
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

 ©  2008  Zonta et al. 
The Rockefeller University Press  $30.00
J. Cell Biol. Vol. 181 No. 7 1169–1177
www.jcb.org/cgi/doi/10.1083/jcb.200712154 JCB 1169

 Correspondence to Peter J. Brophy: Peter.Brophy@ed.ac.uk 

 Abbreviations used in this paper: CNS, central nervous system; MAG, myelin-
associated glycoprotein; MBP, myelin basic protein; NF-L, neurofi lament light 
chain; P, postnatal day; PNS, peripheral nervous system. 

    Introduction 
 Nodes of Ranvier are the sites of action potential propagation in 

myelinated fi bers, and their formation is essential for the switch 

to rapid nerve impulse transmission in the developing vertebrate 

nervous system. Axonal protein complexes containing voltage-

gated sodium channels are assembled at nodes of Ranvier in 

response to myelination. In addition to sodium channels, com-

ponents of the nodal complex include  � IV-Spectrin, AnkyrinG, 

Contactin (in the central nervous system [CNS]), NrCAM (in 

the peripheral nervous system [PNS]), and a neuronal isoform 

of Neurofascin, Nfasc186 ( Davis et al., 1996 ;  Berghs et al., 

2000 ;  Tait et al., 2000 ;  Jenkins and Bennett, 2002 ;  Yang et al., 

2004 ). The paranodal axoglial junctions that fl ank the node are 

formed by an adhesion complex between the glial isoform of 

Neurofascin, Nfasc155, and the axonal proteins Caspr (also known 

as Paranodin) and Contactin ( Menegoz et al., 1997 ;  Peles et al., 

1997 ;  Tait et al., 2000 ;  Bhat et al., 2001 ;  Boyle et al., 2001 ; 

 Kazarinova-Noyes et al., 2001 ;  Charles et al., 2002 ;  Sherman 

and Brophy, 2005 ;  Sherman et al., 2005 ). Axoglial junctions 

 restrict the diffusion of nodal complexes but cannot cluster them 

in the PNS in the absence of Nfasc186 in vivo ( Rios et al., 2003 ; 

 Sherman et al., 2005 ). 

 Studies on myelinating cocultures have indicated a key role 

for nodal Nfasc186 in the clustering and stabilization of macro-

molecular assemblies at the PNS node of Ranvier ( Lambert et al., 

1997 ;  Bennett and Lambert, 1999 ;  Lustig et al., 2001 ;  Koticha 

et al., 2006 ;  Dzhashiashvili et al., 2007 ), and studies in vivo have 

supported this view ( Sherman et al., 2005 ). Gliomedin, a protein 

expressed in the region of Schwann cell microvilli, may anchor 

Nfasc186 at the PNS node by virtue of its ability to interact with 

both Neurofascin and NrCAM ( Eshed et al., 2005 ;  Eshed et al., 

2007 ;  Maertens et al., 2007 ). However, there are indications that 

the mechanisms of node assembly may be different in the CNS. 

Soluble factors secreted by oligodendrocytes have been shown to 

promote sodium channel clustering in CNS axons in culture in 

the absence of axoglial contact ( Kaplan et al., 1997 ). More recent 

work has refi ned this picture by showing that Na v 1.2  �  subunits 

cluster under the infl uence of a secreted factor; however, clustering 

of Na v 1.6  �  subunits, which are more characteristic of mature nodes, 

requires ensheathment by oligodendrocytes ( Boiko et al., 2001 ; 
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formed at postnatal-day (P) 6. For most of this work, we used 

either teased fi ber preparations or longitudinal sections from the 

ventral funiculus of the cervical spinal cord because we found 

that CNS myelination was most advanced there at this early 

stage of postnatal development in the mouse. Furthermore, this 

region of the spinal cord has relatively large axons, thus facili-

tating the preparation of teased fi bers for microscopy and quan-

titation ( Arroyo et al., 2002 ). Immunofl uorescence showed that 

in Neurofascin-null nerves, there was extensive disruption to 

both the nodal complex (sodium channels,  � IV-Spectrin, and 

AnkyrinG) and the paranodal axoglial junction (Caspr;  Fig. 1 A ). 

The paranodal myelin marker Claudin 11 was used to identify 

paranodes (and by inference nodes;  Gow et al., 1999 ). Contactin 

was present at both the nodes and paranodes of wild-type nerves 

( Fig. 1 A , fi gure and inset), as previously reported ( Kazarinova-

Noyes et al., 2001 ) but was no longer detectable at either site in 

the mutant ( Fig. 1 A ). Similarly, AnkyrinG is not only a major 

component of the node of Ranvier, but it is also detectable at 

wild-type paranodes at this stage of CNS development ( Rasband 

et al., 1999 ;  Jenkins and Bennett, 2002 ); however, it is lost in 

the mutant in both locations ( Fig. 1 A ). 

 Disruption of the junctional complex at the paranode in 

the CNS was accompanied by loss of the characteristic sep-

tate junctions between the paranodal loops and the axolemma 

( Fig. 1 B ). However, although it was mislocalized, there were 

normal amounts of Caspr in mutant spinal cord tissue, suggest-

ing that disruption of the axoglial adhesion complex did not im-

pair the biosynthesis and/or stability of the protein ( Fig. 1 C ). 

 Electron microscopy revealed myelinating and unmyelin-

ated profi les in both wild-type and mutant nerves ( Fig. 2 A ). 

However, Western blotting showed that the levels of the myelin 

proteins myelin-associated glycoprotein (MAG) and myelin 

 basic protein (MBP) in the CNS of the mutant at P6 were reduced 

compared with wild-type tissue and that they were similar to 

those observed at P4 in the wild-type ( Fig. 2 B ). This suggested 

 Kaplan et al., 2001 ). These studies have further suggested that 

vesicular traffi c is required to deliver sodium channels to nascent 

nodes ( Kaplan et al., 2001 ). 

 Analysis of mice with mutations that affect the integrity of 

paranodal axoglial junctions has suggested that these structures, 

though not essential for the initial clustering of sodium channels, 

may be important for the long-term maintenance of the nodal 

complex ( Bhat et al., 2001 ;  Ishibashi et al., 2002 ;  Rasband 

et al., 2003 ;  Rios et al., 2003 ;  Dupree et al., 2005 ). Derange-

ment of the node after loss of axon – glial contact in tissue from 

multiple sclerosis patients caused by infl ammatory damage to 

CNS axons is consistent with a role for the junction in stabiliz-

ing the node ( Howell et al., 2006 ). However, thus far it has not 

been possible to discriminate between the relative contributions 

of nodal and paranodal Neurofascins in the initial assembly of 

the nodal complex in the CNS. 

 In this paper, we have studied how axonal and glial Neuro-

fascins contribute to the clustering of sodium channels at CNS 

nodes of Ranvier in vivo by using  Nfasc  � / �    mice with disrupted 

nodal and paranodal protein complexes. By selectively express-

ing either Nfasc186 or a truncated version of Nfasc155 by trans-

genesis in Neurofascin-null mice, we have been able to show 

that, in marked contrast to the PNS, each of the Neurofascin 

isoforms can independently rescue the CNS node of Ranvier. 

Furthermore, we have revealed an important function for the 

paranodal axoglial junction in promoting the migration and 

convergence of myelinating processes along axons. We propose 

that these two Neurofascin isoforms cooperate to assemble and 

maintain functional nodes of Ranvier in the vertebrate CNS. 

 Results 
 CNS phenotype of  Nfasc  � / �    mice 
 Neurofascin-null animals die suddenly at 7 d after birth ( Sherman 

et al., 2005 ). Therefore, analysis of their phenotype was per-

 Figure 1.    Disruption of CNS paranodes 
and nodes in  Nfasc  � / �    mice . (A) Immuno-
fl uorescence analysis of teased fi bers from the 
ventral funiculus of the cervical spinal cord 
from  Nfasc +/+   and  Nfasc  � / �    animals showed 
that nodes and paranodes were disrupted 
when Nfasc155 and Nfasc186 were lost. 
 Immunostaining of teased fi bers for Claudin 11 
(Oligodendrocyte-specifi c protein) was used to 
localize the paranodes of CNS myelin. Immuno-
staining with an antibody that recognized 
both Nfasc186 and Nfasc155 (Nfasc) con-
fi rmed that they were no longer at the node 
and paranode, respectively. The axoglial junc-
tional components Caspr and Contactin were 
also no longer concentrated at the paranodes. 
In the CNS, Contactin is present at both the 
node and paranodes (inset). The nodal com-
ponents voltage-gated sodium channels (Nav), 
Contactin,  � IV-Spectrin ( � IV-Spec), and An-
kyrinG were mislocalized in mutant animals. 
Note that AnkyrinG in the CNS has both a 
nodal and paranodal localization. Bar, 5  μ m. 
(B) Electron microscopy of the paranodes in 
wild-type (+/+) and mutant ( � / � ) mice. Septate junctions at the base of paranodal loops (arrows) were no longer present in the mutant. Bar, 0.2  μ m. 
(C) Western blot analysis of cervical cord homogenates from wild-type (+/+) and  Nfasc  � / �    ( � / � ) mice, respectively, showing that absence of the Neuro-
fascins does not affect the amount of Caspr in the tissue. Neurofi lament-M (NF-M) was used as a loading control.   
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reconstituted paranodal complexes could not rescue sodium 

channels in the absence of Nfasc186 at PNS nodes ( Sherman 

et al., 2005 ). Using the neuron-specifi c  neurofi lament light chain  

( NF-L ) promoter,  Nfasc186  transgenic mice also displayed ro-

bust expression in the PNS, which allowed us to show directly 

in vivo that Nfasc186 could rescue the nodal complex (sodium 

channels,  � IV-Spectrin, AnkyrinG, and NrCAM) in the absence 

of an intact axoglial junction in PNS axons ( Fig. 4 A ). Interest-

ingly, we were also able to show that NrCAM is a component of 

PNS nodes but that it is absent from CNS nodes ( Fig. 4 B ). 

 Reconstitution of the axoglial adhesion 
complex rescues CNS nodal 
sodium channels 
 Although reconstitution of the axoglial junction cannot rescue 

the nodal complex in the PNS in the absence of Nfasc186, we 

wished to ask if the same holds true in the CNS. Nfasc155 � IC 

that myelination might be either retarded or halted in the mutant. 

The reduction in myelin protein in the mutant was accompanied 

by a signifi cant decrease in the number of myelinated axons ob-

served at P6 in the ventral funiculus of the mutant cervical spinal 

cord ( Fig. 2 C ). The reduction in the amount of myelin was not 

a consequence of a general decrease in the number of axons in 

the CNS of Neurofascin-null animals because the total number 

of axons in the optic nerves of mutants was normal ( Fig. 2 D ). 

Neither was the reduced extent of myelination a consequence of 

an inadequate pool of myelin-forming glia because the numbers 

of oligodendrocytes in wild-type and mutant cervical spinal cord 

sections were not signifi cantly different ( Fig. 2 E ). 

 Nfasc186 rescues the nodal complex 
 We used a transgenic approach to ask if expression of Nfasc186 

FLAG tagged at its C terminus could reconstitute the nodal 

complex in the CNS axons of  Nfasc  � / �    mice in vivo in the 

 absence of an intact axoglial adhesion complex. First, it was 

important to demonstrate that this epitope-tagged protein was 

targeted appropriately to the node of Ranvier and that it colocal-

ized with the nodal complex (sodium channels,  � IV-Spectrin, 

Contactin, and AnkyrinG) in  Nfasc +/+   mice ( Fig. 3 A ). Then, we 

showed that expression of transgenic Nfasc186 on a Neuro-

fascin-null background was fully able to rescue the nodal complex 

( Fig. 3 A ). Intriguingly, and in contrast to Contactin, AnkyrinG 

in the rescued fi bers resumed its normal localization at both the 

node and paranode ( Fig. 3 A ). This suggests that the transient 

expression of AnkyrinG at the paranodes during the postnatal 

development of myelinated CNS fi bers does not depend on either 

Nfasc155 or its axonal partners Caspr and Contactin because in 

the absence of Nfasc155, there was no amelioration of the mis-

localization of Caspr ( Fig. 3 B ). The transient nature of paranodal 

AnkyrinG is shown by its loss in both wild-type and Nfasc186-

rescued nerves by P16 ( Fig. 3 D ). 

 Importantly, the nodal rescue by Nfasc186 was function-

ally signifi cant because these mice survived beyond P7 only to 

succumb at P18 – 19. This allowed us to study two developmen-

tally regulated events in myelinated CNS axons, namely, the 

expression of juxtaparanodal potassium channels and the up-

regulation of sodium channels of the Nav1.6 type. Absence of an 

intact axoglial junction caused juxtaparanodal potassium channels 

of the  Shaker  type Kv1.1 to redistribute to ectopic sites close 

to the nodal sodium channels, as has been observed in other 

mutants with deranged axoglial junctions ( Fig. 3 B ;  Bhat et al., 

2001 ;  Boyle et al., 2001 ). However, the developmentally regu-

lated switch to sodium channels of the Nav1.6 type was un-

impaired by the absence of an axoglial junction ( Fig. 3 C ) as was 

found in the  Jimpy  mouse ( Jenkins and Bennett, 2002 ). 

 We have shown previously that a form of Nfasc155 with 

most of the C terminus replaced by a FLAG tag (Nfasc155 � IC) 

is targeted to the paranodal loops of myelinating Schwann cells 

and oligodendrocytes ( Sherman et al., 2005 ). Further, we showed 

that it can reconstitute the axoglial junctional complex in the 

peripheral nerves of Neurofascin-null mice ( Sherman et al., 2005 ), 

presumably by virtue of the ability of the extracellular domain 

to interact with components of the axonal Caspr – Contactin com-

plex ( Charles et al., 2002 ;  Gollan et al., 2003 ). However, these 

 Figure 2.    Reduced myelination in the mutant at P6.  (A) Electron micros-
copy of transverse sections from the cervical cord of 6-d-old  Nfasc +/+   and 
 Nfasc  � / �    animals showed that, at this very early stage of CNS myelination, 
both myelinating (arrowheads) and nonmyelinated (asterisks) profi les were 
visible in wild-type and mutant cord. Bar, 1  μ m. (B) Western blot analysis of 
cervical cord homogenates from wild-type and  Nfasc  � / �    mice showed that 
the myelin components MAG and MBP were reduced in the mutant at P6 
and were comparable to the levels found at P4 in the wild type. Tubulin was 
the loading control. All the blots were from the same gel and the exposures 
were identical for each protein. (C) The percentage of myelinated axons in 
cervical cord sections was reduced in the mutant. (D) The total number of 
axons in the optic nerves of wild-type and mutant nerves was not signifi cantly 
different. (E) Oligodendrocyte numbers in wild-type and mutant spinal cord 
cross sections were not signifi cantly different. Values are means  ±  SEM.  n  = 3 
mice for each condition. *, P  <  0.01 (unpaired Student ’ s  t  test).   
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 The Nfasc155 – Caspr – Contactin adhesion 
complex promotes oligodendrocyte 
process migration 
 The distal extremities of oligodendrocyte processes in teased 

preparations of wild-type nerves immunostained strongly for 

glial Nfasc155 together with its axonal partners in the axoglial 

adhesion complex Caspr ( Fig. 6, A and B ) and Contactin (not 

depicted). This was so not only when the myelinating processes 

had converged to form a nascent paranodal complex at P6 

( Fig. 6 B ) but also when they were still migrating and the inter-

heminodal gap was  > 14  μ m apart, as was observed frequently at 

P4 ( Fig. 6 A ). Oligodendrocyte processes also migrated along 

axons in  Nfasc  � / �    and  Nfasc  � / �  /Nfasc186  mice ( Fig. 6, C and D ). 

However, quantitative analysis showed that the convergence 

of heminodes was signifi cantly impaired at P6 in Neurofascin-

null nerves and was not ameliorated by the presence of nodal 

Nfasc186 ( Fig. 6 F ). This retardation of oligodendrocyte process 

migration appeared to be a consequence of the absence of an 

 intact axoglial junction because the interheminodal gap between 

processes in wild-type mice at an earlier stage of development 

(P4; 31.7  ±  3.9  μ m; mean  ±  SEM;  n  = 3) were not statistically 

different from either  Nfasc  � / �    or  Nfasc  � / �  /Nfasc186  mice at P6 

(32.5  ±  33.4 and 39.1  ±  3.5  μ m, respectively; mean  ±  SEM;  n  = 3 

each [analysis of variance]). 

 At P6 in wild-type axons, 75% of the nodes were  < 5  μ m 

in length, whereas in the mutant lacking both Neurofascins at 

the same age the equivalent number was 17%, which further 

underlined the reduction in process convergence in the absence 

of Nfasc155 and an intact axoglial junction. The fact that there 

was no statistical difference between the interheminodal gap in 

wild-type CNS axons compared with Neurofascin-null nerves 

rescued with the  Nfasc155 � IC  transgene underlined the ability 

of Nfasc155 to promote normal process migration through res-

toration of the axoglial junction ( Fig. 6, E and F ). 

reconstituted the paranodal axoglial adhesion complex in the 

CNS of  Nfasc  � / �    mice ( Fig. 5 A ), but, in complete contrast to 

the PNS, the correct localization of nodal sodium channels was 

also rescued ( Fig. 5 B ). Other components of the CNS nodal com-

plex, such as  � IV-Spectrin, were also correctly localized ( Fig. 5 B ). 

Unlike the Nfasc186 rescue, mice expressing Nfasc155 � IC 

on a Neurofascin-null background did not have an enhanced 

life expectancy. This may be because of the fact that nodal com-

plexes in the PNS are not rescued concomitantly with those 

in the CNS. 

 Nodal gaps of less than 5  μ m in width were identifi ed 

by symmetrical Claudin 11 immunostaining, and the percent-

age of these that were immunostained for sodium channels 

was measured. In wild-type axons of the spinal cord ventral 

funiculus, 100% of such nodal gaps immunostained for sodium 

channels ( Fig. 5 C ). The effi ciency of sodium channel rescue 

was equally high when reconstituting the axoglial junction 

with Nfasc155 � IC or when expressing Nfasc186 (91  ±  4 and 

96  ±  2%, respectively; mean  ±  SEM;  n  = 3 each;  Fig. 5 C ). 

In both cases, there was no signifi cant difference in the frequency 

of sodium channel staining when compared with wild-type 

nodes ( Fig. 5 C ). 

 Interestingly, it was possible to detect sodium channels at 

a minority of Claudin 11 – fl anked nodes in Neurofascin-null nerves 

(16.0  ±  6.1%; mean  ±  SEM;  n  = 3;  Fig. 5 C ). This suggested that 

sodium channels could still be targeted to the node in  Nfasc  � / �    
mice but that the effi ciency of their delivery and/or their stability 

upon arrival was impaired in the absence of Nfasc186 or an 

intact axoglial junction. The ability of the Nfasc155 – Caspr –

 Contactin adhesion complex to promote the concentration of 

voltage-gated sodium channels at CNS nodes in the absence of 

Nfasc186 is in marked contrast to the PNS node ( Sherman et al., 

2005 ), and this difference was confi rmed in this paper using a 

transgene encoding the complete Nfasc155 protein ( Fig. 5 D ). 

 Figure 3.    Nfasc186 rescues the CNS nodal 
complex in  Nfasc  � / �    mice.  (A) Immunostaining 
of teased ventral funiculus fi bers in the CNS at 
P6 shows that FLAG-tagged Nfasc186 is tar-
geted to the nodes of myelinated axons and 
that it can rescue the nodal components, voltage-
gated sodium channels (Nav),  � IV-Spectrin, 
Contactin, and AnkyrinG when expressed 
on a Neurofascin-null background. Immuno-
staining of teased fi bers for the paranodal 
myelin marker Claudin 11 was used to confi rm 
the localization of the node of Ranvier. Note 
that nodal rescue of AnkyrinG also retrieved 
the protein to the paranodes. (B) Immuno-
staining for Caspr at P16 showed that recon-
stitution of the nodal complex by expressing 
FLAG-tagged Nfasc186 on a Neurofascin-null 
background was not accompanied by rescue 
of the axoglial junction and that, as a conse-
quence, juxtaparanodal Kv1.1 channels were 
mislocalized. (C) By P16, CNS nodes contain 
Nav1.6 channels, indicating that the absence 
of the axoglial junction does not prevent de-
velopmental changes in the expression of so-
dium channel subtypes. (D) By P16 AnkyrinG 
is concentrated at the nodes and lost at the 
paranodes in wild-type and  Nfasc  � / �    nerves 
rescued with Nfasc186. Bars, 5  μ m.   
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that it was able to form Nav1.6 channel clusters at nodes but 

that these became more diffuse and less concentrated with time 

( Rasband et al., 2003 ). Interestingly, Contactin and Caspr were 

still detectable in paranodal complexes in these mice, whereas 

Nfasc155 was not ( Schafer et al., 2004 ). These observations may 

be reconciled by our demonstration here that either Nfasc186 or 

Nfasc155 (through the formation of the axoglial complex) can 

promote the assembly of the nodal complex. Thus, in the case of 

the ceramide galactosyltransferase mutant mice, Nfasc186 de-

livered to the axolemma, possibly guided by local concentra-

tions of Caspr and Contactin, might drive the assembly of the 

node in the absence of the paranodal junction. 

 The tips of oligodendrocyte processes visualized in the 

teased fi ber preparations used in the present work are enriched in 

Nfasc155 and Caspr. The early formation of axoglial junctions 

has been observed previously in the optic nerve, and it is known 

that axoglial septate junctions can be detected in the same nerve 

as early as after one turn of the myelinating process around an 

axon ( Wiggins et al., 1988 ;  Rasband et al., 1999 ). The fact that 

process migration is retarded in the absence of these proteins 

suggests that the axoglial adhesion complex has a role in pro-

moting their extension. Nevertheless, the ability of the processes 

to ultimately converge shows that the axoglial complex is not 

solely responsible for allowing oligodendrocyte processes to ex-

tend. Recent evidence for the involvement of the WAVE proteins 

and their associated links with the actin cytoskeleton in oligo-

dendrocyte process extension provides a possible additional 

mechanism ( Kim et al., 2006 ). 

 Signaling via the axoglial adhesion complex might stimu-

late oligodendrocytes to extend their myelinating processes. 

However, Nfasc155 lacking most of its C terminus can not only 

reconstitute the adhesion complex but can also cluster nodal 

proteins, which shows that intracellular signaling mediated via 

the carboxy terminus of Nfasc155 is not necessary to promote 

the assembly of the node of Ranvier in the CNS. This raises the 

intriguing idea that intracellular signaling in the axon in response 

to axoglial interaction, possibly mediated by the cytoplasmic 

 Neurofascin-null mice rescued with the  Nfasc186  transgene 

had an extended lifespan, and this allowed us to ask whether 

oligodendrocyte process migration was either delayed or was 

completely stalled in the absence of Nfasc155 at P6. In con-

trast to P6 ( Fig. 6 F ), at P16 there was no signifi cant difference in 

the interheminodal gap between  Nfasc +/+   and  Nfasc  � / �  /Nfasc186  

mice ( Fig. 6 G ). Hence, the absence of an axoglial adhesion 

complex delayed, rather than prevented, the extension and con-

vergence of oligodendrocyte processes altogether, and electron 

microscopy showed that this delay did not cause dysmyelin-

ation ( Fig. 6 H ). 

 Discussion 
 The mechanisms of assembly of the node of Ranvier and the 

clustering of sodium channels are likely to occur by different 

mechanisms in the CNS when compared with the PNS, not least 

because of the different structure and protein composition of 

their nodal environments ( Kaplan et al., 1997, 2001 ;  Poliak and 

Peles, 2003 ;  Salzer, 2003 ;  Sherman and Brophy, 2005 ). For ex-

ample, Contactin is a characteristic component of CNS nodes 

but is absent from PNS nodes, whereas we fi nd that the reverse 

is true for NrCAM ( Kazarinova-Noyes et al., 2001 ). 

 Previous work has provided strong circumstantial evi-

dence that the axoglial junction might have a role in the forma-

tion of the CNS node. Analysis of the developing optic nerve 

showed that Caspr staining, which is indicative of the formation 

of axoglial complexes, preceded the detection of sodium channel 

clusters, which were initially typically broad ( Rasband et al., 

1999 ). The same authors showed that  Shiverer  mutant mice lack-

ing normal axoglial junctions had reduced and ectopic sodium 

channel clusters. This indicated, probably for the fi rst time, that 

there was a relationship between the integrity of the axoglial 

junctional complex and the ability of myelinated CNS axons to 

cluster sodium channels. Subsequent analysis of another mutant, 

UDP-galactose/ceramide galactosyltransferase – defi cient mice, 

which also lacks intact paranodal axoglial junctions, showed 

 Figure 4.    Nfasc186 rescues the PNS nodal complex in 
 Nfasc  � / �    mice.  (A) FLAG-tagged Nfasc186 can rescue 
the nodal complex in teased sciatic nerve fi bers immuno-
stained for the nodal proteins voltage-gated sodium chan-
nels (Nav),  � IV-Spectrin, AnkyrinG, and NrCAM. Myelin 
was visualized using MBP as a marker. (B) NrCAM 
is present at PNS nodes but absent from CNS nodes. 
Bars, 5  μ m.   
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adjacent internode ( Ramon y Cajal, 1909 ;  Fraher, 1978 ). In spite 

of the fact that nodes constitute such short segments of the axon, 

clustered sodium channels are still detectable at  � 16% of nascent 

nodes in  Nfasc  � / �    nerves. This indicates that sodium channels are 

not randomly delivered to the axolemma but are targeted to the 

nascent node independently of either Nfasc186 or Nfasc155, al-

though one or both of these proteins is clearly required to stabilize 

the nascent node. Interestingly, a previous study found that  � 12% 

of sodium channel clusters in the developing optic nerve was not 

associated with Caspr-positive axoglial junctions ( Rasband et al., 

1999 ). However, these clusters would be expected to contain 

Nfasc186, which, as the present work shows, would be suffi cient 

to promote the assembly of the nodal complex. 

 Sodium channels are probably delivered to the nascent 

node via an exocytotic pathway ( Kaplan et al., 2001 ). It has 

been proposed that AnkyrinG might regulate such targeting 

( Jenkins and Bennett, 2002 ); however, this still leaves the 

question open as to how AnkyrinG is itself delivered to the na-

scent node. Once the sodium channels with their associated 

 �  subunits reach the nodal membrane, they would be expected 

to interact with Nfasc186 and  � IV-Spectrin to form a macro-

molecular complex ( Ratcliffe et al., 2001 ;  McEwen and Isom, 

2004 ). In the absence of Nfasc186, the complex would diffuse 

in the lateral plane of the membrane, and without an intact 

 axoglial junction to function as a sieve or barrier to their fur-

ther dispersal, the nodal proteins may be endocytosed or pro-

teolyzed in the internodal region, as occurs in the PNS ( Pedraza 

et al., 2001 ;  Dzhashiashvili et al., 2007 ). Reintroduction of 

Nfasc186 would reduce the dissipation of the complex by an-

choring it at the node. Because sodium channels, their  �  sub-

units, and AnkyrinG can interact with Nfasc186 directly, their 

presence at the node could also drive the targeted delivery of 

Nfasc186 ( Ratcliffe et al., 2001 ;  Jenkins and Bennett, 2002 ; 

 McEwen and Isom, 2004 ). 

tail of Caspr, may stimulate the extension of oligodendrocyte 

processes during myelination, in addition to the role of the 

 oligodendrocyte actin cytoskeleton and the WAVE proteins. 

Certainly, and unlike Nfasc155, Caspr cannot contribute to sta-

ble axoglial junctions without its intracellular domain ( Gollan 

et al., 2002 ). Further, a short sequence in this domain mediates 

binding to the cytoskeleton-associated protein 4.1B, which is 

itself part of a cytoskeletal complex that includes AnkyrinB 

( Gollan et al., 2002 ;  Ogawa et al., 2006 ). Interestingly, most 

mice lacking AnkyrinB die at P8, although some survive until 

P21 and have a particularly severe phenotype in the CNS where 

optic nerves degenerate ( Scotland et al., 1998 ). This may refl ect 

defects in axon-glia signaling. 

 The role of the axoglial adhesion complex in the extension 

of oligodendrocyte processes most probably accounts for the 

reduced extent of myelination in the CNS of Neurofascin-null 

mice at P6. This is in contrast to the PNS, where myelination is 

unaffected at P6 in the absence of the Neurofascins ( Sherman 

et al., 2005 ). The cell biology of myelination by oligodendro-

cytes when compared with that of Schwann cells may underlie 

these differences. Oligodendrocyte processes must fi rst extend 

from their cell bodies, make contact with axons, and then ex-

tend along them to completely ensheath internodes. In contrast, 

Schwann cells in vivo cover the axons that they are destined to 

ensheath before myelination ensues ( Jessen and Mirsky, 2005 ). 

Hence, the sites of nascent nodes of Ranvier are already defi ned 

by where each Schwann cell abuts its neighbors. The mecha-

nisms by which Schwann cells subsequently grow and elongate 

are not fully understood but appear to involve the cytoplasm-

fi lled Cajal bands, which are uniquely Schwann cell structures 

( Court et al., 2004 ). 

 The internodes of CNS axons are up to three times shorter 

than those in the PNS at a given axon diameter. Nevertheless, the 

CNS node of Ranvier still accounts for  < 1% of the length of the 

 Figure 5.    Reformation of the paranodal ad-
hesion complex rescues the node.  (A) Immuno-
staining of longitudinal sections of the spinal 
cord ventral funiculus in the CNS shows that 
FLAG-tagged Nfasc155 � IC is targeted to the 
paranodes of myelinated axons and that it can 
rescue Caspr to the paranodal axoglial junc-
tional complex in  Nfasc  � / �    mice. (B) Rescue 
of Caspr to the paranode by Nfasc155 � IC 
on a Neurofascin-null background reconstitutes 
voltage-gated sodium channels (Nav) and  � IV-
Spectrin to the nodal complex. (C) In the CNS 
at P6, both Nfasc186 and Nfasc155 � IC are 
equally effective at reconstituting nodes with 
sodium channels (Nav) when expressed in the 
absence of endogenous Neurofascins. The per-
centage of nodal gaps of  < 5  μ m in width 
identifi ed by Claudin 11 immunostaining that 
also had sodium channels was measured. 
(D) Full-length Nfasc155 tagged with FLAG at 
the C terminus reconstitutes the axoglial junc-
tion in both CNS and PNS, but nodal Nav 
channels are only rescued in the CNS. Neuro-
fascins were detected in the wild type using a 
pan anti-Neurofascin antibody that recognizes 
both Nfasc155 and Nfasc186. Values are 
means  ±  SEM.  n  = 3 mice for each condition. 
Bars, 5  μ m.   



1175 NEUROFASCINS AND THE CENTRAL NERVOUS SYSTEM NODE OF RANVIER  • Zonta et al. 

 The clustering of sodium channels can occur indepen-

dently of the presence of an intact axoglial junction. Neverthe-

less, there is a tendency for nodal sodium channels to disperse 

over time when the paranodal junctional complex is disrupted 

( Rios et al., 2003 ). The importance of an intact axoglial junc-

tion for the long-term stability of the nodal complex has also 

been demonstrated in mouse mutants and after chemical dis-

ruption of the myelin sheath ( Ishibashi et al., 2002 ;  Dupree 

et al., 2005 ). The limited extension of viability in Neurofascin-

null mice expressing transgenic Nfasc186 may refl ect their 

lack of intact axoglial junctions because Caspr-null mice lack-

ing paranodal junctions in the CNS and PNS generally die 

between P21 and P33 ( Bhat et al., 2001 ). Interestingly, the 

tendency for the nodal complex to become more diffuse is 

more pronounced in the CNS compared with the PNS ( Rios 

et al., 2003 ). This suggests that the junctional complex plays 

a more important role in containing the nodal complex in the 

CNS than in the PNS, which is consistent with a more prom-

inent role for the axoglial junction in assembling the CNS 

nodal complex. 

 An intriguing question is why CNS nodes exploit two 

distinct mechanisms to concentrate the macromolecular com-

plex required for saltatory conduction at the node of Ranvier, 

whereas in the PNS, Nfasc186 has a uniquely important role. 

The role of Nfasc186 in the PNS had been inferred from previ-

ous experiments both in vivo and in vitro ( Sherman et al., 2005 ; 

 Dzhashiashvili et al., 2007 ), and here we have demonstrated its 

absolute requirement in PNS node assembly in vivo. Once an-

chored at the PNS node via extracellular interactions, possibly 

mediated by gliomedin and intracellular association with the 

actin cytoskeleton by means of AnkyrinG and  � IV-Spectrin, 

Nfasc186 participates in an exceptionally stable complex, as indi-

cated by the relative insensitivity of sodium channels to disper-

sion after disruption of the paranodal axoglial junction ( Bhat 

et al., 2001 ;  Boyle et al., 2001 ;  Rios et al., 2003 ). The uniquely 

PNS nodal component, NrCAM, may also play a part here 

because it is known to interact with Nfasc186 ( Volkmer et al., 

1996 ). In the absence of NrCAM, CNS nodes may depend on 

the axoglial junction to provide an independent mechanism for 

focusing and concentrating sodium channels to complement 

their cis interactions with Nfasc186. Future application of the 

transgenic rescue strategy described in this work should allow 

us to functionally dissect the protein – protein interactions by 

which Nfasc186 and Nfasc155 cooperate in the assembly of the 

CNS node of Ranvier. 

 Figure 6.    Axoglial adhesion complex promotes oligodendrocyte process 
migration.  (A and B) Axoglial adhesion complexes at the tips of myelinat-
ing processes in teased fi bers were immunostained for Caspr or Caspr and 
Nfasc155 (insets) at P4 (A) and P6 (B). Immunostaining for the myelin pro-
tein MAG, the axonal marker NF-H, Caspr, and Nfasc155 suggested that 
oligodendrocyte processes with Neurofascin and Caspr at their tips might 
converge from P4 to P6 during development. (C – E) Myelinating processes 
could extend along axons in  Nfasc  � / �    mice (C) and in Neurofascin-null 
mice expressing either Nfasc186 (D) or C-terminally truncated Nfasc155 (E). 
(F) Measurement of the gap between myelinating processes (the inter-
heminodal gap) at P6 showed that the convergence of oligodendrocyte 
processes in teased fi bers from the ventral funiculus of the cervical spinal 
cord is either retarded or stalled in the mutant, with or without Nfasc186, 
compared with wild-type nerves at the same age. There was no signifi cant 
difference in the mean interheminodal gap of mutant fi bers at P6 with or 
without Nfasc186, but each was signifi cantly larger than the nodal width 
in either wild-type nerves at P6 or when the axoglial adhesion complex 
was reconstituted using C-terminally truncated Nfasc155. However, there 
was no signifi cant difference in the width of the gap in wild-type nerves 
compared with Neurofascin-null nerves rescued with C-terminally trun-

cated Nfasc155, indicating that this protein effectively rescued process 
migration. (G) At P16, the interheminodal gap between myelinating pro-
cesses in nerves from cervical spinal cord lacking an intact axoglial junc-
tion is not signifi cantly different from wild type, showing that convergence 
of myelinating processes is retarded rather than arrested at P6. Values 
are means  ±  SEM.  n  = 3 mice for each condition. *, P  <  0.01 (one-way 
analysis of variance test). (H) Electron microscopy of transverse sections 
from the cervical cord of 16-d old  Nfasc +/+   and  Nfasc  � / �  /Nfasc186  an-
imals showed extensive myelination in the rescued mutant cord. In A and E, 
the arrowheads show the position of the adhesion complex. In C and D, 
the arrows show the tips of oligodendrocyte processes. Bars: (A – E) 
5  μ m; (H) 2  μ m.   
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65K and relating this to the total area of the optic nerve using Openlab 
software. Electron microscopic images were captured using a Biotwin (Phillips) 
either by conventional photography or by using a digital camera (Orius; 
Gatan). Photographic negatives were scanned and digitized. All fi gures 
were prepared using Photoshop version 7.0 (Adobe) and were not sub-
jected to any subsequent image processing. Western blotting was per-
formed as previously described ( Sherman et al., 2005 ). 
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 Materials and methods 
 Animals 
 All animal work conformed to UK legislation (Scientifi c Procedures) Act 
1986 and to the University of Edinburgh Ethical Review Committee policy. 
The generation of  Nfasc   � / �   and transgenic mice,  Nfasc155 � IC , express-
ing a truncated form of Nfasc155 under the control of the  Plp  promoter has 
been previously described ( Sherman et al., 2005 ). Transgenic mice, 
 NFasc155 , expressing the full-length Nfasc155 with a FLAG tag at its 
C terminus under the control of the  Plp  promoter, were generated as for the 
 Nfasc155 � IC  line. Transgenic mice expressing a full-length cDNA encod-
ing Nfasc186 under the control of the  NF-L  promoter  Nfasc186  were simi-
larly generated by pronuclear injection. After introducing a FLAG tag 
sequence at the 3 �  of the coding region, the cDNA was cloned into the ClaI 
site of the pGCHNF-L vector (J.-P. Julien [Laval University, Quebec City, 
Canada] and D.E. Merry [Thomas Jefferson University, Philadelphia, PA]) 
and was released using AscI and NotI. After backcrossing to a C57BL/6 
background, one of the lines was interbred with  Nfasc +/ �    mice to generate 
 Nfasc  � / �  /Nfasc186  mice. 

 Antibodies, microscopy, and Western blots 
 Unless indicated otherwise, all microscopic images were from nerves of 
6-d-old animals. For immunostaining of CNS or PNS teased fi ber prepara-
tions at room temperature, the ventral funiculus of the cervical spinal cord 
or sciatic nerves, respectively, were removed after transcardiac perfusion 
with 4% PFA and 0.1 M sodium phosphate buffer, pH 7.4, fi xed for a 
further 30 min in 4% PFA and 0.1 M sodium phosphate buffer, pH 7.4, 
washed in several changes of phosphate buffer, and teased on 3-amino-
propyltriethoxysilane – coated slides. A rabbit anti-Contactin antibody was 
prepared using Contactin fused to the Fc domain of human IgG that had 
been expressed in 293 cells and purifi ed from the medium using protein A –
 sepharose (1:200). Other primary antibodies were used at the follow-
ing dilutions: rabbit NFC1 (pan anti-Nfasc;  Tait et al., 2000 ), 1:2,000; 
rabbit NFF3 (anti – third fi bronectin type III domain of Nfasc155;  Tait et al., 
2000 ), 1:2,000; rabbit anti-FLAG (Sigma-Aldrich), 1:400; mouse anti-
FLAG (Sigma-Aldrich), 1:250; guinea pig anti-Caspr (D.R. Colman, Mon-
treal Neurological Institute, Montreal, Canada), 1:200; mouse anti-Caspr 
(IgM; M. Rasband, Baylor College of Medicine, Houston, TX), 1:50; rabbit 
anti-MBP ( Vouyioukiis and Brophy, 1993 ), 1:1,000; rabbit anti –  � III tubulin 
(Sigma-Aldrich), 1:2,000; rabbit anti-Nav1.6 (M. Rasband), 1:100; chicken 
anti-MBP (Millipore), 1:50; rabbit anti-NrCAM ( Sherman et al., 2005 ), 
1:200; rabbit anti-MAG ( Charles et al., 2002 ), 1:500; chicken anti –  � IV-
Spectrin ( Komada and Soriano, 2002 ; M. Komada, Tokyo Institute of Tech-
nology, Yokohama, Japan), 1:200; rabbit anti-AnkyrinG (V. Bennett, Duke 
University, Durham, NC), 1:5,000; mouse pan anti – sodium channel (IgG1; 
Sigma-Aldrich), 1:200; rabbit anti – Claudin 11 (Invitrogen), 1:100; mouse 
anti – Claudin 11 (A. Gow, Wayne State University, Detroit, MI), 1:100; 
mouse anti-APC (IgG2; EMD), 1:100; mouse anti – Neurofi lament-H (IgG1; 
Sigma-Aldrich), 1:200; and mouse anti – Neurofi lament-M (IgG1; Sigma-
 Aldrich), 1:2,000. The secondary antibodies were used at the following 
dilutions: goat FITC-conjugated anti – rabbit IgG (Cappel), 1:200; donkey 
FITC-conjugated anti – chicken IgY (Jackson ImmunoResearch Laboratories), 
1:200; donkey TRITC-conjugated anti – guinea pig IgG (Jackson Immuno-
Research Laboratories), 1:200; donkey FITC-conjugated anti – mouse IgM 
(Jackson ImmunoResearch Laboratories), 1:200; goat TRITC-conjugated 
anti – mouse IgG1 (SouthernBiotech), 1:200; and goat Alexa Fluor 647 –
 conjugated anti – mouse IgG1 (Invitrogen), 1:200. Samples were mounted 
in Vectashield (Vector Laboratories). For confocal microscopy, we used a 
confocal microscope (TCL-SL; Leica) with a 1.4 NA 63 ×  objective and 
Leica proprietary software. Conventional fl uorescence microscopy was 
performed using a microscope (BX60; Olympus) and a 0.75 NA 40 ×  
 objective lens, and images were captured using a camera (Orca-ER; 
Hamamatsu Photonics) and Openlab software (Improvision). Interhemi-
nodal gaps were measured using Openlab software after image acquisi-
tion using conventional fl uorescence microscopy. The same system was 
used to measure the total number of spinal cord oligodendrocytes in trans-
verse sections after immunostaining with an anti-APC antibody (fi ve sec-
tions per animal, three animals per condition). Nerves were prepared 
for electron microscopy as described previously ( Gillespie et al., 2000 ). 
To compare the percentages of myelinated fi bers in wild-type and mutant 
spinal cord, 10 random images from three animals were captured at a 
magnifi cation of 65K and the fraction of axons with a diameter  ≥ 0.5  μ m 
surrounded by myelin was measured. The total number of axons in an optic 
nerve was determined by measuring the axonal density in fi ve regions 
of interest of 140  μ m 2  per nerve using three animals at a magnifi cation of 
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