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ABSTRACT

The DNA-binding domain (DBD) of progesterone
receptor (PR) is bipartite containing a zinc module
core that interacts with progesterone response
elements (PRE), and a short flexible carboxyl terminal
extension (CTE) that interacts with the minor groove
flanking the PRE. The chromosomal high-mobility
group B proteins (HMGB), defined as DNA architec-
tural proteins capable of bending DNA, also function
as auxiliary factors that increase the DNA-binding
affinity of PR and other steroid receptors by mecha-
nisms that are not well defined. Here we show that
the CTE of PR contains a specific binding site for
HMGB that is required for stimulation of PR-PRE
binding, whereas the DNA architectural properties
of HMGB are dispensable. Specific PRE DNA inhib-
ited HMGB binding to the CTE, indicating that DNA
and HMGB–CTE interactions are mutually exclusive.
Exogenous CTE peptide increased PR-binding
affinity for PRE as did deletion of the CTE. In a
PR-binding site selection assay, A/T sequences
flanking the PRE were enriched by HMGB, indicating
that PR DNA-binding specificity is also altered by
HMGB. We conclude that a transient HMGB–CTE
interaction alters a repressive conformation of the
flexible CTE enabling it to bind to preferred
sequences flanking the PRE.

INTRODUCTION

Progesterone receptor (PR) is a member of the nuclear
receptor superfamily, which is composed of ligand-
dependent transcription factors that regulate a variety of
cellular processes including metabolism, development,
growth, differentiation and reproduction. Transcriptional
regulation occurs through direct receptor binding to

specific hormone response elements (HREs) of target
genes. For steroid receptors, optimized HREs are hexanu-
cleotide sequences arranged as inverted repeats with a
trinucleotide spacer (3N) between the half sites (1–3). The
DNA-binding domain (DBD) of nuclear receptors is
bipartite, consisting of a core domain and an adjacent
�30–40-amino acid segment termed the C-terminal exten-
sion (CTE). The core of the DBD is a highly conserved
structure that mediates base-specific contacts in the major
groove of the HRE DNA (1,3,4). The CTE is a non-
conserved flexible region that adopts different structures
depending on the specific receptor and it interacts with the
DNA minor groove outside the HRE (5–16).
In the structures of class II nuclear receptor DBDs, such

as thyroid receptor, (TR), (6,8,9,14) retinoic acid receptor
(RAR) and RXR, the CTE formed a single a-helix (termed
A box) that projects across the DNA minor groove and
makes extensive nonspecific contacts with the DNA back-
bone. The CTEs of orphan receptors, such as RevErb,
NGF1-B and ERR-2, bind to the minor groove in an
extended loop conformation (5,7,13,16). The ERR-2 CTE
makes an additional intramolecular interaction with the
core DBD, through a loop, which stabilizes its contacts in
the minor groove (5). CTEs can undergo conformational
changes in response to DNA interaction. For example,
CTE of RXR was reported to consist of a short a-helix in
solution (6) but formed an extended loop conformation
when bound to DNA (9,15). Conversely, the CTE of ERR-
2 was unstructured in the absence of DNA and gained
structure when bound to DNA (5,10).
The CTE is required for high-affinity DNA binding of

many nuclear receptors (6,13,14,17–20), and for certain
orphan receptors the CTE has been reported to play a role
in specificity of target DNA by recognition of a preferred
trinucleotide sequence flanking the half-site HRE (7,17,
21,22). Recently, our crystal structure of a PR DBD–
DNA complex showed for the first time that a steroid
receptor CTE interacts with the minor groove flanking a
HRE (23). Substitution mutations in two PR CTE
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residues (R637/K638) that insert into the minor groove
reduced binding affinity for a palindromic PRE and
eliminated binding to half-site PREs (23). Similar to
orphan receptors, the CTE was shown by deletion
mutagenesis to be essential for binding of PR and ER to
half-site HREs (24,25). It has also been reported that
acetylation of two lysine residues in the CTE of ER-a
enhanced DNA binding and transcriptional activity (26).
Thus the CTE of ER and PR participate directly in DNA
binding and appear to be crucial for binding to weak half-
site elements.
The chromosomal high-mobility group proteins B

(HMGB) were first characterized as DNA architectural
factors for various nuclear processes, including transcrip-
tion, that require DNA manipulation through the ability
of HMGB to bind to distorted DNA structures and to
bend and partially unwind duplex DNA (27–37). We and
others have shown that HMGB also functions to enhance
the binding affinity of all classical steroid receptors to their
cognate HREs in vitro, and consequently stimulate recep-
tor transcriptional activity in transient cell transfection
assays (24,25,38–43). HMGB-1 and closely related
HMGB-2 are functionally interchangeable with respect
to effects on steroid receptors; therefore, the generic term
HMGB is used throughout unless a result was obtained
with HMGB-1 or HMGB-2 specifically. In addition to
binding the minor groove of DNA flanking PREs,
the CTE is required for functional and physical interaction
of steroid receptors with HMGB proteins. Studies with
isolated DBDs of steroid receptors showed by deletion of
the CTE, that this segment was required for protein
interaction with HMGB and for the influence of HMGB
on receptor DNA binding (24,25,42). Interestingly,
HMGB has no effect on DNA binding or transcriptional
activity of class II nuclear receptors (25). That protein
interaction with the CTE is important for the stimulatory
effect of HMGB on transcriptional activity of PR in intact
cells was shown with PR/TR chimeric receptors. Swap-
ping the CTE between PR and TR resulted in functional
switching of HMGB’s ability to enhance transcriptional
activity from PR to TR (25). In addition to facilitating
binding to consensus HREs, HMGB was shown to
increase the affinity of ER for half-site EREs and for
imperfect palindromic EREs, and to promote a greater
fold increase for these intrinsically weak EREs than for
consensus palindromic EREs (24,39). This may be of
biological significance since few steroid receptor target
genes contain consensus palindromic HREs. Further
evidence that HMGB has a role in steroid receptor
action in vivo comes from the phenotpye of HMGB-1
homozygous knockout mice in which thymocytes are
resistant to glucocorticoid induced apoptosis (44). Also,
an interaction between HMGB-1 and glucocorticoid
receptor (GR) was detected by FRET in live cells (45).
In addition to steroid receptors, HMGB can facilitate the
activity of a number of other transcriptional activators
(46–53), by enhancing their binding to cognate sequence
specific target DNA. Interestingly, these studies also
report a protein interaction with HMGB further indicat-
ing the general importance of protein–protein interaction
in mediating the effect of HMGB on sequence-specific

DNA binding by steroid receptors and other transcription
factors. The mechanism for how this protein interaction
affects DNA binding has not been elucidated.

Here, we further define the mechanism for how HMGB
increases the binding affinity of PR for specific PRE DNA.
Results in this article taken together with the recent
structure of the PR CTE–DNA interaction (23), support
the conclusion that HMGB increases binding affinity of
PR for specific DNA primarily through protein–protein
interaction with the CTE. The DNA bending property of
HMGB was not required for enhancement of PR-DNA
binding in vitro but was important for enhancement of
transcription activity within intact cells. These data
further suggest that manipulation of DNA by HMGB
may be required either for access of PR to target PRE sites
in the environment of chromatin or for other steps in the
process of transcriptional activation and/or elongation.

MATERIALS AND METHODS

Materials

The preparation of the materials, including peptides,
antibodies, recombinant baculovirus expression vectors,
mammalian expression vectors and methods for protein
expression and purification are described in the Supple-
mentary Data. Wt and mutant HMGB-1 expression plas-
mids were obtained from Marco Bianchi (Milano, Italy)
and have been previously described (45).

GST pull-down assays

Equal quantities of free GST or GST fusion proteins from
bacterial lysates were incubated with 25 ml of GST-
Sepharose resin for 1 h at 48C. Resins were then washed
three times (10mM Tris pH 7.8, 50mM NaCl, 10% glyc-
erol, 2mMMgCl2, 1mMEDTA and 1mMDTT), brought
to a total volume of 250 ml in wash buffer and incubated
with other proteins for 1 h at 48C. Resins were then washed
4� in wash buffer, transferred to a clean tube and washed
three more times. Bound proteins were eluted with SDS-
sample buffer and detected by Western immunoblotting.
In assays to determine the effects of DNA on protein
interaction, 0.4 mMPR-A, PRDBD651 or PRDBD670 were
incubated with 0.2mM of a 26-mer PRE (50GATATGAG
AACAAACTGTTCTTAATC30) or 20-mer nonspecific
DNA (50AGTTACTGAATTAC GCTCAT30). In peptide
competition assays, 1.5 mg of purified DBD-CTE670 or PR-
B were incubated with peptide that was 50 to 5000 times the
concentration of receptor. PR DBD651 measuring 0.4mM
was used in assays to determine the domains of HMGB-1
required for PR interaction. In assays to determine
interaction with Mut HMGB-1 proteins versus Wt
HMGB-1 proteins, PR DBD670 was added in increasing
concentrations from 0.25 mM to 1.0mM.

Electrophoretic mobility shift assay (EMSA)

EMSA was carried out as described previously (24,25,38).
PR was preincubated for 30min at 48C (25 ml) in 10mM
Tris (pH 7.5), 50mM NaCl, 5% glycerol, 2mM MgCl2,
1mM EDTA and 5mM DTT in the presence of 0.1mg
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poly(dA–dT) and 1 mg ovalbumin as a carrier protein.
A PRE double-stranded oligonucleotide (50GATCTTTG
AGAACAAACTGTTCTTAAAACGAGGATC-30) end
labeled with 32P was added to reactions to a final con-
centration of 0.6 nM and incubated for 30min on ice.
Reactions were electrophoresed on 6% nondenaturing
polyacrylamide gels (40 : 1 acrylamide/bisacrylamide ratio)
in TAE buffer [0.02M Tris–acetate (pH 8.0) and 0.5mM
EDTA] at 48C. Gels were dried under vacuum at 808C and
the percentage of bound to free 32P labeled probe was
determined with a series 400 Molecular Dynamics Phos-
phoimager. Experiments where Wt HMGB-1 and Mut
HMGB-1 binding to DNAwas examined, the same EMSA
conditions were used excluding poly(dA–dT). Graphed
binding curves were determined by averaging points from
the minimum of three experiments (standard error shown)
and fitting the averaged points to the equation:

% DNA bound ¼ Bmax
½PR�=Kdð Þ

1þ ð½PR�=Kdð Þ

where Bmax is the maximum observed DNA binding, [PR]
is the concentration of PR and Kd is the dissociation
constant. The reported Kd was determined by fitting each
binding experiment separately to the above equation then
taking the mean from at least three experiments. Signi-
ficance between Kds is reported as P from two-tailed type 2
t-tests.

Mammalian Cell Transfection

Transient transfections were performed by an adenovirus-
mediated method as previously described with purified
defective adenovirus particles covalently coupled to poly-
L-lysine (54). Cos-1 cells were maintained in Dulbecco
modified Eagle medium (DMEM, Gibco BRL) supple-
mented with 10% fetal bovine serum and were plated in
six-well dishes (Falcon plates) at a density of 155 000 cells
per well. Cells were transiently transfected with pCDNA1
plasmid containing HMGB-1(Wt) or (Mut) vector (or an
empty pCDNA1 vector) along with a progestin-responsive
PRE2-tk-LUC reporter, and an internal constitutive RSV-
b-galactosidase reporter and a PR-B expression vector
(24,38). The prepared adenovirus was mixed with plasmid
DNA for 30min at room temperature in HBS [20mM
HEPES (pH 7.8), 150mM NaCl] followed by addition of
poly-L-lysine at a 200-fold excess over plasmid DNA for
another 30min and added to cells at an MOI of 250. The
cells were incubated for 24 h post-transfection and then
treated with hormone (10 nM R5020) or EtOH for
another 20 h at 378C. At 48 h post-transfection, cell
lysates were prepared and assayed for luciferase and
b-galactosidase activities as described (24,38). Luciferase
activity was determined and normalized to b-galactosidase
as an internal control for transfection efficiency. Lucif-
erase and b-galactosidase activities were analyzed on a
Monolight 2010 luminometer.

Binding site selection

The binding site selection method was modified from
Pollock and Treisman (55). Briefly, a polyclonal antiserum

against PR DBD was used to immunoprecipitate com-
plexes of PR DBD648 bound to DNA fragments contain-
ing a single inverted repeat PRE with a randomized
3N spacer and four randomized nucleotides on either
side of the response element and flanked by fixed ends for
PCR priming and subsequent subcloning. After the fifth
cycle of immunopreciptation and amplification, the
selected DNA was electrophoresed in the presence of
1 nM PR DBD-CTE648 on a 8% polyacrylamide gel
(37.5 : 1 acrylamide:bis-acrylamide) for 90min at 20mA
in TAE buffer (Tris–acetate-EDTA). The shifted DNA
was visualized by Vistra Green-staining (Amersham
Biosciences - now GE Healthcare, Invitrogen, USA),
extracted via crush and soak methods, subcloned into the
BamHI–EcoRI site of a pUC18 vector, and sequenced
using standard methods (56). The sequences were aligned
using CENSENSUS (57) and logos were created with
Weblogo (58).

DNA circularization assays

The circularization assay was adapted from the previous
studies (59). Assays were conducted with a 10-mer duplex
DNA fragment with a cohesive two base over hang
(50-GCCTATTGAA-30 and 50-GCTTCAATAG-30). Liga-
tion reactions contained 2 mM HMG protein, 10 mM
duplex DNA and 5000 cohesive end units T4 DNA ligase
(NEB) in 100ml ligase buffer (50mM Tris–HCL pH 7.5,
10mM MgCl2, 1mM ATP, 10mM DTT - NEB). Reac-
tions were incubated at room temperature for 1 h before
heat inactivation at 658C for 10min. Reactions were then
digested with 100U exonuclease III (NEB) at 378C for 1 h
before purification by PCI extraction. Samples were
resuspended in 5% glycerol and load onto a 20 cm 8%
(30:1 acrylamide:bis acrylamide; 1�TBE) native gel. Gels
were stained with Syber green (Invitrogen) and scanned
with a series 400 Molecular Dynamics Phosphorimager.

RESULTS

The PRCTE is a specific protein-binding site for HMGB

We previously showed that the DBD CTE was the
minimal fragment of PR able to mediate protein interac-
tion with HMGB and to functionally respond to HMGB
as detected by enhanced binding of PR to PRE DNA.
Deletion of the CTE resulted in a loss of HMGB protein
interaction and domain swapping of the CTE between
class II receptors and PR resulted in a switch of functional
response to HMGB (24,25). These results implicated a
requirement of the CTE for physical interaction with
HMGB and functional response to HMGB, but did not
establish whether the CTE alone was sufficient for binding
HMGB. As an initial experiment to address this question,
we mapped HMGB interaction sites by GST pull-down
assay with different fragments of PR. Ten different PR
fragments containing 6� his tags were expressed in the
baculovirus insect cell system and input and bound PR
proteins were detected by Western immunoblot with
an antibody to the 6� his tag (Figure 1). No specific
binding was detected with the isolated amino terminal
domains (NTD) of either PR-A or PR-B, or with the
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ligand-binding domain (LBD). Specific HMGB-1 interac-
tion was detected with full-length PRs and only with PR
fragments that contained the CTE with the exception of
the DBD-hinge-LBD fragment that gave high nonspecific
binding to free GST (Figure 1). This nonspecific interac-
tion of the DBD-h-LBD does not preclude specific binding
to the CTE. These results indicate that HMGB interaction
requires the CTE and that HMGB does not bind speci-
fically to other sites in the receptor.
To determine whether the CTE in the absence of other

potential intramolecular interactions is sufficient for
interaction with HMGB, we analyzed the ability of syn-
thetic peptides to compete for binding of HMGB-1 to PR
(Figure 2A). Three peptides were used including a 19-mer
peptide (CTE) that contains sequence corresponding to the
PR CTE (aa 636–654), a scrambled peptide (sCTE)
containing the same residues as the CTE except randomly
scrambled to control for charge and amino acid composi-
tion, and an unrelated 19-mer peptide (URP) as a
nonspecific control (60). These peptides were tested for
their ability to compete for binding of HMGB-1 to PR in
pull-down assays. Increasing concentrations of the CTE
peptide inhibited binding of HMGB-1 to PRDBD-CTE670

as well as full-length PR. In contrast, the sCTE and URP
peptides failed to inhibit binding (Figure 2B). These results,
taken together with the PR domain mapping results
(Figure 1), show that the CTE is both necessary and
sufficient for binding to HMGB. The fact that the
scrambled peptide was not able to inhibit protein interac-
tion indicates that HMGB binding to the CTE is not simply
a charge interaction but is mediated through a specific
interaction surface.

Both HMGB boxes are required for interaction with PR
and stimulation of PR–DNA binding.

HMGB-1/-2 are expressed from separate genes and are
composed of two homologous but nonidentical
HMG boxes (box A and B), a basic region immediately
C-terminal to each box, and an acidic C-terminal tail
consisting of 30 or 20 Asp and Glu residues for HMGB-1
and HMGB-2, respectively (Figure 3A). Both HMG boxes
have similar structure and bind to the minor groove of
DNA in a sequence-independent manner but exhibit
slightly different preferences for distorted DNA and ability
to bend DNA (27,28,30,31,61–63). The minimal region
of HMGB required for protein interaction with PR was
defined using GST pull-down assays. Results showed that
PRDBD–CTE651 bound as efficiently to an A and B di-box
construct (termed Box AB or di-box) as it did to full-length
HMGB-1, but the individual HMGB boxes bound much
less efficiently to PR DBD-CTE651 (Figure 3B).

Analysis of the effects of HMGB-1 domains on PR
DNA binding is shown in Figure 3C. The individual
HMG boxes, with or without the basic regions, had little
or no ability to stimulate binding of PR-A to DNA even at
a higher molar excess to PR than full-length HMGB-1
(200-fold) (Figure 3C). Analysis of the dibox was
problematic since it acquired a substantial gain in affinity

Figure 1. Regions of PR and HMGB-1 required for protein interaction.
PR constructs expressed in Sf9 cells with N-terminal 6� histidine tags
were used in GST pull-down assay to detect HMGB-1 interaction. The
position of the CTE in different PR constructs is indicated by a black
line. Free GST or GST-HMGB-1 were immobilized on glutathione–
Sepharose resins and incubated with Sf9 cell extracts containing his-
tagged PR constructs. Bound PR was eluted from the resins and
detected by western immunoblotting with a monoclonal mouse
antibody (clone 1162/F6) to 6� his tag. Equal amounts of each PR
protein were added as determined in advance by western immunoblot.
Western blot lanes are: 10% input PR, free GST and GST-HMGB-1.

Figure 2. The role of the CTE in HMGB-1 interaction. (A) Schematic of
PR core DBD and CTE plus sequence of synthetic peptides corresponding
to aa 636 to 654 in the CTE, scrambled sCTE peptide and a control
unrelated peptide (URP). (B) CTE peptide specifically competed for
binding of HMGB-1 to PR. Free GST and GST-HMGB-1 were
immobilized to glutathione–Sepharose resins and incubated with
purified PR DBD670 (0.5 mM/1.5 mg) or full-length PR-B (0.05 mM/
1.5 mg) in the absence and presence of varying amounts of peptides.
Peptides were added in molar excess over receptor; 50- to 250-fold
for PR DBD670 and 500- to 5000-fold for PR-B. Resins were washed,
eluted and bound receptor was detected by western blotting with
antibody for PR DBD.
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for general DNA as compared with full-length HMGB or
individual box domains (Figure 3C) and bound efficiently
to PRE–DNA in the absence of PR. Thus, at the amount
required to stimulate PR-DNA binding, the dibox bound
to the PRE–DNA and competed with PR binding
(Figure 3C). This acquisition of DNA-binding affinity
for the AB dibox in the absence of the acidic C-terminal
tail has been previously described (64). At lower concen-
trations of the dibox that did not bind PRE, PR-DNA

binding was not enhanced (data not shown). These data
show that both HMG boxes are required for protein
interaction with PR and that full-length HMGB is
required for enhancement of PR-DNA binding.

Interaction between HMGB and the PR-CTE
is disrupted by specific PREDNA

In previous EMSA experiments, HMGB enhancement of
PR-DNA binding affinity occurred without the presence of
detectable HMGB in the final high-affinity receptor–DNA
complex, indicating a stable ternary complex does not form
with HMGB, PR and DNA (24,25,38–43). To further
explore the mechanistic basis for this, we examined the
influence of DNA on protein interaction between HMGB
and PR DBD constructs containing varying lengths of the
CTE (Figure 4A). In confirmation of previous results (25),
HMGB-1 bound efficiently to the PR DBD containing
CTE670 and CTE651, but did not bind to the more
truncated CTE641, indicating that residues between 651
and 641 are required for interaction with HMGB-1
(Figure 4B). When excess specific PRE DNA was added
to the binding reaction, HMGB interaction with PR DBD-
CTE670 and PR DBD-CTE651 was prevented, whereas
nonspecific DNA (NS) had no effect (Figure 4B). Similar
results were observed for HMGB binding with full-length
PR (A isoform); binding was inhibited by specific PRE
DNA but not by addition of nonspecific DNA (Figure 4C).

Figure 3. Regions HMGB-1 required for protein interaction.
(A) Schematic of HMGB-1 constructs used in GST pull downs and
EMSA. (B) Binding of HMGB-1 domains to PR DBD-CTE651. Whole-
cell extracts prepared from bacterial cultures expressing GST, GST-box
A, GST-box A with the basic linker (ABasic), GST-box B, GST-box B
with basic linker (BBasic), GST-box A and box B (Box AB) or GST-
HMGB-1 were immobilized on glutathione–Sepharose resin and
incubated with 0.4 mM PR DBD–CTE651. Resins were washed, eluted
and bound protein was detected by western blotting with antibody to
PR DBD. (C) Enhancement of PR-DNA binding requires full-length
HMGB-1 as shown by EMSA. Increasing amounts (0.5–7.0 mM) of
HMG boxes were incubated with 32P labeled PRE in the presence of
(2.0 nM) PR-A and compared to PR-A DNA binding alone and in the
presence of (350 nM) full-length HMGB-2. Increasing concentrations of
di-box (Box AB 0.5–2.0 mM) were incubated with 32P labeled PRE in
the absence of PR-A to demonstrate Box AB’s high-affinity nonspecific
DNA binding. DNA binding was detected by EMSA as described in
Materials and methods section.

Figure 4. HMGB-1 protein interaction with CTE of PR is disrupted in the
presence of PRE DNA. (A) Constructs of PR DBD with different lengths
of CTE (aa 670, aa 651 and aa 641) were used in GST pull-down assays
to detect HMGB-1 interaction. (B) Free GST or HMGB-1-GST fusion
proteins were immobilized to glutathione–Sepharose resins as in Figure 1
and were incubated with PR DBD–CTE670, PR DBD–CTE651 or PR
DBD–CTE641 in the absence (–DNA) or presence of PRE oligonucleotide
(0.2 mM) or a nonspecific (N.S.) oligonucleotide DNA. Resins were
washed, eluted and the bound protein was detected by western blotting
with antibody for PRDBD. (C) GST pull-down assays with full-length PR
were conducted as above in B and bound protein was detected by western
blotting with a monoclonal antibody for PR.
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These results indicate that PR binding to PREs is not
compatible with HMGB protein interaction and may
explain why HMGB is not detected by EMSA in high-
affinity PR–DNA complexes. Since the CTE is both a
binding site for HMGB and participates in binding to
DNA (minor groove flanking the PRE), these data also
suggest the CTE uses the same or overlapping surfaces for
protein and DNA binding.

ACTE peptide mimics HMGB enhancement
of PRDNA binding

Since the CTE peptide inhibited interaction of HMGB
with PR, we analyzed its influence on HMGB stimulation
of PR–DNA binding with the expectation that it would
compete for HMGB binding to the PR CTE and inhibit

the ability of HMGB to stimulate PR–DNA binding.
However, the CTE peptide enhanced binding of PR to the
PRE DNA as detected by EMSA (Figure 5). The CTE
peptide, in a dose dependent manner, increased the appa-
rent DNA-binding affinity of the PR DBD-CTE670 by 5.8-
fold (Figure 5A and Table 1). This effect was specific as
the scrambled CTE and control peptides had minimal
effect (Figure 5A and Table 1). The CTE peptide had only
a minimal effect (1.3-fold) on DNA binding by the
truncated PR DBD-CTE 641 construct (Figure 5B and
Table 1). It should be noted that for the truncated DBD-
CTE641, the DNA-binding affinity in the absence of the
CTE peptide increased by �2-fold as compared to PR
DBD-CTE670 (Table 1). This is consistent with our
previous observation that the CTE has a suppressive
effect on ER and PR DNA-binding activity (24,25).

Figure 5. The role of the CTE in PR-DNA binding. (A and B) CTE peptide enhances PR–DNA binding in a manner dependent on the presence of
CTE in the receptor. Increasing amounts (2–32 nM) of (A) PR DBD-CTE670 or (B) PR DBD–CTE641 were incubated with 32P labeled PRE in the
presence or absence of CTE, sCTE and URP peptide (0.75 mM), and DNA binding was detected by EMSA as described in Materials and methods
section. Binding was graphed as fraction PRE bound and represent average values� standard error of the mean (SEM) from a minimum of three
independent experiments.

Table 1. Fold enhancement of PR DBD by CTE peptides

(-) URP sCTE CTE

DBD-CTE670

Kd(M)� SEM
[Fold effect/P(T� t)]

1.69E�08
� 6.06E�09 1.38E�08

� 4.56E�09 (1.2/0.55) 1.12E�08
� 2.66E�09 (1.5/0.29) 2.90E�09

� 1.16E�09 (5.8/0.14)

DBD-CTE641

Kd(M)� SEM
[Fold effect/P(T� t)]

9.25E�09
� 7.24E�10 1.06E�08

� 3.62E�10 (NA/0.29) 4.31E�09
� 2.37E�10 (2.1/0.01) 7.34E�09

� 1.48�10 (1.3/0.46)
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However, the stimulatory effect of the CTE peptide and
HMGB on DNA-binding affinity of PR is larger (8–9-
fold) than the 2-fold reduction observed by truncation of
the CTE to aa 641. The ability of the CTE peptide to
mimic the effect of HMGB on PR–DNA binding in a
manner dependent on the presence of CTE in the PR
construct is consistent with the hypothesis that the flexible
CTE in the absence of DNA makes contact with other
regions of PR that represses DNA-binding activity. Such
an intramolecular interaction could be disrupted either by
HMGB binding to the CTE or by competition with an
external CTE peptide that binds with the core DBD and
disrupts this intramolecular interaction.

HMGB influences the preference of PR for A/T
sequences flanking the PRE

Our previously observed interactions of the PR CTE with
the minor groove flanking the PRE (23), taken together
with results here, raised the question of whether HMGB
influences receptor recognition of sequences flanking the
hexa-nucleotide PRE. To address this question, we
conducted a binding-site selection experiment with DNA
containing a fixed inverted repeat hexanucleotide con-
sensus PRE with a randomized 3N spacer and four ran-
domized nucleotides flanking either side of the PREs
(N4AGAACAN3TGTTCTN4). In the absence of HMGB,
PR DBD-CTE648, showed a slight strand bias at positions
�2 and +7 in the PRE and nonrandom distribution of
bases in the 3N spacer and flanking DNA as detected by
CENSENSUS (57) and illustrated by Weblogo (58),
(Figure 6). These aligned sequences had a preference for
pyrimidines at positions �1 and 0 in the 3N spacer.
However, in the presence of HMGB-1, PR DBD-CTE648

had a preference for pryimidines only at position 0, and for
A/T residues at positions +8, +9 and +11 in the flanking
sequence that was not observed with PR DBD- CTE648

alone (Figure 6). HBGB-1 also promoted a slight strand
bias within the fixed PRE at positions +3 and +7
(Figure 6). These results indicate that HMGB

asymmetrically influences the flanking PRE sequence
recognized by PR and thus may alter the specificity of
PR target DNA.

DNA architectural properties of HMGB-1 are not
required for enhancement of PR–DNA binding

DNA-binding characteristics of box A and box B of
HMGB are attributed in part to three minor groove
intercalating residues that are conserved among HMGB
family members (27,65). Box A contains one intercalating
residue (Phe37) and box B contains two intercalating
residues (Phe102 and Ile121) (Figure 7A). The basic
regions C-terminal to the HMG domains have also been
shown to be involved in DNA interactions and are
required for nuclear accumulation (66,67) (Figure 7A).
The role of the DNA-binding properties of HMGB in
facilitating PR interaction with PRE was investigated
using a previously described mutant HMGB-1 (Mut
HMGB-1) which contains alanine substitutions of the
three key intercalating residues (45). To assess DNA-
binding properties of Mut HMGB-1, EMSAs were
performed with varying concentrations of Wt HMGB-1
and Mut HMGB-1 using PRE DNA as a target. Because
HMGB-1 binds to DNA in a nonsequence-specific

Figure 6. HMGB-1 influences PRE flanking DNA sequence recognized
by PR. Shown in the Sequence logo format (Weblogo) are the sequences
selected by PR DBD–CTE648 alone or in the presence of HMGB-1
(+HMGB-1) as aligned by CONSENSUS. The sequence positions of the
inverted repeat PREs are shown on the x-axis and the information content
of the alignment for each position is shown on the y-axis.

Figure 7. Functional effect of mutations in the DNA intercalating
residues of HMGB-1. (A) Schematic of HMGB-1 domains. Mut-
HMGB-1 contains alanine substitutions for the residues that intercalate
in the DNA (Phe37, Phe102 and Ile121) as described previously (45,62).
(B) Binding of wild-type (Wt) and mutant (Mut) HMGB-1 with PRE
DNA as detected by EMSA. Increasing concentrations of WT HMGB-1
or Mut HMGB-1 proteins (0–5 mM) were incubated with a single
concentration of [32P]-labeled PRE (0.6 nM) under conditions in the
absence of competitor DNA that permit the detection of nonsequence-
specific DNA binding. The distinct mobilities of Wt-HMGB-1 and Mut
HGMB-1 complexes are indicated by the arrows. Free and shifted DNA
bands were quantitated and graphed as a fraction of bound DNA. (C)
DNA-bending properties of HMGB-1 Wt and Mut proteins as analyzed
by circularization assay. HMGD, HMGB-1Wt, HMGB-1Mut (2 mM) or
no protein was incubated with 10-mer linear duplex DNA in the presence
of DNA ligase. Reactions were digested with exocnuclease III to eliminate
linear DNA fragments. HMGD as a positive control was used to generate
a ladder of known DNA circle sizes. Formation of DNA circles was
detected by EMSA and cyber green staining (Invitrogen) as described in
Materials and methods section.

Nucleic Acids Research, 2008, Vol. 36, No. 11 3661



manner, no carrier DNA was added to the reactions to
permit detection of low-affinity binding. Wt HMGB-1
bound the PRE DNA and had �5–6-fold higher binding
affinity (Kd=2.03E�07) than Mut HMGB-1 (Kd=
1.43E�06). Despite the lower binding affinity, the Mut
HMGB-1 exhibited a higher maximal DNA binding (15%
versus 5% of input DNA) (Figure 7B and Table 2).
Wt HMGB-1 and Mut HMGB-1 complexes also exhibited
distinct mobilities indicating differences in how they distort
DNA structure (Figure 7B). Ligase-mediated circulariza-
tion assays were preformed to determine the ability of the
wild-type and mutant HMGB-1 to bend DNA (59)
(Figure 7C). It has been previously established that ligation
of short linear DNA fragments in the presence of HMG
proteins produces DNA circles with sizes that relate to the
degree to which HMG is able to bend the DNA
(63,65,68,69). A 10-mer DNA fragment was ligated in the
presence of HMGD, Wt HMGB-1, Mut HMGB-1 or no
protein. Drosophila HMGD was used as a positive control
since its DNA-bending properties have been extensively
characterized (59,70). Wild-type HMGB-1 was able to
efficiently produce circles of 80 bp in size and larger by
increments of 10 bp with activity similar to HMGD
(Figure 7C). In contrast, the Mut HMGB-1 demonstrated
almost a total loss of DNA bending producing only a small
proportion of circles >150 bp (Figure 7C). Therefore, Mut
HMG-1 binds to DNA with slightly lower affinity
compared to Wt-HMGB-1, but is essentially unable to
bend DNA.
Mutant and wild-type HMGB-1 were also compared for

their ability to make protein contacts with PR DBD-
CTE670 and to facilitate PR–DNA binding. In GST pull-
down assays, Wt HMGB-1 and Mut HMGB-1 interacted
equally with PR (Figure 8A). Thus, the HMGB-1
intercalating residues are not required for protein inter-
action with PR. Both Wt HMGB-1 and Mut HMGB-1
had similar effects on PR–DNA binding stimulating an
increase in apparent binding affinity of 7–8-fold from a Kd

of 1.18E�07 with receptor alone to a Kd of 1.60E�08 and
1.48E�08 with Wt HMGB and Mut HMGB-1, respectively
(Figure 8B and Table 3). These results show that the DNA
intercalating residues of HMGB-1 are not required in vitro
for protein interaction with PR or for stimulation of PR–
DNA binding.
Mut HMGB-1 was also compared with Wt HMGB-1 in

transient transfection assays for their ability to stimulate
transcription activity of PR (Figure 8C). Cos cells were
cotransfected with a PRE-luciferase (LUC) reporter
gene, PR-B, Wt HMGB-1, Mut HMGB-1 or an empty
vector. Cells were treated with R5020, a synthetic
progesterone, or vehicle (EtOH). Under conditions where
ectopically expressed wild-type HMGB-1 gave a significant
enhancement of progesterone-dependent PR-mediated

transactivation of PRE-Luc, the Mut HMGB-1 had
minimal effect (Figure 8C). These results show that even
though intercalating residues of HMGB-1 were not
required for PR interaction or stimulation of PR–DNA
binding they were important for stimulation of PR
transcription activity in cells.

Table 2. Binding affinity of Wt and Mut HMGB-1

Wt HMGB-1 Kd (M) 2.03E�06
� 5.79E�07

Mut HMGB-1 Kd(M) 1.43E�06
� 5.52E�07

P(T� t) 0.36

Figure 8. Mutations in DNA intercalating residues of HMGB-1 did not
influence enhancement of PR-DNA binding in vitro but reduced the effect
of HMGB-1 on PR transcriptional activity in cells. (A) Protein interaction
of HMGB-1 with PR DBD was not affected by mutations in the
intercalating residues of HMGB-1. Free GST, GST-Wt HMGB-1 or
GST-Mut HMGB-1 were immobilized to glutathione–Sepharose resins
and incubated with increasing concentrations of purified PR DBD–
CTE670 (0.25 mM to 1.0 mM). Resins were washed, eluted and bound
protein was detected by western blotting with antibody for PR DBD
(input is 10%). (B) Effect of Wt HMGB-1 and Mut HMGB-1 on binding
of PR to PRE DNA as detected by EMSA. Increasing concentrations of
purified PR DBD–CTE648 (0–30 nM) were incubated with a single
concentration of [32P]-labeled PRE (0.6 nM). The free and protein
bound PRE complexes were separated by native gel electrophoresis,
quantitated, and graphed as fraction of bound PRE–DNA. (C) Mut
HMGB-1 had reduced ability to enhance transcriptional activity of PR
in cells. Cos-1 cells were cotransfected with PRE2-tk-LUC reporter, PR-B,
Wt HMGB-1 or Mut HMGB-1. Cells were treated with 10 nM R5020
(synthetic progesterone analog) or an equal volume of EtOH for 20 h.
Luciferase activity was determined and normalized to internal control
b-galactosidase activity. Normalized luciferase activity with vehicle-
treated cells was set to 1.0 and all other treated groups were calculated
as fold >1.0. Error bars indicate standard mean of the error (n=5) for
doses 0–40 and n=3 for dose 80.
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DISCUSSION

Results of the experiments presented in this paper provide
new insights into the mechanism by which HMGB
proteins enhance the activity of PR. First, the CTE of
PR contains a motif that is recognized by HMGB and this
protein interaction was found to be essential for HMGB
enhancement of PR–DNA binding in vitro. Second,
specific PRE DNA interfered with HMGB–CTE interac-
tion suggesting that CTE binding with the minor groove
of DNA flanking the PREs and with HMGB are mutually
exclusive. This may explain previous results from our lab
and others on the inability to observe a stable ternary
complex of steroid receptor/HMGB/DNA. Third, a CTE
peptide mimicked HMGB in vitro by enhancing PR–DNA
binding in a manner dependent on the presence of the
CTE in the PR construct. This taken together with
previous results that truncation of the CTE increased the
affinity of PR for PRE DNA, suggests that HMGB
interaction relieves a repressive effect of the CTE on PR
DNA binding. Fourth, the presence of HMGB in a DNA-
binding site selection assay resulted in PR exhibiting a
preference for A/T nucleotides flanking the PRE indicat-
ing that HMGB influences target gene specificity. Finally,
the DNA binding and bending activities of HMGB-1 were
not required for protein interaction with PR or stimula-
tion of specific PR–DNA binding in vitro but were
required for HMGB-1 enhancement of PR-mediated
gene transcription in intact cells. These data suggest that
HMGB-1 affects more than PR–DNA binding and may
enhance other steps in the process of PR- mediated
activation of gene transcription.

From these results we propose a working hypothesis for
how HMGB stimulates PR–DNA binding in vitro and
PR-mediated transcriptional activation in intact cells
(Figure 9). HMGB interacts with the flexible CTE prior
to PR–DNA binding, resulting in disruption of an
intramolecular interaction between the CTE and core
DBD that is repressive for DNA binding. This HMGB
interaction also promotes binding of the CTE to the minor
groove of DNA immediately flanking the PRE. The CTE–
DNA interface increases the affinity of the PR DNA
complex and has a preference for A/T nucleotides
suggesting that HMGB also alters target gene specificity.
HMGB interaction with PR is transient and is dissociated
upon binding of the CTE to DNA. In the intact cell
HMGB recruited by PR to target gene sites may have
other roles that require DNA-binding and -bending
activities of HMGB such as facilitating access of PR to
target genes in chromatin and other steps in the process of
activation of gene transcription.

HMGB influences the DNA-binding specificity of PR

In a binding-site selection assay, HMGB-1 influenced
sequences flanking the PRE that were recognized by the
PR DBD–CTE. In the presence of HMGB-1, an increased
occurrence of A/T-rich sequences at nucleotide positions
+8, +9 and +11 adjacent to the 30 PRE hexanucleotide
(Figure 6) was observed. Interestingly, the PR DBD dimer
binds asymmetrically to DNA, as seen in the crystal
structure of the PR DBD–DNA complex, due to the 3N
spacer (23). The DBD subunit in the crystal structure that
had weaker contacts was bound to the 30PRE hexanucleo-
tide and this correlated with the selection of A/T-rich
sequences by HMGB in the 30 flanking sequence
(Figure 6). These data indicate that HMGB-1 either
altered the interaction of the CTE with the flanking DNA
or transiently bound the CTE to further stabilize weak or
suboptimal PR–DNA interactions through the flanking
DNA. Precedence for this role of the CTE comes from
certain orphan receptors that bind to half-site HREs,
where CTE interactions with the minor groove extend the
DNA-binding site through a preference of the CTE for a
flanking TCA(RevErb) or AAA (NGFIB) trinucleotide.
A preference of PR for A/T-rich flanking sequences in the
binding-site selection assay with HMGB is consistent with
a well-characterized preference of HMGB to bind A/T-
rich DNA sequences in general (68,70,71). The influence
of HMGB on steroid receptor specificity for DNA has

Figure 9. Proposed mechanism of action of HMGB. Prior to binding
DNA, HMGB (green) interacts with the CTE (red) of PR (core DBD
in blue) and disrupts a repressive intra-molecular interaction between
the CTE and core DBD (only single domain models are shown for
simplicity). HMGB interaction also promotes CTE binding to the
DNA minor groove flanking the PRE. HMGB binding to PR is
transient and dissociates upon stable binding of the CTE to DNA.
Dissociated HMGB interacts with DNA/chromatin in the vicinity of
the promoter to affect RNA pol II and general transcription factors
(GTFs) in down stream steps in the process of steroid receptor-
mediated gene transcription.

Table 3. Fold enhancement of PR DBD by Wt and Mut HMGB-1

(-) Wt HMGB-1 Mut HMGB-1

DBD648 Kd(M)� SEM
[Fold effect/P(T� t)]

1.18E�07

� 2.35�08
1.60E�08

� 7.38E�10

(7.4/0.02)

1.48E�08

� 3.09�10

(8.0/0.02)
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been observed previously for ER (39). The combined effect
of the CTE and HMGB to maximize receptor interaction
with weak half-site HREs may be of biological significance
since few steroid receptor target genes contain consensus
HREs. The majority have divergent imperfect HREs or
multiple half-site HREs suggesting that auxiliary cofactors
are required for receptors to select many of their target
genes in vivo. HMGB is an abundant cellular protein that
may play such a role and expand the diversity of genes
recognized by steroid receptors beyond those with optimal
palindromic HREs.

HMGB induced de-repression of PRDNA binding
is mediated by the CTE

Previous reports showed that truncation of the CTE in the
context of PRDBD and ER-DBD constructs resulted in an
increased DNA-binding affinity (24,25). However, addi-
tion of HMGB increased DNA-binding affinity more than
that observed by truncation of CTE. This information
combined with the result that the CTE peptide increased
PR–DNA binding affinity in a manner dependent on the
presence of the CTE in the PR DBD polypeptide, is
consistent with a ‘relief from repression’ mechanism that
involves HMGB binding to the CTE (Figure 5). It has
previously been shown in the structure of the orphan
receptor ERR2, that residues in the CTE interact with a
hydrophobic patch on the core DBD through looping of a
region of the CTE beyond the residues that insert in the
minor groove flanking the HRE. (5). The effect of the CTE
intramolecular interaction with the core DBD in ERR-2
has not been directly tested. Interestingly, our PR DBD–
CTE648 crystal structure showed a similar hydrophobic
patch in the core DBD that could potentially mediate an
intramolecular interaction with the CTE (23). However,
the PR DBD–CTE648 structure did not have enough of the
CTE sequence present to detect such an interaction if it
exists. Since the CTE is known to be a flexible region in
dynamic equilibrium between different conformations,
these data suggest that the CTE peptide enhanced PR–
DNA binding by competing for an intramolecular inter-
action between the CTE and core DBD. Further structural
studies with a longer CTE and functional mutagenesis will
be needed to confirm this proposed mechanism.

Direct interaction of HMGB and the CTE is important for
enhancement of PR–DNA affinity and activity

A common finding with transcription factors (including
steroid receptors) that exhibit increased DNA-binding
affinity in response to HMGB proteins is that HMGB is
not (at least in vitro) a stable component of the high-affinity
DNA complex (38–53). Thus the effect of HMGB is
mediated through transient interactions, either by altering
the conformational equilibria of receptor-DNA interac-
tions, or the conformation of the DNA to improve it as a
target for receptor interaction. Since HMGB proteins bind
and distort DNA it was logical to anticipate that HMGB
acts by altering the orientation or accessibility of the DNA.
To examine the role of DNA architectural properties, we
employed mutations of DNA intercalating hydrophobic
residues of HMGB-1. These substitutions were previously

reported to reduce binding to structured and linear
nonspecific DNA and to reduce DNA-bending activities
of the individual HMG boxes (57,65,66,72). Our results
confirm the reported functional consequence of these
substitutions within the context of the full-length protein.
The mutations did not abolish HMGB DNA binding,
rather they reduced affinity for nonspecific linear DNA.
However, DNA-bending activity of the mutant HMGB1
was completely lost (Figure 7B and C). These substitutions
had no effect on protein interaction with PR or the ability
of HMGB-1 to stimulate DNA-binding affinity of PR
in vitro (Figure 8A and B). Based on these results we
conclude that HMGB, at least under these conditions
in vitro, does not increase PR–DNA-binding affinity by
manipulating structure of the DNA template. HMGB acts
primarily through protein–protein interaction with PR to
facilitate interaction of the CTE with DNA sequences
flanking the PRE.

In contrast to the lack of effect on PR–DNA binding
in vitro, these intercalation site mutations markedly
reduced HMGB-1 stimulation of PR transcriptional
activity in cell transfection experiments (Figure 8C). An
analogous observation was made by Agresti et al. (45),
where interaction between GR and HMGB-1 observed in
living cells by FRET was dependent on both an intact
DBD of GR and the intercalating residues of HMGB-1.
The authors concluded that both GR and HMGB-1 must
be bound to DNA in order to interact with each other.
Thus, one possible explanation for the different effects of
HMGB mutations observed in vitro and in intact cells, is
that the DNA intercalation and bending properties of
HMGB are required to enable access of PR to its DNA-
binding sites in the environment of chromatin. Indeed,
HMGB has been shown previously to act in a chromatin
remodeling capacity (73). Alternatively, HMGB-1 may
have additional effects on the process of receptor-mediated
transcription downstream of PR–DNA binding. HMGB
has been reported to interact with TBP at the initiation
complex (74) and to be a component of an elongation
complex associated with RNA polymerase in vitro (75).
Since chromatin remodeling and elongation likely require
unwinding of DNA, the DNA intercalating properties of
HMGB could be essential to these processes. Thus
transient interaction of HMGB with receptors could have
the dual role of facilitating receptor–DNA binding and
localizing HMGB at the promoter for interaction with
general transcription factors or elongation complexes.
Further studies will be needed to determine whether
HMGB affects steps other than receptor–DNA binding
in the process of steroid receptor-mediated transcriptional
regulation.
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