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Abstract The accelerating growth of the public microbial genomic data imposes substantial bur-

den on the research community that uses such resources. Building databases for non-redundant ref-

erence sequences from massive microbial genomic data based on clustering analysis is essential.

However, existing clustering algorithms perform poorly on long genomic sequences. In this article,

we present Gclust, a parallel program for clustering complete or draft genomic sequences, where

clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algo-

rithm using sparse suffix arrays (SSAs). Moreover, genome identity measures between two

sequences are calculated based on their maximal exact matches (MEMs). In this paper, we demon-

strate the high speed and clustering quality of Gclust by examining four genome sequence datasets.

Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust. We also

introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust.

Introduction

The first complete bacterial genome was published more than
20 years ago [1]. During the last decade, the number of

sequenced genomes has been growing very rapidly, mainly
due to the development of low cost and high throughput
DNA sequencing technologies [2]. As of the beginning of

2018, the Genomes OnLine Database (GOLD; https://gold.
jgi.doe.gov/) has collected data from more than 180 thousand
sequencing projects. Most genomic studies have been focusing
on microbial species, especially bacteria. Thus, the growth of

publically available bacterial genomes have become substantial
and the amount of such data pose significant challenges for
researchers interested in using these resources efficiently. In

addition, these databases host a large portion of redundant
genomes from the same or closely related species and the
redundancy has to be reduced.

Clustering algorithms are key for redundancy reduction
and there have been many of them available including CD-
HIT [3], UCLUST [4], DNACLUST [5], canopies [6], Linclust

[7], CLOSET [8], and SynerClust [9], among others. Most of
them are efficient at clustering DNA sequences from hundreds
to a few thousands of base pairs, including expressed sequence
tags (ESTs), short reads from the next generation sequencers,

and amplicon sequences, but less efficient on longer sequences.
In fact, these programs are not able to handle typical bacterial
genomes of mega basepairs in size. The performances and fea-

tures of these clustering programs have been reviewed in many
publications, such as this recent report [10].

BLASTclust from the BLAST package [11] can be used for

clustering long sequences, but it is too slow to process large-
scale genomic sequences. Other genome alignment tools, such
as MUMmer [12], BLASTZ [13], and Mauve [14], are also
incapable of clustering large-scale genomic sequences, because

they were originally designed to assess genomic variation and

rearrangements by pairwise or multiple alignment of a small

number of genomes.
Since sequence clustering is time-consuming, most clustering

programs use different algorithms to improve performance.

For example, CD-HIT [3] uses a heuristic based on short word
filtering to reduce computational load. Beside short word index
tables or hash tables, suffix trees and suffix arrays have also

been widely used for sequence comparison. For example,
Malde et al. [15] introduced an EST clustering algorithm, where
sub-quadratic time complexity was achieved by using suffix
arrays. Another strategy to reduce the overall computational

time in clustering a large dataset is through parallelization.
For example, a multi-threaded function was introduced in an
enhanced version of CD-HIT [16], and this was able to achieve

quasi-linear speedup when using up to 8 cores.
In this article, we introduce Gclust, a fast program for clus-

tering microbial genomic sequences. A key algorithm in Gclust

for sequence comparison is based on sparse suffix arrays
(SSAs). Our method has several key features. First, it is spe-
cially designed for clustering very long sequences, of up to typ-

ical prokaryotic genomes. Genomic sequences are compared
using extended maximal exact matches (MEMs), which are
used to calculate genome sequence identity. Second, a fast
algorithm was implemented in building SSAs and querying

SSAs to identify MEMs. Third, Gclust supports multi-
threaded parallel computing.

Method

Datasets

We used four genomic sequence datasets (Table 1) from NCBI
to test the performance of Gclust. The first three datasets con-

tain viral, archaeal, and fungal genomic data (ftp://ftp.ncbi.n

Table 1 Detailed information for the four genomic datasets analyzed using Gclust

Dataset Size (Mbp) No. of sequences
Sequence length (bp)

Maximal Minimal Average

Viral 261 9578 2,473,870 200 27,290

Archaea 2028 38,381 5,751,492 22 52,845

Fungi 7213 79,365 11,880,248 86 90,879

Bacteria 19,848 112,111 13,033,779 69 17,046

Note: Sequences shorter than 21 bp were discarded.
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lm.nih.gov/refseq/release/). The bacterial genomes in the
fourth dataset were selected from the NCBI RefSeq genome
list (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/assembly_sum

mary_refseq.txt) according to the following criteria: (1)
genomes assembled at only contig level were excluded; (2) all
the NCBI reference genomes and representative genomes were

included; and (3) the remaining genomes were included if
assembled to complete genomes or chromosomes.

Implementation

Gclust is implemented in C and C++ and POSIX threads
programming (https://computing.llnl.gov/tutorials/pthreads/)

is used for parallelization. We also used the SeqAn [17] and lib-
divsufsort libraries (https://github.com/y-256/libdivsufsort) in
the implementation.

Preliminaries

A key problem in sequence comparison is pattern matching
between sequences. Similar sequences can be detected by

common fragments. MEMs are exact matches between two
strings that cannot be extended without a gap [18]. The clas-
sical approach to find MEMs between a pair of sequences is

to use suffix trees and search for maximal matching blocks
[19]. However, suffix trees require about ten to twenty times
the memory of the source text, even in optimal
implementations.

In order to reduce the memory cost in finding MEMs,
Manber and Myers [20] adopted suffix arrays (SAs), a data
structure that is a sorted list of all the suffixes of a large

text. Later, enhanced suffix arrays (ESAs) replaced suffix
trees, since the use of suffix trees often bottlenecked large
scale applications [21]. Khan et al. [18] introduced another

method, where SSAs were used to find MEMs. Recently,
another SSA-based tool, essaMEM, has been reported
[22]. Compared to full-text suffix arrays, sparse suffix arrays

store every K-th suffix of the text and occupy much less
memory.

The variable declaration is as follows: d : ½s:::e� and
q : ½l:::r� are the intervals of query sequence P. SAðiÞ is the

i-th value of the suffix array. snðpÞ is the serial number of
P. LocationðSAðiÞÞ is the serial number of the sequence
which includes the i-th suffix SAðiÞ. LCP means the longest

common prefix, and LCP[i] is the i-th value of the LCP
array.

In order to find MEMs using SSAs, we adapted the

method suggested by Khan et al. [18]. MEMs are found
according to two intervals (d : ½s:::e� and q : ½l:::r�, where
q : ½l:::r� is a subinterval of d : ½s:::e�) and is obtained by a

top-down binary search. There are two cases whereby MEMs
between S and P can be found (where S is the reference
sequence and P is the query sequence). The first case is when
at most L� K� 1ð Þ characters in length are found and the

match can be recovered by scanning the region between spar-
sely indexed suffix positions. Here K is the sparse step of the
suffix array and L is the only constraint of the minimum

length of MEMs. The other case is when at least
d P L� K� 1ð Þ matched characters are found, and the two
intervals are used to determine the length and position of

MEMs.

Gclust algorithm

Gclust is a greedy incremental clustering algorithm for geno-
mic sequences. The algorithm is explained with pseudo-codes
(Table 2).

The main Gclust parallel algorithm includes (1) sorting the
input genome sequences from long to short and (2) dividing
the input genome sequences into blocks based on the memory
occupied by suffix arrays and process these blocks one after

another.
For each block, the following steps are performed. (a) one

suffix array is constructed before clustering using the represen-

tative sequences. The longest sequence is automatically classi-
fied as the first representative sequence within the block. (b)
Each remaining query sequence is searched in the suffix array

and is compared to the existing representative sequences longer
than it. The comparison is made by attempting to extend
MEMs. If the MEM-based sequence identity satisfies the

user-specified clustering threshold, the query sequence is con-
sidered redundant, or is otherwise a new representative
sequence. (c) A new suffix array is reconstructed using all the
representative sequences found in this block. This new suffix

array is used in comparing sequences in the remaining blocks
to the representative sequences in this block in parallel to iden-
tify redundant sequences. (d) The main loop of the algorithm

processes the next block with steps (a) through (c) until all
blocks are processed.

Segment match refinement and extension

Given sequences A and B and a set R of matched segments
between them, the matched sequence problem is to compute
a set of non-intersecting matches R’ that are all sub matches

of R, that maximize the amount of sequence covered by the

Table 2 Pseudo-codes of the Gclust algorithm
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matched segments. Halpern et al. [23] introduced an efficient
method for refining a set of matched segments in which the
projections of resulting segments onto each sequence were dis-

joint or identical. However, the method is time-consuming.
Since a MEM spans the same length on the two sequences
being compared, it is less complicated to refine the MEMs.

Deloger et al. [24] designed an approximate solution for com-
puting the maximal unique matches index (MUMi). Here, we
used a similar solution to refine MEMs and to compute the

sequence identity using refined MEMs (Figure 1).
The procedures are as follows. (1) MEMs whose coordi-

nates on are presentative sequence (or query sequence) are
completely included in a larger MEM are removed, e.g.,

MEM1 and MEM2 in Figure 1A. (2) MEMs whose coordi-
nates on a representative sequence (or query sequence) are
completely included in two neighboring MEMs are removed,

e.g., MEM2 in Figure 1B. (3) The remaining MEMs of a rep-
resentative sequence (or query sequence) that exhibit partial
overlap are trimmed. To do this, MEMs are sorted according

to their beginning positions on a representative sequence (or
query sequence). Starting from the last element of the list, each
MEM is compared to its leftward neighbor. In cases of over-

lap, the left end of the current MEM is trimmed, e.g.,
MEM1 in Figure 1C, i.e., its end coordinates on both the rep-
resentative and query sequences are shifted rightward so that
no overlap exists on the representative sequence (or query

sequence) (Figure 1C). (4) The MEMs retained are extended
after refinement using the given score matrix (Figure 1D).
While computing the MEM extension, the score matrix is used

to give a reward or penalty. We determine the identity between
two sequences based on the extended MEMs (eMEMs). This
eMEM identity (eMEMi) is calculated using the following

formula:

eMEMi ¼ Nmatch=Lquery ð1Þ

Nmatch is the number of matched nucleotides within
extended MEMs and Lquery is the length of shorter sequences.

The lengths of the representative sequences are always longer
than that of the query sequences, because the sequences are

sorted by length in descending order. Thus, eMEMi is used
to measure the identity between the representative and the
query sequence. Formula (1) relies on the choice of minlen,

which is the minimal size of the exact matches to be included
in MEMs. We extend the MEMs by using a function from
the SeqAn [17] library. In SeqAn, alignments allow the inser-
tion of gaps into sequences through extension. SeqAn uses a

seed-and-extend algorithm to realize extension. In the un-
gapped cases, matches and mismatches are assigned with
scores; these scores are then summed up and the running total

will drop when one or more mismatches occur. In the gapped
cases, gaps will be created with negative scores (http://seqan.
readthedocs.io/en/master/Tutoral/Algorithms/SeedExtension.

html#tutorial-algorithms-seed-extension). While computing
the MEM extension, the score matrix is used to give a reward
or penalty. The minlen value is determined empirically. It has
been reported that under the uniform Bernoulli model, no

maximum unique matches (MUMs) longer than 21 are
expected by chance in 1.7-Mbp random genomes [25]. This
suggests that a minlen value of 21 can avoid many spurious

matches.

Using suffix arrays to find MEMs

For a given sparse step K, there are two major drawbacks in
finding MEMs using sparse suffix arrays: (1) the need to run
the search procedure K times; and (2) a complicated search

procedure is required when the MEM is shorter than K. In
Gclust, we only use K= 1 for small MEMs to decrease the
cost of repeated searches. For longer MEMs, we use K= 2–
4. Since MEMs shorter than 21 are unlikely to find redundant

sequences, our choice of K avoids the second drawback. For a
large MEM or a clustering of 100% identity, a larger K will
shorten the time in constructing the suffix array with little

impact on the efficiency of MEM searching.
However, unlike other mapping programs in which the suf-

fix arrays for reference genomes are constructed only once

prior to mapping, in Gclust, the suffix arrays for each block
are constructed in real time. Therefore, it is important to accel-
erate the sorting process of suffix arrays within the block, espe-

cially when clustering at 100% identity, when the construction
of suffix arrays becomes the most time-consuming step.

Clustering within one genome block

According to the greedy incremental clustering algorithm, a
sequence S only need to be searched against the sequences
longer than S in the pre-constructed the suffix array for that

block. Here we implemented a modified MEM filtering algo-
rithm (collectMEMs). This approach avoids the need to scan
up to P characters to the left of the match and then discarding

the MEMs located in those sequences that are shorter than S
(Table S1).

The algorithm to find MEMs using sparse suffix arrays by

Khan et al. [18] relies on a traverse algorithm to match up to
L� K� 1ð Þ characters and to find the longest match. If a
match of length P L� K� 1ð Þ characters can be obtained,

Figure 1 MEM refinement and extension process

The plot represents four sub-procedures in the process: removing

MEMs (in black) whose coordinates on a representative sequence

(or query sequence; in blue) are completely included in a larger

MEM (in red) (A) or in two neighboring MEMs (in red)

(B), trimming the remaining MEMs (in red, e.g., MEM1 in

sub-procedure C) of a representative sequence (or query sequence;

in blue) that exhibit partial overlap (in green) (C), and extending

the MEMs retained after refinement using the given score matrix

(D) to obtain the respective eMEMs. MEM, maximal exact match;

eMEM, extended MEM.
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the suffix array interval d : ½s:::e� corresponding to matches of
length P L� K� 1ð Þ and the interval q : ½l:::r� corresponding
to the longest match are used by the collectMEMs algorithm

to find right maximal matches. Each right maximal match
must be verified for the left by scanning up to K characters
using the findL algorithm to the left of the match. In Gclust,

for the sorted sequences S : ½1 . . .N� in one block, given the
query sequence P, we modified the collectMEMs algorithm
to discard the MEMs located on the sequences shorter than S.

Parallelization techniques used

Three different explicit parallel extensions to the C language

are the Message-Passing Interface (MPI), POSIX threads
(Pthreads), and OpenMP [26]. MPI is used for distributed-
memory programming. While OpenMP and Pthreads are both
APIs for shared-memory programming, Pthreads is more flex-

ible than OpenMP. Due to the advantages of using shared
memory, in Gclust we adapted Pthreads to facilitate parallel
processing of clustering.

The major part of the Gclust algorithm (Table 2) includes
two primary alignment processes (intra- and inter-block).
The main computation involves finding MEMs. Multiple

query sequences need to be searched in the same suffix array.
In Gclust, these are distributed to individual processors or
cores.

Results and discussion

The greedy incremental clustering algorithm introduced by the

enhanced version of CD-HIT [16] was implemented in Gclust
for clustering genomic sequences. In Gclust, genome identity
measures of two sequences are calculated based on the exten-

sion of their MEMs. We implemented an improved SSA algo-
rithm to find these MEMs.

We tested the performance of Gclust using four RefSeq
genome datasets (viral, archaeal, fungal and bacterial genome

data; Table 1). Tests were done on an Era supercomputer with
a 24-core Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz with
256-GB RAM.

Clustering performance

The cluster results for the four datasets are shown in Table 3.

Genomes were clustered at 90% eMEMi. For the viral dataset,
9578 sequences were clustered into 9101 clusters. 38,381
archaea sequences were reduced to 16,064 non-redundant

sequences, a reduction of 58%. The fungal and bacterial data-
sets were reduced by 13% and 6% respectively. It took Gclust
less than two hours to cluster the 2-GB archaeal dataset. For

the largest bacterial dataset, Gclust took 138.11 h on a single
computer with 16 threads.

A comparison between Gclust and BLASTclust is shown in
Table 4. Four smaller datasets, which contained subsets of the

viral, archaeal, fungal and bacterial genomic data, were used
to test the efficiency of Gclust relative to BLASTclust. Smaller
datasets were used for this comparison to accommodate the

long running time of BLASTclust. Our tests showed that
Gclust was more than 35 times faster in the viral subset, more
than 40 times faster in the archaeal subset and more than 300

times faster in the bacterial subset, and generated fewer clus-
ters in all subsets except for the fungal subset. BLASTclust
could not process the fungal subset since the longest sequence
was beyond the limit of BLASTclust (Table 4).

Gclust applies a parallel strategy that is similar to that
introduced by the multi-threaded version of CD-HIT [16].
Using the viral and archaeal genomic datasets, we tested the

parallelization of Gclust when using multiple compute cores
(Figure 2). The greedy incremental clustering procedure used
by Gclust (see Method) is intrinsically sequential, so it is not

feasible to reach linear speedup with parallelization. Here,
Gclust is able to achieve an eightfold speedup with 16 cores.

Minimal MEM length is a key parameter in Gclust and

affects both running time and the number of clusters found.
The default minimal MEM length in Gclust is 21. The selection

Table 3 Clustering results and performance of Gclust at 90% eMEMi using 16 threads

Dataset No. of sequences No. of clusters Running time (min)

Viral data 9578 9101 8.7

Archaeal data 38,381 16,064 88.0

Fungal data 79,365 68,698 1322.8

Bacterial data 112,111 105,867 7678.8

Note: The parameters used for clustering are as follows: -minlen 41 -both -nuc -threads 16 -chunk 400 -loadall -memiden 90 -rebuild -ext 1 -sparse 4.

Parameter ‘‘-both” indicates that Gclust compares both strands of DNA sequences. MEM, maximal exact match. eMEMi, extended MEM

identity.

Table 4 Comparison of BLASTclust and Gclust

Dataset Size (Mbp) No. of sequences

Length of the

longest sequence

(Mbp)

Running time (s) No. of clusters

BLASTclust Gclust BLASTclust Gclust

Viral subset 213 8584 2.474 10,075 245 8454 8215

Archaeal subset 192 4135 3.122 8148 224 4085 2364

Fungal subset 129 502 6.910 / 71 / 402

Bacterial subset 331 14,891 0.997 73,672 237 9206 2284

Note: The parameters used in Gclust are as follows: -minlen 21 -both -nuc -threads 8 -rebuild -loadall -memiden 90; the parameters used in

BLASTclust are as follows: -a 8 -p F -L 0.1 -b F -S 90. ‘‘/”means that BLASTclust could not process the fungal subset because the longest sequence

was too long.
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of this default value is described in the Method. Here, using the
viral genomic dataset, we tested different MEM lengths from

13 to 40 in gapped and non-gapped extension cases (Figure 3).
In non-gapped extension cases, a sequence is rejected if its

alignment score is very low, and this is much faster than

gapped extension (Figure 3A). Given the same minimum
MEM length, the number of clusters in gapped extension cases
is always smaller than in non-gapped extension cases since the
algorithm identifies more redundant sequences with gapped

extension (Figure 3B).

Efficiency of MEM identification

In Gclust, finding MEMs is the most time-consuming step. We
therefore adapted a fast, lightweight suffix array sorting algo-
rithm and modified the search algorithm to find MEMs. To

evaluate its effectiveness, we compared Gclust and MUMmer3
in finding MEMs. In all test cases, Gclust was considerably
faster than MUMmer3 (Table S2).

When suffix array requires too much memory, sparse
suffix arrays (that use a sparse step K) are usually used to

reduce memory demand by sacrificing the accuracy of clus-
tering. With a higher K, some redundant sequences might be

missed.
However, for larger MEMs, especially given a higher clus-

tering threshold (e.g., 100% eMEMi), sparse steps significantly

reduce the total clustering time without sacrificing accuracy.
We tested the performance of Gclust with different sparse steps
at 100% eMEMi using viral and fungal genomes (Table S3)
and observed shorter runtime with larger K (�4). The number

of clusters was consistent across all sparse steps.

Conclusion

In this paper, we present an open source program for clustering
microbial genomic sequences. This algorithm provides many

options for users to control the clustering process, for example,
the optimal sparse step parameter K. We show that our method
is efficient for large-scale genomic sequences with high accu-
racy. We expect that our parallelization strategy can be further

optimized and improved to achieve better scalability.

Figure 2 The speedup of parallel Gclust for the viral and archaeal genome datasets

The plot represents the average of 4 runs for speedup clustering of viral (A) and archaeal datasets (B), respectively.

Figure 3 Comparison of running time and the number of clusters with different minimal MEMs

Running time (A) and number (B) of clusters with the minimal MEM length varying from 13 to 40 of the viral dataset.
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Availability

Gclust is freely available for non-commercial use at https://
github.com/niu-lab/gclust. A web server for clustering user-

uploaded genomes is available at http://niulab.scgrid.cn/gclust.
The four datasets for viral, archaea, fungi, and bacteria were
deposited in RefSeq of NCBI and can be accessed at ftp://

ftp.ncbi.nlm.nih.gov/refseq/release/.
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