relationship between autophagy and metabolism 
in a murine cell model system [48]. Their aim was to delin-
eate the biological contributions of autophagy to Ras-
mediated adhesion-independent transformation. In order 
to answer this research question, they used mouse embry-
onic fibroblast (MEF) cells as a model system to study au-
tophagy in Ras-mediated transformation. Given the glu-
cose dependency of Ras-tumors, Atg5-/- or Atg5+/+ MEF cells 
were chosen to monitor glucose metabolism by NMR spec-
troscopy, using [1-13C] labeled glucose as nutrient supple-
ment. Metabolites were extracted with metha-
nol/chloroform. The aqueous phase was lyophilized and re-
dissolved in D2O for NMR measurements. Concentrations 
were determined using an external reference, and samples 
were normalized to total cellular protein. To perform a 
metabolic flux analysis, they followed the metabolic fate of 
13C-labeled glucose by observing the incorporation of sta-
ble 13C isotopes from glucose into downstream metabolites. 
Statistical significance was calculated using analysis of vari-
ance (ANOVA). Upon activation of expression of human 
oncogenic Ras (H-RasV12), decreased levels of [3-13C] ala-
nine, which is the product of transamination of the glyco-
lytic end product pyruvate, in MEFs lacking Atg5, were ob-
served. These data suggest a higher glycolytic activity and a  
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FIGURE 2: Regulatory pathways involved in autophagy. Regulation of autophagy is mediated via two key conditions: starvation, determined 
by amino acid, glucose and lipid levels, as well as protein acetylation status. Protein acetylation is mediated via HATs, which can be inhibited 
by spermidine, and deacetylation is mediated via NAD+-dependent sirtuins. Acetyl-CoA, a product of glycolysis, is a substrate for protein 
acetylation. DHA is associated with low p53 levels, which translates into inactive AMPK. In absence of glucose, high AMP:ATP ratios activate 
AMPK, which, in further consequence, inhibits mTORC and therefore induces autophagy. High glucose levels result in high cAMP levels and 
therefore active PKA, which inhibits autophagy. mTORC is activated by insulin growth factors, amino acids and glucose and, in its active 
state, inhibits autophagy. Unsaturated fatty acids are associated with non-canonical autophagy, whereas saturated fatty acids activate 
PIK3C3, that converts PI to PI3P, which is associated with autophagy. These metabolites involved in regulation of autophagy are discussed in 
detail in the text. 
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higher sensitivity to glucose deprivation in autophagy-
competent cells. This study points out the power of meta-
bolic flux analysis for monitoring incorporation of stable 
isotopes into metabolites and dissection of metabolic 
pathways. 

Redmann et al. conducted a study in a murine cell 
model system to investigate the molecular action of phar-
macological inhibitors of autophagic processes, focusing on 
substances that target lysosomes, but for which the under-
lying mechanisms are different. Based on the current 
knowledge about dependency of mitochondrial quality 
control on autophagy, their main aim was to characterize 
the influence of the pharmacological inhibitors bafilomycin 
A1 or chloroquine, on cellular bioenergetics of primary 
cortical rat neuron cells as model system. To this end, they 
performed targeted analysis of metabolites of the TCA 
cycle by HPLC-MS. Samples were prepared by scraping cells 
in ice-cold methanol to quench enzymatic activity and, 
after centrifugation, dried supernatant was dissolved in 
HPLC mobile phase and measured. Due to characteristic 
mass-over-charge ratios and retention times, various me-
tabolites, including citrate, succinate, fumarate, glutamate, 
and aspartate, were detected, quantified and subjected to 
ANOVA. As a result, metabolites of the TCA cycle, particu-
larly those downstream of citrate synthase and those 
linked to glutaminolysis, were decreased in the autophagy 
inhibitor treated cells. These results implicate that inhibi-
tors of autophagy impact on cellular bioenergetics and 
metabolism probably due to decreased mitochondrial qual-
ity control. The study exemplifies that metabolomics is a 
powerful tool for investigation of effects of pharmacologi-
cal treatment to increase our understanding of regulatory 
mechanisms of autophagy [54]. 
 
Amino acids 

Free amino acids are building blocks of proteins and there-
fore, are highly concentrated in cells after proteolysis dur-
ing autophagy. Amino acids can be measured and detected 
by NMR- and MS-based metabolomics and are therefore 
good markers for (in)activation of autophagy, depending 
on the model and experimental conditions used [124, 125]. 
As already discussed, glucose, and insulin growth factor 
receptor are important regulators of mTORC [116]. How-
ever, glucose alone is insufficient for activation; free amino 
acids are also required in this process [126, 127]. In the 
presence of high amounts of amino acids, mTORC1 is acti-
vated and inhibits induction of autophagy by phosphory-
lating Atg proteins. The mechanism involves H+-
translocating ATPase acting as a sensor of amino acid levels 
in the lysosome membrane adjacent to Rag GTPases and 
the Ragulator complex. In presence of high amino acid 
levels, Rag GTPases are activated and induce mTORC1 de-
localization to the lysosomal membrane and thus its activa-
tion [128, 129]. A study of Mülleder et al. analyzed a yeast 
cell system, Saccharomyces cerevisiae, its amino acid 
metabolome and the effect of gene deletion. The main aim 
of this study was to determine the yeast biosynthetic regu-
lome, using functional metabolomics. Yeast cells were col-
lected by centrifugation and extracted using 80°C hot eth-

anol containing isotope-labeled amino acid standards. The 
lysate was cleared by centrifugation and amino acids were 
analyzed using HILIC and a tandem MS system and com-
pounds were identified by matching retention time and 
fragmentation. The outcome was, among others, that 
TORC1 inhibition in exponentially growing cells matches 
the interruption of endomembrane transport [130]. 

Several studies indicate that a combination of in-
creased anti-aging pathways and reduced nutrient and 
growth-related signaling pathways result in lifespan exten-
sion via the induction of autophagy [114]. In line with this, 
supplementation of amino acids leads to lifespan extension 
in C. elegans [131]. Autophagy, in addition to being a cellu-
lar response to nutrient deprivation, is also activated upon 
failure in degradation of misfolded proteins, a hallmark of 
neurodegenerative diseases. Aiming at understanding the 
molecular causes for the neurodegenerative disease Amyo-
trophic lateral sclerosis (ALS), Valbuena et al. carried out a 
metabolomics study of a well-characterized murine neu-
ronal cell model of familial ALS expressing wild-type or 
mutant (G93A) superoxide dismutase (SOD) [132]. Muta-
tions in the gene of SOD are causative for familial forms of 
the neurodegenerative disease ALS [133, 134]. To investi-
gate global effects of this mutant variant of SOD, untarget-
ed metabolomics using NMR spectroscopy and GC-MS was 
used. Cells were cultured with either 13C glucose or 13C 
glutamine and metabolic flux was investigated. Cells were 
harvested in ice-cold methanol, dried, and intracellular 
metabolites were extracted and derivatized prior to GC-MS. 
Culture media were directly measured by NMR spectros-
copy including an internal standard. Metabolomics data 
were analyzed using MatLab software packages. This study 
revealed increased lactate production in SOD G93A ex-
pressing cells upon serum deprivation. Increased levels of 
newly generated glycolysis and glutaminolysis products, 
but lower amino acid levels, were detected in SOD G93A 
expressing cells. This amino acid deprivation suggests im-
paired autophagy in SOD G93A expressing cells since cells 
deficient in autophagy are unable to maintain amino acid 
levels [132].  

Shen et al. carried out a study on a murine cell model 
(MEFs) in order to characterize the importance of Atg7. 
The main aim of this study was to elucidate the metabolite 
profile of Atg7-dependent autophagy by comparing me-
tabolism in Atg7-/- and wild-type MEFs under acute starva-
tion [52]. Wild-type and Atg7-/- cells were cultured and, 
after starvation, scraped in cold methanol. In order to 
quench intracellular metabolism, cells were frozen in liquid 
nitrogen and further metabolite extraction was performed 
30 minutes at -20°C. The supernatant was used for UPLC-
Q-MS analysis with a mass spectrometer operating in posi-
tive electrospray ionization. This study included a quality 
control sample by mixing equal volumes of each sample in 
order to obtain a mean profile for all analytes encountered 
during analysis. Metabolite identification was performed 
using databases (i.e. HMDB, METLIN) and verified by chem-
ical standards with exact m/z values. SIMCA was used to 
get PCA scores and metabolic pathway analysis (MetPA by 
Metabolanalyst 3.0) helped to identify metabolites signifi-
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cantly altered upon starvation. PCA analysis revealed sig-
nificant differences between wild-type and Atg7-/- MEFs. 18 
altered metabolites under starvation in wild-type, and 19 
altered metabolites under starvation in Atg7-/- were identi-
fied, and, within these metabolites, seven showed aberrant 
patterns in wild-type and Atg7-/-. These altered metabolites 
indicate a disturbance of amino acid, energy, lipid and nu-
cleotide metabolism under starvation in wild-type MEFs, 
whereas amino acid, carbohydrate and energy metabolism 
were affected in Atg7-/- MEFs. In summary, wild-type MEFs 
showed an increased lipid metabolism, delaying cell death. 
After four hours of starvation, apoptosis increased, where-
as autophagy decreased, which affected amino acid, car-
bohydrate and energy metabolism. Contrary, in Atg7-/- 
MEFs, due to their autophagy-deficiency, only apoptosis 
was occurring. These data underlined the importance of 
Atg7 in autophagy in response to acute starvation. 
 
Lipids 

Elevated levels of free fatty acids or triglycerides are linked 
to induction of autophagy [115]. For instance, palmitate 
induced autophagy requires mitogen-activated protein 
kinase 8 (MAPK8). Hence, despite being nutrients, lipids 
can induce autophagy, which may constitute an important 
mechanism to avoid potential lipotoxicity. Moreover, the 
need of lipids in autophagosome formation may implicate 
an induction of autophagy in presence of high lipid levels 
[51, 115]. Metabolomics studies of the complex class of 
lipids is typically carried out using MS-based technology, 
which provides information on individual lipid species, alt-
hough NMR spectroscopy can provide quantitative infor-
mation on lipid classes [81, 135-137]. One major activator 
of autophagy in the class of lipids is phosphatidylinositol-3-
phosphate (PI3P) [138, 139]. High levels of unsaturated 
fatty acids as well as certain saturated fatty acids (mainly 
C15-C18) are capable of inducing autophagy. In general, it 
is known that the saturated fatty acids (C15-C18) induce 
autophagy via production of PI3P, whereas unsaturated 
fatty acids induce non-canonical autophagy. Production of 
PI3P is mediated by activation of phosphatidyl-inositol 3-
kinase catalytic subunit type 3 (PIK3C3), which can in fur-
ther consequence convert phosphatidylinositol (PI) to PI3P. 
Based on the knowledge of autophagy-regulation via lipids, 
a study by Enot et al. aimed at determining metabolic ef-
fects of autophagy-inducing doses of oleate and palmitate 
in a mouse model with respect to pro- or anti-autophagic 
metabolites. In vivo mouse models were intraperitoneally 
administered a single dose of palmitate or oleate, and the 
metabolic disturbances were analyzed. Hereby, metabolic 
profiles in tissues were detected in liver, heart and skeletal 
muscle. Tissues were homogenized using beads, and dried 
extracts were re-suspended in methanol and used for GC- 
and LC-MS. Data analysis was performed using a quantita-
tive analysis software, and statistical analysis was per-
formed using free available statistics software R [138, 139]. 
Depletion of amino acids, spermidine and spermine in the 
liver was observed after palmitate administration, whereas 
oleate induced an increase of NAD+. Moreover, palmitate 
raised acyl-carnitine levels in the heart. Overall, this study 

revealed an increase of anti-aging metabolites by palmitate, 
but not by oleate.  

Induction of autophagy is mediated via reduction of 
p53 expression. Loss of tumor suppressor p53 in presence 
of docosahexaenoic acid (DHA) leads to activation of AMPK, 
and, in turn, inhibition of mTORC activity [140, 141]. DHA is 
a metabolite which can be investigated using, for instance, 
GC-MS, and provide information on the autophagic flux, 
which is increased in presence of DHA [142]. 
 
Metabolic regulation of protein acetylation 

Protein acetylation is mediated by lysine acetyltransferases 
by transferring an acetyl-group from acetyl-CoA to a lysine 
residue in the polypeptide chain. This regulatory acetyla-
tion can, on the one hand, regulate functions of cellular 
proteins by removing positive charges, and, on the other 
hand, modify gene transcription by reducing the affinity of 
histones to the phosphate backbone of DNA [117]. In-
creased acetylation in cells can negatively regulate autoph-
agy due to the increased rate of transcription and modified 
protein functions. Atg proteins are, in their de-acetylated 
state, capable of inducing formation of autophagosome 
and autophagy. In the acetylated state, Atg proteins do not 
induce autophagy [143]. Upregulation of protein acetyla-
tion can be measured directly by proteomics [144] and 
indirectly by determination of acetyl-CoA levels. High cellu-
lar acetyl-CoA levels indicate better substrate availability 
for lysine acetyltransferases and therefore a higher level of 
protein acetylation, which is associated with reduced au-
tophagy [46, 114, 117, 145, 146]. Acetyl-CoA is a metabo-
lite mainly detected by LC-MS due to its low abundance, 
while the associated metabolite acetate is well accessible 
by NMR spectroscopy [147]. Apart from acetyl-CoA other 
metabolites, directly or indirectly related to protein acety-
lation, including nicotinamide adenine dinucleotide (NAD+), 
spermidine or hydroxybutyrate, are accessible, using both, 
NMR spectroscopy and MS [148-150]. 

NAD+ and their interaction partners, the sirtuin pro-
teins, have initially been linked to reduced autophagy in 
protein misfolding diseases. Sirtuins, functionally known as 
protein deacetylases, are biomolecules capable of remov-
ing acetyl residues from proteins in a NAD+-dependent 
manner. Elevated concentrations of the cofactor NAD+ 
activate sirtuin deacetylase proteins, thus reducing protein 
acetylation. In case of Atg proteins, deacetylation enhances 
autophagosome formation and therefore autophagy [151-
153]. In protein folding diseases removal of misfolded or 
truncated proteins from the cellular environment through 
autophagy is impaired [154, 155]. Neurodegenerative dis-
eases, in particular, have been linked to defective protein 
folding and in further consequence formation of intracellu-
lar proteinaceous inclusions. These abnormal protein ag-
gregates may remain due to lack or inefficient autophagic 
rescue events [156-160]. Indeed, reduced NAD+ levels have 
been associated with the exposure of cells to toxic mis-
folded prion protein [161]. In line with this, exposure to 
NAD+ causes a decrease in mitochondrial content by acti-
vating autophagy via sirtuin activation [118, 162, 163]. 
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These studies indicate that NAD+ concentrations are an 
important measure of autophagic flux, in biological sys-
tems. Increased NAD+ concentrations activate NAD+-
dependent sirtuin deacetylase proteins and therefore re-
duce protein acetylation. NAD+, but also metabolites relat-
ed to NAD+ metabolism (i.e. NADP+), are small molecules, 
which have been detected and quantified in different bio-
fluids using targeted and untargeted NMR spectroscopy 
and MS-based methods [150, 164-166]. 

A recently emerging compound associated with regula-
tion of protein acetylation is spermidine. Spermidine is a 
small molecule polyamine and is an intermediate in the 
reaction of putrescine to spermine. It has been reported to 
decline during aging [167, 168] and to regulate autophagy 
[46, 167, 169, 170]. Spermidine has been shown to regu-
late autophagy through inhibition of histone acetyltrans-
ferases [46, 129, 169], which results in hypoacetylated 
histone proteins. Acetylation of histones is a regulatory 
mechanism in gene transcription, which is not directly 
linked to autophagy. However, it can still, via up- or down-
regulation of autophagy-related genes, lead to regulatory 
modulation of autophagy. Spermidine can be detected by 
NMR spectroscopy and MS [46, 170, 171]. 

In a study by Eisenberg et al., the main focus was to re-
veal the role of spermidine in autophagy and aging in sev-
eral in vivo systems, including yeast, flies, worms, human 
immune cells, and mice [172]. Spermidine was applied to 
chronologically aging model systems and revealed a retard 
in cellular and organismal aging in all species. In line with 
this, a depletion of polyamines decreased the lifespan of 
yeast and induced necrosis. Furthermore, these studies 
revealed a link of lifespan extension to epigenetic hypoa-
cetylation, which is ascribed to inhibition of histone acetyl-
transferase activity by spermidine. In order to quantify 
spermidine and other polyamines isolated from yeast cells, 
mouse liver tissues or flies after treatment of these model 
systems, the authors used a targeted LC-MS/MS approach. 
Extraction of polyamines from yeast was performed using 
an extraction procedure with trichloroacetic acid; polyam-
ines of flies and from mouse liver tissue were extracted 
using freeze-thaw cycles. For LC-MS/MS measurements, a 
hydrophilic interaction liquid chromatography column was 
used and polyamines (spermidine, putrescine, 
bis(hexamethylene)-triamine) were identified based on 
their characteristic mass-over-charge ratio transitions of 
precursor to product fragment ions and retention times 
(multiple reaction monitoring). For quantification, calibra-
tion standards were prepared by spiking extraction buffer 
with specific concentrations of spermidine, putrescine and 
an internal standard [172]. 

Autophagy is a catabolic process, which helps cells and 
cellular organisms to cope with stress situations. Oxidative 
stress has also been linked to autophagy [173], and oxida-
tive stress response is strictly regulated. Transporter of 
polyamines 1 (Tpo1) controls intracellular spermine and 
spermidine concentrations, as well as the induction of an-
tioxidant proteins. In a study by Krüger et al. the main fo-
cus was on adaptions to oxidative stress with respect to 
polyamine transport in eukaryotic yeast cells. Their aim 

was to determine whether export of spermine and spermi-
dine influences adaption to unfavorable environmental 
conditions, using S. cerevisiae as a model system. By apply-
ing oxidative stress via H2O2 exposure, the export of poly-
amines via Tpo1 and expression of antioxidant proteins 
was induced. In order to determine the amount of polyam-
ines in cells, putrescine, spermine and spermidine levels 
were quantified using a targeted LC-MS/MS approach. For 
extraction, yeast cells were harvested, washed and ho-
mogenized using glass beads on a homogenizer. After cen-
trifugation, the supernatant was used for derivatization 
and subsequently chromatographically separated. Identifi-
cation of polyamines was obtained via their characteristic 
mass-over-charge ratio transitions of precursor to frag-
ment ions of polyamines (multiple reaction monitoring) 
[170]. 

Most of the discussed studies included only a small 
number of metabolites, which indicates that there is still an 
enormous potential for metabolomics research in autoph-
agy. Until now, we can refer to these aforementioned stud-
ies, but due to the current powerful state-of-the-art tech-
niques in metabolomics and the emerging research in this 
field, the number of autophagy studies using metabolomics 
can be expected to increase in future. For these studies, 
any autophagy-related setting ranging von knockout of Atg 
proteins [49, 52], to treatment with inhibitors [54] or star-
vation [49, 52] can be used in order to study metabolome 
of biological samples. Samples can be analyzed as long as 
they are soluble (or volatile in case of GC-MS), and high 
enough concentrated for the respective technique. This 
enables almost infinite capabilities of studying metabolism 
in autophagy. 
 

CONCLUDING REMARKS 

Conceived in general terms, autophagy is a process which 
is regulated by unfavorable environmental conditions, in-
cluding stresses and starvation. These conditions lead to 
metabolic disturbances and aberrations which can be de-
termined in biological samples using NMR- and MS-based 
metabolomics. Quantitative information for key regulatory 
metabolites, including glucose, amino acids, fatty acids, 
acetyl-CoA, NAD+, spermidine and many other, provide 
detailed molecular insight into autophagic processes [48, 
111, 118, 129, 131, 141, 145]. Therefore, metabolomics is a 
powerful technique, which can, despite the high complexi-
ty of autophagic processes in biological systems, help to 
further understand and characterize distinct pathways. 
Apart from the autophagy-related proteins, metabolites 
are compounds that regulate autophagy or reflect au-
tophagic processes in cell systems [46, 129, 173]. Due to 
high throughput and robust detection in metabolomics, it 
enables characterization of a high number of metabolites 
in large sample series with reliable results. Information 
gathered in these studies will further improve current 
knowledge about autophagy, its regulation and its out-
come [11, 12, 53, 174]. 

Recent technological developments have enabled 
metabolomics research in a plethora of biological matrices, 
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including, but not limited to cell and tissue lysates, and 
biofluids, and have established NMR- and MS-based 
metabolomics as the key techniques in clinical research. 
Given their broad applicability and the systemic insights 
into metabolism that is obtained it is not surprising that 
NMR- and MS-based metabolomics became increasingly 
important in basic biological research. It can be expected 
that metabolomics will establish itself as a standard tech-
nique in basic biomedical research in the near future.  

It can also be anticipated that MS and NMR-based 
metabolomics will be further integrated with other tech-
niques. For example, NMR is excellently suited as a proxy 
for in vivo magnetic resonance metabolite imaging. Me-
tabolite information, such as resonance frequencies and 
concentrations, derived from NMR-based metabolomics 
guide the setup of in vivo magnetic resonance metabolite 
imaging studies and allow tracking metabolite localization 
and concentration in real time in living organisms. Hu et al. 
performed a study on Myc, a protein impairing autophago-
some formation, using in vivo metabolite imaging [175]. 
Since the temporal relationship between oncogene signal-
ing, in vivo tumor formation and glycolytic pathway activity 
is not understood so far, their main aim was to reveal the 
onset of metabolic changes in de novo tumor formation 
using 13C pyruvate. Using these experiments, the authors 
discovered altered glycolysis, namely a predominant con-
version of pyruvate to alanine in pre-cancerous tissues 
before observing histologic or morphologic changes [2, 82, 
175]. This study indicates, that in the future in vivo mag-
netic resonance imaging may enlighten key metabolic 
pathways involved in autophagy. Similar MS-based imaging 
approaches enable determination of metabolite distribu-
tion in tissue sections of whole-body or single heterogene-
ous organ samples [176]. Innovative cell-sampling technol-
ogies and highly sensitive mass spectrometry allow even 
metabolic profiling in single cells, and can be combined 
with microfluidics [31, 177]. In addition, integrative ap-
proaches for multi-omics data analysis will provide the 
outmost information content in biological studies [178-
180]. 

A large number of autophagy studies analyzes the ef-
fect of starvation/knockout of Atg proteins by reducing the 
supply of i.e. glucose and investigating effects on protein 
level, mRNA level, via histology or via microscopy [173, 
181-183]. These studies provide an indirect information 
about metabolic changes in cells, tissues or organisms. 
However, they do not clearly depict the metabolism of the 
samples. By additionally applying metabolomics in order to 
investigate effects of these autophagy-settings, the infor-
mation content will be enormously increased. In the future, 
metabolomics will be applied in many different fields, 
which will make the automation of all processes, including 

sample preparation, measurement and data analysis, inevi-
table. 

There are several open questions in autophagy re-
search, which makes it an important and emerging re-
search field. For instance, it is not clear yet whether fluctu-
ations in the abundance of specific metabolites might 
stimulate a specific and graduated autophagic response 
[115]. In addition, it remains elusive what makes the cells 
‘know’ if autophagy is efficient or not [184]. Finally, the 
switch of autophagy facilitating cell health to autophagy 
promoting programmed cell death is not understood so far 
[185]. These are only some of the open questions that 
might be successfully addressed by metabolomics tech-
niques. 

Summarizing, NMR spectroscopy and MS are well suit-
ed for in-depth metabolomic analysis and well-applicable 
to study the molecular mechanisms involved in autophagy. 
By combining both techniques a large metabolic space is 
covered. Given the recent success of metabolomics it can 
be expected that metabolomics approaches will contribute 
significantly to deciphering the complex regulatory mecha-
nisms involved in autophagy in the near future and pro-
mote understanding of autophagy and autophagy-related 
diseases in living cells and organisms.  
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